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Abstract

The present paper is devoted to study of the extreme boundaryof the convex
compact set of all semi-additive functionals on a finite-point compactum. We shall
find some classes of extreme points of the space semi-additive functionalsOS(n).
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1. INTRODUCTION

The spaceP (X) of all probability measures on a compactumX is well inves-
tigated. In [9], T. Radul introduced the spaceO(X) of weakly additive order-
preserving normalized functionals on a compactumX. Topological and geometric
properties of weakly additive order-preserving normalized functionals were stud-
ied in [1,2,6,7]. In [5] The space of all of semi-additive positively-homogeneous
weakly additive order-preserving normalized functionalswas investigated and a
general form of semi-additive functionals was given. Also categorical properties
of the functor of semi-additive functionalsOS have been investigated. Geometrical
and topological properties of covariant functors on the category compacts and their
continuous mappings had investigated by several authors (see [1,2,4,6,7,10]).

It is well-known that the extreme boundary of the space of probability measures
on compactum coincides with the set of all Dirac measures on this compactum, and
therefore is homeomorphic to the initial compactum. This property plays a crucial
rule in investigations of geometric properties of the spaceof probability measures on
compactum. The structure of the extreme boundary of the space of semi-additive
functionals on compactum is not yet described. In [8] it was described a general
form of extreme points of space semi-additive functionals on three-point space.
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The aim of the present paper is to study the extreme boundary of the convex
compact setOS(n). We give some classes of extreme points of the space of semi-
additive functionalsOS(n).

2. PRELIMINARY NOTES

LetX be a compact set. Denote byC(X) the algebra of all real-valued continu-
ous functionsf : X → R with point-wise algebraic operations and sup-norm, i. e.,
with the norm‖f‖ = max{|f(x)| : x ∈ X}. For anyc ∈ R by cX we denote the
constant function, defined by the formulacX(x) = c, x ∈ X. Letϕ, ψ ∈ C(X).
The inequalityϕ ≤ ψ means thatϕ(x) ≤ ψ(x) for all x ∈ X.

A functionalν : C(X) → R is said to be [9]:

(1) weakly additive ifν(ϕ+cX) = ν(ϕ)+cν(1X) for all ϕ ∈ C(X) andc ∈ R;
(2) order-preserving, for anyϕ, ψ ∈ C(X) with ϕ ≤ ψ we haveν(ϕ) ≤ ν(ψ);
(3) normalized ifν(1X) = 1;
(4) positively homogeneous ifν(tϕ) = tν(ϕ) for all ϕ,∈ C(X), t ∈ R, t ≥ 0;
(5) semi-additive ifν(ϕ + ψ) ≤ ν(ϕ) + ν(ψ) for all ϕ, ψ ∈ C(X).

For every compactumX we denote

V (X) =
∏

ϕ∈C(X)

[minϕ,maxϕ].

For every mapf : X → Y byV (f) we denote the map fromV (X) toV (Y ) defined
by

V (f)(ν)(ϕ) = ν(ϕ ◦ f), ν ∈ V (X), ϕ ∈ C(X).

For a compactumX we denote by:
– OS(X) the set of all weakly-additive, order-preserving, normalized, positive-

homogeneous and semi-additive functionals onC(X);
– P (X) the set of all positive, normalized linear functionals onC(X).
Let us consider these sets as subspaces of the spaceV (X), equipped with the

topology of point-wise convergence, in particularly, the base of neighborhoods for
the functionalν ∈ F(X), whereF = OS, P, is formed by the sets

〈ν; ϕ1, ϕ2, · · · , ϕk, ε〉 = {ν ′ ∈ F(X) : |ν ′(ϕi)− ν(ϕi)| < ε, i = 1, k},

whereε > 0, ϕi ∈ C(X), i = 1, k, k ∈ N.
For every compactumX the spacesOS(X) andP (X) are convex compact.
LetF be a closed subspace ofX. A functionalν ∈ OS(X) is said to be supported

onF, if ν(f) = ν(g) for all f, g ∈ C(X) with f |F = g|F . The smallest closed set
F ⊂ X on which the functionalµ is supported, is called the support ofν ∈ OS(X)
and denoted by suppν, i.e.,

suppν =
⋂

{F : ν − supported onF}.

For every convex compactumK we denote bycc(K) the space of all non empty
convex compact subsets ofK, equipped with the Vietoris topology. Recall [3] that
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a base of this topology is formed by the sets of the form

〈U1, . . . , Un〉 = {A ⊆ cc(K) : A ⊆ U1 ∪ · · · ∪ Un and A ∩ Ui 6= ∅ for every i},

whereU1, . . . , Un run through the topology ofK, n ∈ N.
ForA ∈ cc(P (X)) set

(2.1) νA(ϕ) = sup{µ(ϕ) : µ ∈ A}, ϕ ∈ C(X).

ThenνA ∈ OS(X). In [5, Proposition 4.4] it was shown that any functional from
OS(X) is represented in the form (2.1), moreover the mapping

(2.2) A ∈ cc(P (X)) 7→ νA ∈ OS(X)

is an affine homeomorphism between spacescc(P (X)) andOS(X) (see [5, Theo-
rem 1]).

LetX andY be topological spaces and letf : X → Y be a continuous mapping.
The mappingF(f) : F(X) → F(Y ), whereF = OS, P, is defined as the restriction
of V (f) onF(X).

In [5] it was proved that

(2.3) OS(f)(νA) = νP (f)(A).

Note that for then-point compactn = {0, 1, ..., n − 1}, n ∈ N, the spaceC(n)
is isomorphic to the spaceRn, moreover, isomorphism can be defined by

f ∈ C(n) → (f(0), f(1), ..., f(n− 1)) ∈ R
n.

In [5] it was shown that the spaceOS(2) is affine isomorphic to the triangle

△ = {(α, β) : α, β ∈ R, 0 ≤ α ≤ β ≤ 1},

moreover, this isomorphism can be defined by a rule

(α, β) 7→ λ = αδ0 + (1− β)δ1 + (β − α)δ0 ∨ δ1,

whereδi is the Dirac functional oni, and a functionalδ0∨ δ1 ∈ OS(2) is defined by

(δ0 ∨ δ1)(f) = max{δ0(f), δ1(f)}, f ∈ C(2).

Let K be a convex compact subset of a locally convex spaceE. Recall that the
Minkovsky operation is defined as

λ1A1 + λ2A2 = {λ1x1 + λ2x2 : x1 ∈ A1, x2 ∈ A2},

whereλ1, λ2 ∈ R, A1, A2 ∈ cc(K). According to [3] consider the equivalence
relation∼ on cc(E)× cc(E) defined by:

(A,B) ∼ (C,D) if only if A +D = B + C.

Denote byL the space of the equivalence classes with respect to∼ and let[A,B]
be the class containing(A,B). It is well-known thatL is a linear space with respect
to natural algebraic operations. For a convex neighborhoodU of zero put

U∗ = {[A,B] : A ⊂ B + U,B ⊂ A+ U}.
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The sets of the formU∗ are the base neighborhoods of zero inL. A mappingπ :
cc(K) → L defined by the rule

π(A) = [A, {0}]

is an embedding, moreover

π(λ1A1 + λ2A2) = λ1π(A1) + λ2π(A2)

for all λ1, λ2 ∈ R, A1, A2 ∈ cc(K).
Consider onC(3) functionals of the following form:

(2.4) ν1(f) = f(0),

(2.5) ν2(f) = max{f(0), tf(1) + (1− t)f(2), αf(0) + βf(1) + γf(2)},

where0 ≤ t ≤ 1, α + β + γ = 1, α, β, γ ≥ 0,
(2.6)
ν3(f) = max{αf(0) + (1−α)f(1), βf(1) + (1− β)f(2), γf(2) + (1− γ)f(0)},

where0 < α, β, γ < 1.
The functionalsµ, ν ∈ OS(X) are calledsimilar, if there exists a homeomor-

phismΦ : X → X such thatν = µ ◦ Φ.
The subsetsA,B ⊆ P (X) are calledsimilar, if there exists a homeomorphism

τ : X → X such thatA = P (τ)(B).
In [8] it was given a general form of extreme points of space semi-additive func-

tionals on three-point space. Namely, a functionalν ∈ OS(3) is an extreme point
in OS(3) if and only if ν is similar to a functional of the form (2.4)–(2.6).

3. MAIN RESULTS

In this paper we will find sufficiently conditions for functional of the formν =
νA, whereA ∈ cc(P (n)), dimA = n− 1, to be an extreme point ofOS(n).

Let us consider inP (n) subsets of the following forms:

(3.1) A = co{K1, K2},

whereK1 ∈ cc(P (k)), K2 ∈ cc(P (n \ k)), k ∈ 1, n− 1;

(3.2) A = co{µ0, K},

whereK ∈ cc(P (n− 1)) is a non one-point extreme point,µ0 = (1−α0)ν0+α0δn,
ν0 ∈ P (n− 1), 0 < α0 < 1,

(3.3) A = co{δn, µ0, K},

whereK ∈ cc(P (n− 1)) is a subset with dimension≤ n − 2, µ0 is a point which
does not lie on the hyperplane generated byδn andK,

(3.4) A = co{µ0, . . . , µn−1},

where

(3.5) µi =
∑

j 6=i

αijδj ,
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αij > 0 for all i 6= j and
∑

j 6=i

αij = 1 for all i ∈ n.

The following theorem is the main result of this paper.

Theorem 3.1. LetA be a subset inP (n) one of the forms(3.1)–(3.4). ThenνA is
an extreme point inOS(n).

The proof is separated to several Lemmata.

Lemma 3.2. Let A be a subset inP (n) of the form(3.1). ThenA is an extreme
point in cc(P (n)).

Proof. LetA be a subset inP (n) of the form (3.1) and letA = (B + C)/2, where
B,C ∈ cc(P (n)). Put

B1 = B ∩ P (k), B2 = B ∩ P (n \ k),

C1 = C ∩ P (k), C2 = C ∩ P (n \ k).

SinceP (k) andP (n \ k) both are faces inP (n), it follows thatKi = (Bi +Ci)/2,
i = 1, 2.

Let λ ∈ B1, ν ∈ C2. Since(λ + ν)/2 ∈ A, there existµ1 ∈ K1, µ2 ∈ K2 such
that (λ + ν)/2 = t1µ1 + t2µ2, wheret1, t2 ≥ 0, t1 + t2 = 1. Take a characteristic
functionχk of the setk, i.e. χk(i) = 1 for i ∈ k andχk(i) = 0 for i /∈ k. From

(λ(χk) + ν(χk))/2 = t1µ1(χk) + t2µ2(χk),

it follows that1/2 = t1, and thereforet1 = t2 = 1/2. Thusλ+ ν = µ1 + µ2.
Now take an arbitrary functionf : n → R such thatf |n\k ≡ 0. Sinceν(f) =

µ2(f) = 0, fromλ+ν = µ1+µ2 we have thatλ(f) = µ1(f), and thereforeλ = µ1

andν = λ2. Thusλ ∈ K1, ν ∈ K2. This means thatB1 ⊆ K1, C2 ⊆ K2.
By a similar way we obtain thatB2 ⊆ K2, C1 ⊆ K1. Thus

B ⊆ A andC ⊆ A.

Let µ ∈ A be an arbitrary extreme point inA. SinceA = (B + C)/2, there exist
λ ∈ B, ν ∈ C such thatµ = (λ+ ν)/2. Sinceµ is an extreme point inA, it follows
thatλ = ν = µ. So,µ ∈ B andµ ∈ C. Sinceµ be an arbitrary extreme point, it
follows that

A ⊆ B andA ⊆ C.

ThusB = C = A. The proof is complete. �

Lemma 3.3. Let A be a subset inP (n) of the form(3.2). ThenA is an extreme
point in cc(P (n)).

Proof. LetA be a subset inP (n) of the form (3.2), i.e.

A = co{µ0, K},

whereK ∈ cc(P (n− 1)) is a non one-point extreme point,µ0 = (1−α0)ν0+α0δn,
ν0 ∈ P (n− 1), 0 < α0 < 1.
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Let us takeB,C ∈ cc(P (n)) such thatA = (B + C)/2. Set

B0 = B ∩ P (n− 1), C0 = C ∩ P (n− 1).

Taking into account thatP (n− 1) is a face inP (n), we obtain thatK = (B0 +
C0)/2. SinceK is an extreme point incc(P (n− 1)), we obtain thatK = B0 = C0.

Takeλ0 ∈ B, ν0 ∈ C such thatµ0 = (λ0 + ν0)/2. Let µ be an arbitrary extreme
point ofK. Since(λ0 + µ)/2, (ν0 + µ)/2 ∈ A, there existµ1, µ2 ∈ K such that

(λ0 + µ)/2 = t1µ1 + (1− t1)µ0 and(ν0 + µ)/2 = t2µ2 + (1− t2)µ0,

where0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1. Summing the last two equalities we get

(λ0 + ν0)/2 + µ = t1µ1 + t2µ2 + (2− t1 − t2)µ0,

i.e.
µ = t1µ1 + t2µ2 + (1− t1 − t2)µ0.

Take a functionf : n → R defined byf(n) = 1 andf |n−1 ≡ 0. From

µ(f) = t1µ1(f) + t2µ2(f) + (1− t1 − t2)µ0(f)

it follows that(1− t1− t2)α0 = 0. Thust1+ t2 = 1. So,µ = t1µ1+ t2µ2. Sinceµ is
an extreme point, we obtain thatµ = µ1 = µ2. Thus(λ0+µ)/2 = t1µ+(1− t1)µ0

and (ν0 + µ)/2 = t2µ + (1 − t2)µ0. This means thatλ0 andν0 both lie on the
line passing throughµ0 andµ. Sinceµ be an arbitrary andK is a non one-point, it
follows thatλ0 = ν0. ThusA = B = C. The proof is complete. �

The proof of the following Lemma is similar to the proof of Lemma3.3.

Lemma 3.4. Let A be a subset inP (n) of the form(3.3). ThenA is an extreme
point in cc(P (n)).

LetA be a subset inP (n) of the form (3.4). It is clear thatA = co{µ0, . . . , µn−1}

is a(n−1)-dimensional simplex with verticesµ0, . . . , µn−1. In particular, ifαij =
1
n

for all i 6= j, it follows thatA is a simplex with vertices on the barycenters of(n−1)-
dimensional faces inP (n). In this caseA coincides with a set of all points of the

form: µi =
n−1
∑

i=0

tiδi with 0 ≤ ti ≤ 1/n for all i ∈ n and
n−1
∑

i=0

ti = 1.

Lemma 3.5. Let A be a subset inP (n) of the form(3.4). ThenA is an extreme
point in cc(P (n)).

Proof. Let us consider the following two cases.
Case 1.αij = 1

n for all i 6= j. Let A = (B + C)/2, whereB,C are convex
subsets inP (n). Then there existλi ∈ B, νi ∈ C such thatµi = (λi + νi)/2 for all
i ∈ n. We put

λi =
∑

j 6=i

(

1

n
+ tij

)

δj ,

νi =
∑

j 6=i

(

1

n
− tij

)

δj ,
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where|tij| ≤ 1/n for all i 6= j and
∑

j 6=i

tij = 0 for all i ∈ n.

Since(λk + νp)/2 ∈ A, k, p ∈ n, it follows that

1

n
+ tkj − tpj ≤

1

n
,

i.e. tkj − tpj ≤ 0. Interchangingk andp we gettpj − tkj ≤ 0. Thustkj = tpj for all
k, p, j with k 6= j, p 6= j. Denotetj = tij . Then

∑

j 6=i

tj = 0. Since

0 =
∑

j 6=i

tj =
∑

j 6=k

tj + ti − tk = ti − tk,

it follows thatt1 = . . . = tn. Thusti = 0 for all i. This means thatλi = νi = µi for
all i. ThusA = B = C.

Case 2. Letµ0, . . . , µn−1 be arbitrary points of the form (3.5).
Let A = (B + C)/2, whereB,C are convex subsets inP (n). Then there exist

λi ∈ B, νi ∈ C such thatµi = (λi + νi)/2 for all i ∈ n. Let

λi =
∑

j 6=i

(αij + tij) δj ,

νi =
∑

j 6=i

(αij − tij) δj,

where|tij| ≤ αij for all i 6= j and
∑

j 6=i

tij = 0 for all i ∈ n.

Set
λ′i =

∑

j 6=i

(αij + εtij) δj ,

ν ′i =
∑

j 6=i

(αij − εtij) δj ,

where0 < ε < 1. Sinceµi = (λ′i + ν ′i)/2 for all i ∈ n, it follows that

A ⊆ (co{λ′i}+ co{ν ′i})/2.

Taking into account

λ′k + ν ′p
2

=
t1λk + (1− t1)λp + t2νk + (1− t2)νp

2
,

wheret1 = (1 + ε)/2, t2 = (1− ε)/2, we obtain that

A ⊇ (co{λ′i}+ co{ν ′i})/2.

Thus

(3.6) A = (co{λ′i}+ co{ν ′i})/2.

So, if necessary, replacingtij with εtij, we can assume that|tij | ≤ min{αij, 1/n}.
Set

µ′
i =

∑

j 6=i

1

n
δj,
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λ′i =
∑

j 6=i

(

1

n
+ tij

)

δj ,

ν ′i =
∑

j 6=i

(

1

n
− tij

)

δj.

Since co{µi} and co{µ′
i} both are simplex with the same dimensions, taking into

account (3.6) we obtain that

co{µ′
i} = (co{λ′i}+ co{ν ′i})/2.

By case 1 it follows thattij = 0. ThusB = C = A. The proof is complete. �
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