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Abstract

This work is concerned with the extinction properties of solutions for

a p-Laplacian evolution equation with source and strong absorption

terms. We find the sufficient condition for the existence of extinction so-

lutions and the corresponding decay estimate under suitable Lp-integral

norm sense.
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1 Introduction

In this paper, we consider a class of p-Laplacian evolution equations

ut = div(|∇u|p−2∇u) + λuq − βuk, (x, t) ∈ Ω× (0,+∞), (1)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞), (2)
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u(x, 0) = u0(x), x ∈ Ω̄, (3)

where 1 < p < 2, p − 1 ≤ q < 1, 0 < k < 1, λ > 0, β > 0, Ω ⊂
RN (N ≥ 1) is a bounded domain with smooth boundary, and initial data
u0(x) ∈ L∞(Ω)

⋂
W

1,p
0 (Ω) is a nonnegative function.

The problem (1) aries in the theory of quasiregular and quasiconformal
mappings, stochastic control and non-Newtonian fluids, etc. In the non-
Newtonian theory, the quantity p is a characteristic of the medium. Media
with p > 2 are called dilatant fluids while p < 2 are called pseudoplastics. If
p = 2, they are Newtonian fluids. Meanwhile, λuq is called inner source term
and −βuk(0 < k < 1) represents strong absorption term.

We are concerned only with the extinction solutions of problem (1)-(3).
Extinction phenomenon is an important property for solutions of many evolu-
tionary equations, especially for fast diffusion equations. In 1974, Kalashnikov
[1] considered the Cauchy problem of a semilinear equation with absorption
term ut = ∆u − uq and firstly introduced the definition of extinction for its
solution, that is, there exists a finite time T > 0 such that the solution is
nontrivial on (0, T ) and then u(x, t) ≡ 0 for all (x, t) ∈ Ω × [T,+∞). In this
case, T is called an extinction time. Later, many authors became interested
in the extinction and nonextinction of all kinds of evolutionary equations. For
the following parabolic equation without absorption term

ut = div(|∇u|p−2∇u) + λuq, (x, t) ∈ Ω× (0,+∞),

where λ ≥ 0 and 0 < q ≤ 1. In case λ = 0, Dibenedetto [2] and Yuan et
al.[3] proved that the necessary and sufficient condition for the extinction to
occur is 1 < p < 2. For the case λ > 0, Gu [4] proved that if 1 < p < 2 or
0 < q < 1, the solutions of the problem vanish in finite time, but if p ≥ 2 and
q ≥ 1, there is nonextinction. Tian [5] and Yin et al.[6] showed that q = p− 1
is the critical exponent of the weak solution. But all the results are limited to
the local range and the higher dimensional space, while precise decay estimate
has not been given.

Recently, Fang and Li [7] considered equation with linear absorption term

ut = div(|∇um|p−2∇um) + λ|u|q−1u− βu, (x, t) ∈ Ω× (0,+∞),

where 1 < p < 2, 0 < m(p − 1) ≤ q < 1, λ > 0, β > 0. In the whole
dimensional space, they showed that the extinction of the weak solution is
determined by the competition of two nonlinear terms. They also obtained
the exponential decay estimates which depend on the initial data, coefficients,
and domains. Thereafter, they obtained the same results for a class of nonlocal
problems, see [8,9]. The extinction and decay estimates for solutions to the p-
Laplacian evolution equations with nonzero coefficients and strong absorption
terms, like equation (1), are still being investigated.
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Our main purpose is to establish the sufficient conditions about the extinc-
tion of solutions for the problem (1)-(3) in the whole dimensional space. By
combining the Lp-integral norm estimate method and the technique of differ-
ential inequalities, we find that the extinction phenomena of solutions in our
problem (1)-(3) is determined by the competition of nonlinear terms, and the
decay estimates depend on the choices of initial data, coefficients and domain.

The rest of our paper is organized as follows. In Section 2, we give the
preliminaries and main results for problem (1)-(3). Then the proofs are given
in Section 3.

2 Preliminary Notes

Since equation (1) is singular when 1 < p < 2, there is no classical solution in
general. Hence, it is reasonable to find a weak solution of (1). To this end,
we first give the following definitions of lower and upper nonnegative weak
solutions of problem (1)-(3).

Definition 2.1 We say that a non-negative nontrivial function u(x, t) de-
fined in QT = Ω × (0, T ) is a weak low(upper) solution of problem (1)-(3) if
the following conditions hold:
(i) u ∈ C(0, T ;L∞(Ω))∩Lp(0, T ;W 1,p

0 (Ω)), ut ∈ L2(0, T ;L2(Ω)).
(ii) For any 0 < t < T and any test function ϕ ∈ C∞

0 (QT )

∫
Ω
u(x, t)ϕ(x, t)dx ≤ (≥)

∫
Ω
u(x, 0)ϕ(x, 0)dx+

∫ t

0

∫
Ω
{uϕs−|∇u|p−2∇u·∇ϕ}dxds

+
∫ t

0

∫
Ω
{λuq − βuk}ϕ(x, s)dxds,

(iii) u(x, t) ≤ (≥)u0(x) a.e. x ∈ Ω.
A function u is called a local weak solution of problem (1)-(3) if it is both a
low solution and a upper solution for some T > 0.

Remark 2.1 The existence and uniqueness of local nonnegative solution in
time to problem (1)-(3) can be obtained by using the fixed point theorem or
the standard parabolic regular theory to get a suitable estimate in the standard
limiting process (see [2,10]). The proof is more or less standard, and so it is
omitted here.

Next, we recall two lemmas which are very important in the following proofs of
our results. As for the proofs of these lemmas, we will not repeat them again
(see [9,11]).
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Lemma 2.2 Let k and α be positive constants and k < 1. If y(t) is a
nonnegative absolutely continuous function on t ∈ [0,∞) satisfying the problem

dy

dt
+ αyk ≤ 0, t ≥ 0; y(0) ≥ 0,

then we have the decay estimate

y(t) ≤ [y1−k(0)− α(1− k)t]
1

1−k , t ∈ [0, T∗),

y(t) ≡ 0, t ∈ [T∗,+∞),

where T∗ =
y1−k(0)
α(1−k)

.

Lemma 2.3 (Gagliardo-Nirenberg inequality) Suppose u ∈ W
k,m
0 (Ω), 1 ≤

m ≤ ∞ and 0 ≤ j < k, 1 ≥ 1
r
≥ 1

m
− k

N
, then we have

‖Dju‖q ≤ C‖Dku‖θm‖u‖
1−θ

r ,

where C is a constant depending only on N , m, r, j, k, and q such that
1
q
= j

N
+θ( 1

m
− k

N
)+ 1−θ

r
, θ ∈ [0, 1).While if m < N

k−j
, then q ∈ [ Nr

N+rj
, Nm
N−(k−j)m

],

if m ≥ N
k−j

, then q ∈ [ Nr
N+rj

,+∞].

3 Main Results

By using Lp-integral norm estimate method and the technique of differential
inequality, we will obtain the sufficient conditions of extinction and the decay
estimates for problem (1)-(3). Our detailed results are as follows:

Theorem 3.1 Suppose that 0 < k < 1, 0 < q = p − 1 < 1, and λ1 is the
first eigenvalue of

−div(|∇ϕ|p−2∇ϕ) = λϕp−1, ϕ|∂Ω = 0. (4)

Then the weak solution of problem (1)-(3) vanishes in finite time for any non-
negative initial data provided that λ < λ1 and β are sufficiently small.

Theorem 3.2 If 0 < k < 1, then the nonnegative weak solution of problem
(1)-(3) vanishes in finite time provided that u0 or λ is sufficiently small, and

q > (r+1)pk+N(p−1−k)
(r+1)p+N(p−1−k)

, where if N = 1 or 2, then r = 1 and if N > 2, then
r > p− 1.

Theorem 3.3 Suppose that 0 < k < 1 and p − 1 > q ≥ k. Then the
nonnegative nontrivial weak solution of problem (1)-(3) vanishes in finite time
for any nonnegative initial data provided that β is sufficiently large.
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Remark 3.1 Theorems 1-3 require that λ or β or u0 should be sufficiently
small (or large) and as for the decay estimates, we will give more concrete
conditions which satisfy in the later proofs

Remark 3.2 One can see from Theorem 3.1-3.3 that the extinction of non-
negative nontrivial weak solutions to problem (1)-(3) occurs when 0 < k ≤ q <

1.

4 Proofs of the Main Results

In this section, we give detailed proofs of our main results to problem (1)-(3).
Proof of Theorem 3.1: We first consider the case N = 1 or 2. Multiplying
(1) by u and integrating over Ω yield

1

2

d

dt
‖u‖22 +

∫
Ω
|∇u|p dx = λ

∫
Ω
up dx− β‖u‖k+1

k+1. (5)

Since λ1 = inf06=v∈W 1,p
0 (Ω)

∫
Ω
|∇v|p dx∫

Ω
|v|p dx

, we see that (5) becomes

1

2

d

dt
‖u‖22 + (1−

λ

λ1
)‖∇u‖pp + β‖u‖k+1

k+1 ≤ 0. (6)

By Lemma 2.3, we get the inequality

‖u‖2 ≤ C(N, p, k)‖u‖1−θ1
k+1 ‖∇u‖

θ1
p , (7)

where θ1 = ( 1
k+1

− 1
2
)( 1

k+1
− 1

p
+ 1

N
)−1 = pN(1−k)

2[p(k+1)+N(p−1−k)]
. Since N = 1 or 2,

0 < k < 1, and 1 < p < 2, it can be easily seen that 0 < θ1 < 1.
It then follows from (7) and Young’s inequality that

‖u‖k12 ≤ C(N, p, k)k1‖u‖
k1(1−θ1)
k+1 ‖∇u‖k1θ1p

≤ C(N, p, k)k1(η1‖∇u‖
p
p + C(η1)‖‖u‖

pk1(1−θ1)
p−k1θ1

k+1 ), (8)

where k1 > 1 and η1 > 0 will be determined later.
If we choose k1 = p(k+1)

p(1−θ1)+(k+1)θ1
= 2p(k+1)+2N(p−k−1)

2p+N(p−k−1)
, then 1 < k1 < 2 and

pk1(1−θ1)
p−k1θ1

= k + 1. From (8) we have

βC(N, p, k)−k1

C(η1)
‖u‖k12 ≤

η1β

C(η1)
‖∇u‖pp + β‖u‖k+1

k+1. (9)

By (6) and (9), we get the inequality

1

2

d

dt
‖u‖22 + (1−

λ

λ1
−

η1β

C(η1)
)‖∇u‖pp +

βC(N, p, k)−k1

C(η1)
‖u‖k12 ≤ 0.
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Here, we can choose η1 and λ small enough so that

1−
λ

λ1
−

η1β

C(η1)
≥ 0.

Setting C1 = βC(N,p,k)−k1

C(η1)
, we have d

dt
‖u‖2 + C1‖u‖

k1−1
2 ≤ 0. By Lemma 1, we

then obtain

‖u‖2 ≤ [‖u0‖
2−k1
2 − C1(2− k1)t]

1
2−k1 , t ∈ [0, T1),

‖u‖2 = 0, t ∈ [T1,+∞),

where T1 =
‖u0‖

2−k1
2

C1(2−k1)
.

Secondly, we consider the case N > 2. If 2N
N+2

< p− 1 < 1, multiplying (1)
by ur(where r > p− 1) and integrating over Ω yield

1

r + 1

d

dt
‖u‖r+1

r+1 +
rpp

(p+ r − 1)p
‖∇u

p+r−1
p ‖pp = λ

∫
Ω
up+r−1 dx− β‖u‖r+k

r+k. (10)

Using λ1, (10) becomes

1

r + 1

d

dt
‖u‖r+1

r+1 + (
rpp

(p+ r − 1)p
−

λ

λ1
)‖∇u

p+r−1
p ‖pp + β‖u‖k+r

k+r ≤ 0. (11)

By Lemma 2.3, we can also have

‖u‖r+1 ≤ C(N, r, k)‖u‖1−θ2
k+r ‖∇u

p+r−1
p ‖

pθ2
p+r−1
p , (12)

where θ2 =
p+r−1

p
( 1
k+r

− 1
r+1

)( 1
N
− 1

p
+ p+r−1

p
· 1
k+r

)−1 N(p+r−1)(1−k)
(r+1)[p(k+r)+N(p−k−1)]

. Since

0 < k < 1, 2N
N+2

< p− 1 < 1 and by the choice of r, it can be easily seen that
0 < θ2 < 1.

It then follows from (12) and Young’s inequality that

‖u‖k2r+1 ≤ C(N, r, k)k2‖u‖
k2(1−θ2)
k+r ‖∇u

p+r−1
p ‖

k2pθ2
p+r−1
p

≤ C(N, r, k)k2(η2‖∇u
p+r−1

p ‖pp+C(η2)‖‖u‖
k2(1−θ2)(p+r−1)

p+r−1−k2θ2
k+1 ), (13)

where k2 > 1 and η2 > 0 will be determined later.
If we choose k2 =

(p+r−1)(k+r)
(p+r−1)(1−θ2)+(k+r)θ2

= (r+1)[p(k+r)+N(p−k−1)]
p(r+1)+N(p−k−1)

, there results

r < k2 < r + 1, (p+r−1)k2(1−θ2)
p+r−1−k2θ2

= k + r. From (13) we have

βC(N, r, k)−k2

C(η2)
‖u‖k2r+1 ≤

η2β

C(η2)
‖∇u

p+r−1
p ‖pp + β‖u‖k+r

k+r. (14)
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By (14) and (11), we get

1

r + 1

d

dt
‖u‖r+1

r+1+(
rpp

(p+ r − 1)p
−
λ

λ1
−

η2β

C(η2)
)‖∇u

p+r−1
p ‖pp+

βC(N, r, k)−k2

C(η2)
‖u‖k2r+1 ≤ 0.

Here, we can choose η2 and λ small enough so that

(
rpp

(p+ r − 1)p
−

λ

λ1
−

η2β

C(η2)
) ≥ 0.

Setting C2 =
βC(N,r,k)−k2

C(η2)
, we have d

dt
‖u‖r+1 + C2‖u‖

k2−r
r+1 ≤ 0. By Lemma 2.1,

we then obtain

‖u‖r+1 ≤ [‖u0‖
r+1−k2
r+1 − C2(r + 1− k2)t]

1
r+1−k2 , t ∈ [0, T2),

‖u‖r+1 = 0, t ∈ [T2,+∞).

where T2 =
‖u0‖

r+1−k2
r+1

C2(r+1−k2)
.

If 0 < p−1 < N−2
N+2

, then multiply both sides of (1.1) by ur (r > N(2−p)
2

−1)
and integrate the result over Ω. By using the inequality above and a similar
argument as above ,the following decay estimates can be obtained:

‖u‖r+1 ≤ [‖u0‖
r+1−k2
r+1 −

C(N, k, r)−k2

C(η2)
(r + 1− k2)t]

1
r+1−k2 , t ∈ [0, T ∗

2 ),

‖u‖r+1 = 0, t ∈ [T ∗
2 ,+∞).

where T ∗
2 =

C(η2)‖u0‖
r+1−k2
r+1

C(N,k,s)−k2(r+1−k2)
.

Proof of Theorem 3.2: Assume that q ≤ 1. If N = 1 or 2, multiplying
both sides of (1) by u and integrating the result over Ω yield the identity

1

2

d

dt
‖u‖22 +

∫
Ω
|∇u|p dx = λ

∫
Ω
uq+1 dx− β‖u‖k+1

k+1. (15)

Then we substitute (9) into (15) to obtain

1

2

d

dt
‖u‖22 + (1−

η1β

c(η1)
)‖∇u‖pp +

βC(N, p, k)
−k1

c(η1)
‖u‖k12 ≤ λ‖u‖q+1

q+1,

The application of Hölder’s inequality gives

‖u‖q+1
q+1 ≤ |Ω|

1−q

2 ‖u‖q+1
2 . (16)

And we choose η1 small enough such that 1− η1β
c(η1)

≥ 0, thus we get

d

dt
‖u‖22 + [

βC(N, p, k)−k1

c(η1)
− λ|Ω|

1−q

2 ‖u‖q−k1+1
2 ]‖u‖k1−1

2 ≤ 0.
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Therefore
d

dt
‖u‖2 + C3‖u‖

k1−1
2 ≤ 0

provided that ‖u0‖2 ≤ (βC(N,p,k)−k1

λ|Ω|
1−q
2 c(η1)

)
1

q+1−k1 , and

q > k1 − 1 =
2pk +N(p− 1− k)

2p+N(p− 1− k)
,

where C3 =
βC(N,p,k)−k1

c(η1)
− λ|Ω|

1−q

2 ‖u0‖
q−k1+1
2 > 0.

By Lemma 2.2, we can obtain

‖u‖2 ≤ [‖u0‖
2−k1
2 − C3(2− k1)t]

1
2−k1 , t ∈ [0, T3),

‖u‖2 = 0, t ∈ [T3,+∞).

where T3 =
‖u0‖

2−k1
2

C3(2−k1)
.

If N > 2 and 0 < p − 1 < 1, then multiplying (1) by ur( r > p − 1) and
integrating over Ω yield

1

r + 1

d

dt
‖u‖r+1

r+1 +
rpp

(p+ r − 1)p
‖∇u

p+r−1
p ‖pp = λ

∫
Ω
uq+r dx− β‖u‖r+k

r+k (17)

Substitute (14) into above equality to obtain

1

r + 1

d

dt
‖u‖r+1

r+1 + (1−
η2β

c(η2)
)‖∇u

p+r−1
p

‖pp +
βC(N, r, k)

−k2

c(η2)
‖u‖k2r+1 ≤ λ‖u‖q+r

q+r.

The application of Hölder’s inequality gives

‖u‖q+r
q+r ≤ |Ω|

1−q

r+1‖u‖q+r
r+1. (18)

And we choose η2 small enough such that 1− η2β
c(η2)

≥ 0, thus we get

d

dt
‖u‖r+1

r+1 + [
βC(N, r, k)−k2

c(η2)
− λ|Ω|

1−q

r+1‖u‖q−k2+r
r+1 ]‖u‖k2−r

r+1 ≤ 0,

Therefore
d

dt
‖u‖r+1 + C4‖u‖

k2−r
r+1 ≤ 0,

provided that ‖u0‖r+1 ≤ (βC(N,r,k)−k2

λ|Ω|
1−q
1+r c(η2)

)
1

q+r−k2 , and

q > k2 − r =
(r + 1)pk +N(p− 1− k)

(r + 1)p+N(p− 1− k)
,
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where C4 =
βC(N,r,k)−k2

c(η2)
− λ|Ω|

1−q

r+1‖u0‖
q−k2+r
r+1 > 0.

By Lemma 2.2, we can obtain

‖u‖r+1 ≤ [‖u0‖
r+1−k2
r+1 − C4(r + 1− k2)t]

1
r+1−k2 , t ∈ [0, T4),

‖u‖r+1 = 0, t ∈ [T4,+∞),

where T4 =
‖u0‖

r+1−k2
r+1

C4(r+1−k2)
.

Since r > p− 1, it follows that 2(r+1) > 2p, and hence, if k ≥ p− 1, then
q > k2 − r > p− 1.

Assume that q > 1. If λ1 is the first eigenvalue of the boundary problem (4)
and ψ1(x) ≥ 0, ‖ψ1‖∞ = 1, is an eigenfunction corresponding to the eigenvalue
λ1, then for sufficiently small a > 0, it can be easily shown that aψ1 is an
upper solution of problem (1)-(3) provided that u0(x) ≤ aψ1, x ∈ Ω. We then
have u(x, t) ≤ aψ1(x) for t > 0 by the comparison principle. Therefore, from
equation (17), we can obtain the inequality

1

r + 1

d

dt
‖u‖r+1

r+1+(1−λaq−p−1C
2
0|Ω|

1+ 2
N −

η2β

c(η2)
)‖∇u

p+r−1
p

‖pp+
βC(N, r, k)

−k2

c(η2)
‖u‖k2r+1 ≤ 0,

from which the following decay estimates can be obtained:

‖u‖r+1 ≤ [‖u0‖
r+1−k2
r+1 −

C(N, k, r)−k2

C(η2)
(r + 1− k2)t]

1
r+1−k2 , t ∈ [0, T ∗

4 ),

‖u‖r+1 = 0, t ∈ [T ∗
4 ,+∞),

provided that

1− λaq−p−1C
2
0|Ω|1+

2
N −

η2β

c(η2)
≥ 0,

where T ∗
4 =

C(η2)‖u0‖
r+1−k2
r+1

C(N,k,s)−k2β(r+1−k2)
.

Remark 4.1 Since the Sobolev embedding inequality cannot be used in the
proof of The Theorem 2, it is not necessary to consider the cases where N−2

N+2
≤

p − 1 < 1 and 0 < p − 1 < N−2
N+2

, when N > 2. In addition, if k ≥ p − 1, the
condition in Theorem 2 implies that q > p− 1.

Proof of Theorem 3.3: If N = 1 or 2, then multiplying both sides of (1) by
u and integrating the result over Ω yield the equation

1

2

d

dt
‖u‖22 +

∫
Ω
|∇u|p dx = λ

∫
Ω
uq+1 dx− β‖u‖k+1

k+1. (19)

By Lemma 2.3, we have the inequality

‖u‖q+1 ≤ C(N, k, q)‖u‖1−θ3
k+1 ‖∇u‖

θ3
p , (20)
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where θ3 = ( 1
k+1

− 1
q+1

)( 1
k+1

− 1
p
+ 1

N
)−1 = pN(q−k)

(q+1)[p(k+1)+N(p−1−k)]
∈ [0, 1). Since

q < p − 1, it follows that p − (q + 1)θ3 > 0. It then follows from (20) and
Young’s inequality that

λ‖u‖q+1
q+1 ≤ λCq+1(N, k, q)‖u‖

(q+1)(1−θ3)
k+1 ‖∇u‖(q+1)θ3

p

≤ λCq+1(N, k, q)(η3‖∇u‖
p
p) + C(η3‖u‖

p(q+1)(1−θ3)

p−(q+1)θ3
k+1 ), (21)

where η3 will be determined later. From (19) and (21), one can see that

1

2

d

dt
‖u‖22 + [1− η3λC(N, k, q)

q+1]‖∇u‖pp + β‖u‖k+1
k+1

≤ C(η3)λC(N, k, q)
q+1‖u‖

p(q+1)(1−θ3)

p−(q+1)θ3
k+1 .

By Poincaré inequality we have ‖u‖p2 ≤ α‖u‖pp, since 1 < p < 2. Then we
obtain

1

2

d

dt
‖u‖22 + [1 − η3λC(N, k, q)

q+1]γ−1α−1‖u‖p2

+‖u‖k+1
k+1[β ≤ C(η3)λC(N, k, q)

q+1‖u‖α1
k+1],

where α1 =
p(q+1)(1−θ3)
p−(q+1)θ3

− (k + 1) ≥ 0.

We can choose η3 small enough so that C5 = 1 − η3λC(N, k, q)
q+1 > 0.

Once η3 is fixed, we may choose β large enough so that

β − C(η3)λC(N, k, q)
q+1‖u‖α1

k+1 ≥ 0.

Hence, we have the inequality

d

dt
‖u‖2 + C5‖u‖

p−1
2 ≤ 0,

from which the following decay estimates can be obtained by a similar argu-
ment as the one used in the proof of Theorem 3.2:

‖u‖2 ≤ [‖u0‖
2−p
2 − C5(2− p)t]

1
2−p , t ∈ [0, T5),

‖u‖2 = 0, t ∈ [T5,+∞),

where T5 =
‖u0‖

2−p

2

C5(2−p)
.

Secondly, we consider the case N > 2. If 2N
N+2

< p− 1 < 1, multiplying (1)
by ur(where r > p− 1) and integrating over Ω yield

1

r + 1

d

dt
‖u‖r+1

r+1 +
rpp

(p+ r − 1)p
‖∇u

p+r−1
p ‖pp = λ

∫
Ω
uq+r dx− β‖u‖r+k

r+k. (22)



Extinction properties of solutions for a p-Laplacian evolution equation 589

By Lemma 2.3, we can also have

‖u‖q+r ≤ C(N, q, r, k)‖u‖1−θ4
k+r ‖∇u

p+r−1
p ‖

pθ4
p+r−1
p , (23)

where θ4 =
p+r−1

p
( 1
k+r

− 1
r+q

)( 1
N
− 1

p
+ p+r−1

p
· 1
k+r

)−1 = N(p+r−1)(q−k)
(r+q)[p(k+r)+N(p−k−1)]

∈

[0, 1). Since q < p− 1, we have p− 1 + r− (q + r)θ4 > 0. It then follows from
(23) and Young’s inequality that

λ‖u‖q+r
q+r ≤ λC(N, q, r, k)q+r‖u‖

(q+r)(1−θ4)
k+r ‖∇u

p+r−1
p ‖

p(q+r)θ4
p+r−1

p

≤ λC(N, q, r, k)q+r(η4‖∇u
p+r−1

p ‖pp + C(η4)‖u‖
(q+r)k2(1−θ4)(p+r−1)

p+r−1−(q+r)θ4
k+r ), (24)

where η4 will be determined later. Using Sobolev embedding theorem yields

‖u
p+r−1

p ‖s ≤ γ‖∇u
p+r−1

p ‖p,

which leads to
γ−p‖u‖p+r−1

(p+r−1)s
p

≤ ‖∇u
p+r−1

p ‖pp.

Choosing s = p(r+1)
p+r−1

gives

γ−p‖u‖p+r−1
r+1 ≤ ‖∇u

p+r−1
p ‖pp. (25)

From (22), (24) and (25), one can see that

1

r + 1

d

dt
‖u‖r+1

r+1 + [
rpp

(p+ r − 1)p
− λC(N, q, r, k)q+rη4]γ

−p‖u‖p+r−1
r+1

+‖u‖r+k
r+k[β − C(η4)λC(N, k, q, r)

q+r‖u‖α2
k+r] ≤ 0,

where α2 = (q+r)k2(1−θ4)(p+r−1)
p+r−1−(q+r)θ4

− (k + r) ≥ 0. We can choose η4 small enough

so that C6 = [ rpp

(p+r−1)p
− λC(N, q, r, k)q+rη4]γ

−p > 0. Once η4 is fixed, we can
choose β large enough so that

β − C(η4)λC(N, k, q, r)
q+r‖u‖α2

k+r ≥ 0.

Hence, we can obtain the inequality

d

dt
‖u‖r+1 + C6‖u‖

p−1
r+1 ≤ 0,

from which the following decay estimates can be obtained:

‖u‖r+1 ≤ [‖u0‖
2−p
r+1 − C5(2− p)t]

1
2−p , t ∈ [0, T6),
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‖u‖r+1 = 0, t ∈ [T6,+∞),

where T6 =
‖u0‖

2−p
r+1

C6(2−p)
.

Similarly, one can obtain the following decay estimates for 0 < p−1 < N−2
N+2

:

‖u‖r+1 ≤ [‖u0‖
2−p
r+1−[

rpp

(p+ r − 1)p
−λC(N, q, r, k)q+rη4C

−p
00 ](2−p)t]

1
2−p , t ∈ [0, T ∗

6 ),

‖u‖r+1 = 0, t ∈ [T ∗
6 ,+∞),

where T ∗
6 =

‖u0‖
2−p
r+1

[ rpp

(p+r−1)p
−λC(N,q,r,k)q+rη4C

−p
00 ](2−p)

.

Remark 4.2 Theorems 3.1-3.3 all require λ, u0 to be sufficiently small or
β to be sufficiently large.
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