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Abstract

The present paper is devoted to study of the extreme bound#ng convex
compact set of all semi-additive functionals on a finiteqp@ompactum. We shall
find some classes of extreme points of the space semi-aglfiitictionalsO S(n).
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1. INTRODUCTION

The spaceP(X) of all probability measures on a compactumis well inves-
tigated. In P], T. Radul introduced the spade(X) of weakly additive order-
preserving normalized functionals on a compactiiniropological and geometric
properties of weakly additive order-preserving normalizenctionals were stud-
iedin[1,2,6,7]. In[5] The space of all of semi-additive positively-homogeneous
weakly additive order-preserving normalized functionatss investigated and a
general form of semi-additive functionals was given. Alswegorical properties
of the functor of semi-additive functional3S have been investigated. Geometrical
and topological properties of covariant functors on thegaty compacts and their
continuous mappings had investigated by several autheeq{(s”, 4,6, 7, 10]).

It is well-known that the extreme boundary of the space obphality measures
on compactum coincides with the set of all Dirac measuresisrcompactum, and
therefore is homeomorphic to the initial compactum. Thigperty plays a crucial
rule in investigations of geometric properties of the spaEqeaobability measures on
compactum. The structure of the extreme boundary of theesphsemi-additive
functionals on compactum is not yet described. dhi{ was described a general
form of extreme points of space semi-additive functionalstwee-point space.
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The aim of the present paper is to study the extreme boundatyecconvex
compact seD S(n). We give some classes of extreme points of the space of semi-
additive functional$).S(n).

2. PRELIMINARY NOTES

Let X be a compact set. Denote by X) the algebra of all real-valued continu-
ous functionsf : X — R with point-wise algebraic operations and sup-norm, i. e.,
with the norm|| f|| = max{|f(x)| : € X}. For anyc € R by cx we denote the
constant function, defined by the formula(z) = ¢, z € X. Letp, v € C(X).
The inequalityy < ¢» means thap(z) < ¢(z) forall z € X.

A functionalv : C'(X) — R is said to be §]:

(1) weakly additive ifv(p+cx) = v(p)+cv(lx) forall p € C(X) ande € R;
(2) order-preserving, for any, ¢ € C'(X) with ¢ < we haver(p) < v(v);
(3) normalized ifv(1x) = 1;

(4) positively homogeneousif(ty) = tv(p) forall p, € C(X),t € R, t > 0;
(5) semi-additive itv(¢ + ) < v(p) + v(v) forall ¢, € C(X).

For every compactunX’ we denote

V(X) = H [min ¢, max ¢|.

peC(X)

Foreverymay : X — Y by V(f) we denote the map froii(.X) to V(Y") defined
by
V(HW)e) =vipof), veV(X), ¢eCX).

For a compactunX we denote by:

— 0S(X) the set of all weakly-additive, order-preserving, normedi, positive-
homogeneous and semi-additive functional€grX );

— P(X) the set of all positive, normalized linear functionals@qX).

Let us consider these sets as subspaces of the $pac¢ equipped with the
topology of point-wise convergence, in particularly, tresé of neighborhoods for
the functionaly € F(X), whered = OS, P, is formed by the sets

<V; 1, P2, " 7<:Dk7€> = {V/ ng(X) : ‘7/(90@)_7/(90@)‘ <g, 1= 171{:}7

wheres > 0, p; € C(X),i=1,k, k € N.
For every compacturX the space®S(X) andP(X) are convex compact.
Let /' be a closed subspace®f A functionalr € OS(X) is said to be supported
onF,if v(f) =wv(g) forall f,g € C(X) with f|r = g|r. The smallest closed set
F C X on which the functionak is supported, is called the supportoE O.S(X)
and denoted by suppi.e.,

suppv = [ \{F : v — supported or¥’}.

For every convex compactuid we denote byc(K) the space of all non empty
convex compact subsets af, equipped with the Vietoris topology. Recal][that
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a base of this topology is formed by the sets of the form
(Uy,...,U) ={ACcc(K): ACU,U---UU, and ANU; # O forevery i},

wherelUy, ..., U, run through the topology ok, n € N.
For A € ce(P(X)) set

(2.1) va(p) =sup{u(p) : p € A}, p € C(X).

Thenv, € OS(X). In [5, Proposition 4.4] it was shown that any functional from
0S(X) is represented in the forn2 (1), moreover the mapping

(2.2) A€ ce(P(X))—vq € OS(X)

is an affine homeomorphism between spacé® (X)) andOS(X) (see b, Theo-
rem 1]).

Let X andY be topological spaces and |t X — Y be a continuous mapping.
The mappindF(f) : F(X) — F(Y), whereF = OS, P, is defined as the restriction
of V(f)onF(X).

In [5] it was proved that
(2.3) OS(f)(va) = ve(s)a)-

Note that for the:-point compach = {0, 1,...,n — 1}, n € N, the space&’(n)
is isomorphic to the spad&™, moreover, isomorphism can be defined by

fecCn)— (f0),f),..,f(n=1)) e R"
In [5] it was shown that the spaceS(2) is affine isomorphic to the triangle
A={(a,f):a,BER0<a<f <1}
moreover, this isomorphism can be defined by a rule
(a,B) = A =ady+ (1 — B)0; + (8 — a)dy V Iy,
wherey; is the Dirac functional om, and a functionad, v §; € OS(2) is defined by
(00 Vv 61)(f) = max{do(f), 01 (f)}, f € C(2).

Let K be a convex compact subset of a locally convex spgacBecall that the
Minkovsky operation is defined as

)\1141 + )\2142 = {)\11‘1 + )\2.%’2 X € Al; To € AQ},

where A, \s € R, Ay, Ay € cc(K). According to [3] consider the equivalence
relation~ oncc(E) x cc(F) defined by:

(A,B) ~ (C,D) ifonlyif A+D=DB+C.

Denote byL the space of the equivalence classes with respestdad let[A, B]
be the class containingl, B). Itis well-known thatL is a linear space with respect
to natural algebraic operations. For a convex neighborlidotizero put

U"={[A,B]:ACB+UBCA+U}.
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The sets of the forn/* are the base neighborhoods of zerad.inA mapping~ :
cc(K) — L defined by the rule

m(A) = [4,{0}]
is an embedding, moreover
7T()\1A1 + )\2142) = )\17’('(141) + )\27’('(142)

forall A\;, Ao € R, Ay, Ay € ce(K).
Consider orC'(3) functionals of the following form:

(2.4) vi(f) = f(0),

(25)  wva(f) = max{f(0), tf (1) + (1 = ) f(2), af (0) + Bf (1) + 7 [(2)},

where0 <t <1, a+8+v=1a,5,v2>0,
(2.6)
v(f) = max{af(0) + (1 — ) f(1), BF(L) + (1 - B)F(2), 7(2) + (1 — 1) F(0)},
where0 < a, 8,7 < 1.

The functionalsu, v € OS(X) are calledsimilar, if there exists a homeomor-
phism® : X — X such that' = j 0 ®.

The subsets!, B C P(X) are calledsimilar, if there exists a homeomorphism
7: X — X suchthatd = P(7)(B).

In [8] it was given a general form of extreme points of space setditae func-
tionals on three-point space. Namely, a functianal OS(3) is an extreme point
in OS(3) if and only if v is similar to a functional of the form2(4)—(2.6).

3. MAIN RESULTS

In this paper we will find sufficiently conditions for functial of the formy =
va, WhereA € cc(P(n)), dim A = n — 1, to be an extreme point @S (n).
Let us consider irP(n) subsets of the following forms:

(3.1) A = co{ K, K>},
whereK; € cc(P(k)), Ky € cc(P(n\k)), ke 1l,n—1;
(32) A= CO{MO) K}7

whereK € ce(P(n — 1)) is a non one-point extreme poinly = (1 —ap)vo+ oo,
VQEP(H—1)70<QQ<1,
(3.3) A = co{0,. o, K}

whereK € cc(P(n — 1)) is a subset with dimensiofd n — 2, 14 is a point which
does not lie on the hyperplane generated,bgnd K,

(34) A: CO{MO?"'7MTL71}7
where
(3.5) i = Zaij(sja

J#i



Extreme boundary of space semi-additive functionals otefget 103

a;; > 0foralli # j andg;aij = 1foralli € n.
JF1
The following theorem is the main result of this paper.

Theorem 3.1.Let A be a subset ifP(n) one of the form¢3.1)—<3.4). Thenv, is
an extreme point il S (n).

The proof is separated to several Lemmata.

Lemma 3.2. Let A be a subset irP(n) of the form(3.1). ThenA is an extreme
pointincc(P(n)).
Proof. Let A be a subset i®(n) of the form @3.1) and letA = (B + (') /2, where
B,C € cc(P(n)). Put

B, = BN Pk), B,=BNP(n\k),

01 :CﬂP(k), 02 :C’ﬁP(n\k)
SinceP (k) and P(n \ k) both are faces i (n), it follows that K; = (B; + C;)/2,
i=1,2.

Let A\ € By, v € (5. Since(A + 1v)/2 € A, there existu; € Ky, us € K, such
that (A + v)/2 = tiuy + tape, Wherety, t, > 0,t; + t, = 1. Take a characteristic
function xy of the setk, i.e. yx(i) = 1 fori € k andyy (i) = 0 for i ¢ k. From

(Alxk) + v(xw))/2 = tip (i) + tapi2(X),

it follows that1/2 = ¢,, and thereforeé; = t; = 1/2. ThusA + v = uy + po.

Now take an arbitrary functiorf : n — R such thatf|,x = 0. Sincev(f) =
wa(f) =0, fromA+v = uy + us we have thah(f) = p(f), and therefore\ = y4
andv = \y. Thus\ € K, v € K,. This means thaB; C K, Cy C K.

By a similar way we obtain thaB, C K,, C; C K;. Thus

B C AandC C A.

Let 1 € A be an arbitrary extreme point id. SinceA = (B + () /2, there exist
A € B,v e Csuchthay = (A + v)/2. Sincey is an extreme point ial, it follows
that\ = v = p. So,u € B andu € C. Sincep be an arbitrary extreme point, it
follows that

AC BandA C C.
ThusB = C' = A. The proof is complete. O

Lemma 3.3. Let A be a subset inP(n) of the form(3.2). ThenA is an extreme
pointincc(P(n)).

Proof. Let A be a subset i’(n) of the form @.2), i.e.

A= CO{MO) K}7

whereK € cc(P(n — 1)) is a non one-point extreme poinly = (1 —ap)vp+ ooy,
ePn—1),0<ay <1
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Let us takeB, C' € cc(P(n)) such thatd = (B + (') /2. Set
Taking into account thaP(n — 1) is a face inP(n), we obtain thatX’ = (B, +
Cy)/2. SinceK is an extreme pointinc(P(n — 1)), we obtain that’ = By = C,.
Take)y € B,y € C such thafuy = (Ao + 10)/2. Let u be an arbitrary extreme
point of K. Since(\o + ) /2, (v + 1) /2 € A, there exisiu,, uo € K such that

(Ao + 1) /2 =tipa + (1 = t1)po @nd(vg + 1) /2 = tapiz + (1 — t2) o,
where0 < t; < 1, 0 <ty < 1. Summing the last two equalities we get

(Xo+ 10)/2+ p = tip +tapo + (2 — t1 — t2) o,
ie.
=111 + tapo + (1 —t — tg),uo.
Take a functionf : n — R defined byf(n) = 1 and f|,,—1 = 0. From

p(f) = tipa (f) + tapa(f) + (1 — t1 — ta) po(f)
it follows that(1 —t; —t2)ag = 0. Thust; +t = 1. SO, = t1p41 +taps. Sincep is
an extreme point, we obtain that= p; = . Thus(Ao+ p)/2 =ty + (1 — 1) po
and (vp + p)/2 = top + (1 — t2)po. This means thad, and, both lie on the
line passing through, andx. Sincep be an arbitrary and is a non one-point, it
follows that\, = 1. ThusA = B = C. The proof is complete. OJ

The proof of the following Lemma is similar to the proof of Lema 3.3,

Lemma 3.4. Let A be a subset irP(n) of the form(3.3). ThenA is an extreme
pointincc(P(n)).

Let A be a subset i?’(n) of the form @.4). Itis clear thatd = co{ o, . . ., ftn—1}

is a(n—1)-dimensional simplex with verticgs, . . ., y1,,_. In particular, ifa;; = %
foralli # j, it follows thatA is a simplex with vertices on the barycenter$of-1)-

dimensional faces i’ (n). In this caseA coincides with a set of all points of the
n—1

n—1 _
form: u; = > t;0, with0 <t; < 1/nforalli enand) t; = 1.
=0 =0

7

Lemma 3.5. Let A be a subset irP(n) of the form(3.4). ThenA is an extreme
pointincc(P(n)).

Proof. Let us consider the following two cases.

Case 1.«;; = % foralli # j. Let A = (B + C)/2, where B, C are convex
subsets inP(n). Then there exisk; € B, v; € C such thay,; = (\; + v;)/2 for all

1 € n. We put
1
)\.:E - S
‘ - .(n—i_t”)éﬁ
J#i

1
Vv, = Z <E — tz]) 5J’,

J#
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where|t;;| < 1/nforalli # jand)_t; = 0foralli € n.
i
Since(\, + 14,)/2 € A, k,p € n, it follows that

1+t t <1
n kj pj = 0

l.e.ty; —t,; < 0. Interchanging: andp we gett,; — t;; < 0. Thust,; = t,,; for all
k,p,jwith k # j, p # j. Denotet; = t;;. Then)_¢; = 0. Since

j#i
0:th :th+ti_tk:ti_tka
j#i j#k
it follows thatt; = ... =t,,. Thust; = 0 for all . This means thak; = v; = p; for

alli. ThusA =B =C.

Case 2. Lejuy, . . ., u,_1 be arbitrary points of the forn8(5).

Let A = (B + (C)/2, whereB, C' are convex subsets iR(n). Then there exist
Ai € B,v; € C suchthay,; = (\; +v;)/2 foralli € n. Let

)\i = Z (C(ij + tij) 5J’,

j#i
vi=Y (o — 1)
j#i
where|t;;| < «;; foralli # jand)_ ¢;; = 0forall i € n.
i
Set
M= (o +etiy) 65,
ji
V= (o —etiy) J;
j#i
where0 < ¢ < 1. Sinceyu; = (A, + v/)/2 for all i € n, it follows that
A C (cofAj} + cofv;})/2.

Taking into account
A+, _ b + (1 —t)N, + o + (1 — L)1,

2 2 ’
wheret; = (1+¢)/2, t, = (1 — ¢)/2, we obtain that
A2 (cofAi} + cofv;})/2.
Thus
(3.6) A = (co{X} + co{/})/2.

So, if necessary, replacirtg with <t;;, we can assume thit;| < min{w;;,1/n}.

Set )
/ — JE— .
:ui - Z n(sﬁ
J#i
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M= (L 4ts)0,
7 n ) J
V=3 I \s
1 n L) J:

J#i
Since cdy;} and cdu;} both are simplex with the same dimensions, taking into
account 8.6) we obtain that

co{u;} = (co{ A} + cof{vj})/2.
By case 1itfollows that;; = 0. ThusB = C' = A. The proofis complete. [
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