
Mathematica Aeterna, Vol. 5, 2015, no. 5, 821 - 844

Extinction behavior of solutions for
the polytropic filtration equation

with nonlocal source and absorption

Jizhe Cui
cuijizhe@foxmail.com

Department of Information Management & Information System,
Yanbian University,

Yanji 133-002, P.R. China

Zhong Bo Fang∗

fangzb7777@hotmail.com
School of Mathematical Sciences,

Ocean University of China,
Qingdao 266100, P.R. China

Su-Cheol Yi
scyi@changwon.ac.kr

Department of Mathematics,
Changwon National University,

Changwon 641-773, Republic of Korea

Abstract

We investigate the extinction behavior of non-negative nontrivial weak

solutions of the initial-boundary value problem for the fast diffusive

polytropic filtration equation with nonlocal nonlinear source and inte-

rior absorption. We show that the effect of the absorption can change

extinction behavior of solutions in the whole dimensional space, and de-

cay estimates always depend on the choices of initial data, coefficients

and domain.
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1 Introduction

In this paper, we consider the initial-boundary value problem of the fast dif-
fusive polytropic filtration equation

ut = div(|∇um|p−2∇um) + λ

∫
Ω
uq(x, t)dx− βuk, x ∈ Ω, t > 0, (1.1)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

with 1 < p < 2, 0 < m(p − 1) < 1, 0 < k ≤ 1, λ, β, q > 0, Ω ⊂ RN (N ≥ 1)
is a bounded domain with smooth boundary and um

0 (x) ∈ L∞(Ω)∩W
1,p
0 (Ω) is

a non-negative function. Symbols ‖ · ‖p, ‖ · ‖1,p denote Lp(Ω), W 1,p(Ω) norms
respectively (where p ≥ 1) and |Ω| denotes the measure of Ω.

Nonlinear parabolic equation like (1.1) appears in various applications such
as population dynamics, chemical reactions, combustion theory and so on (see
[1-3]). In particular, equation (1.1) is a possible model for the diffusion system
of some biological species with human-controlled distribution where u(x, t) rep-
resents the density of the species at position x and time t, div(|∇um|p−2∇um)
portrays the mutation (which we view as a spreading of the characteristic),
−k measures here is the growth capacity of the species at location x and time
t, while λ

∫
Ω uqdx denotes the human-controlled distribution. Nonlocal term

is a way to express that the evolution of the species in a point of space de-
pends not only on nearby density but also on the total amount of species due
to the effects of spatial inhomogeneity (see [4-6]). And it has also been put
forward that equation (1.1) may be used to describe the non-stationary flow in
a porous medium of fluid with a power dependence of the tangential stress on
the velocity of displacement under polytropic conditions. In this case, equa-
tion (1.1) is called the non-Newtonian polytropic filtration equation (see [7,8]
and references therein).

In the last decades, many researchers devoted to the study of blow-up of
solutions for nonlinear parabolic equations with nonlocal terms. For example,
Q.L. Liu et al.[9] investigated the homogeneous Dirichlet boundary value prob-
lem for the semilinear parabolic equation with nonlocal source and weighted
coefficient and proved that the solution blew up globally, and the uniform blow
up rate was precisely determined. When p = 2, m = λ = 1 in (1.1) and the
linear absorption term is replaced by a nonlinear power form term, the studies
of the blow-up, blow-up rates and blow-up sets of solutions have been exten-
sively studied (see [10-13]). However, extinction is also an important property
of solutions for these equations and makes some progress. For instance, Evans
and Knerr [14] investigated the extinction behavior of solution for the Cauchy
problem of the semilinear parabolic equation

ut(x, t) = ∆u(x, t)− β(u(x, t)), x ∈ Rn, t > 0, (1.4)
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by constructing a suitable comparison function. Y.G. Gu [15] studied the
homogeneous Dirichlet boundary value problem for the semilinear heat con-
duction equation with absorption term

ut = ∆u− λuq, x ∈ Ω, t > 0, (1.5)

with λ > 0 and proved that a solution of (1.5) vanished if and only if 0 < q < 1
by using the Lp -integral norm estimate method. J.L. Vazquez [16] studied the
extinction phenomenon of solutions for the Cauchy problem of the porous
medium equations with absorption terms

ut = (um)xx − up, x ∈ R, t > 0, (1.6)

by using the analysis of self-similar solutions and demonstrated that the anal-
ysis of (1.6) could be extended to the p-Laplacian equation with absorption.
W.J. Liu [17] considered the extinction properties of solutions for the homo-
geneous Dirichlet boundary value problem for the fast p-Laplacian equation
with both local source and absorption term

ut = div(|∇u|p−2∇u) + λur − βuq, x ∈ Ω, t > 0, (1.7)

subject to (1.2) (1.3) and r, λ, β > 0, q ≤ 1 by using the Lp -integral norm
estimate method. For β > 0, he showed that r = p − 1 was still the critical
extinction exponent when q = 1 and extinction could always occur when 0 <

q ≤ r < 1. Moreover, there are some papers concerning the extinction for the
following parabolic equation for special cases

ut = div(|∇um|p−2∇um) + λuq − βuk, x ∈ Ω, t > 0, (1.8)

subject to (1.2) (1.3) and q > 0, k = 1, 0 < m(p− 1) < 1. In case λ = β = 0,
H.J. Yuan et al.[18] obtained sufficient conditions for the extinction of solution.
For the case β = 0, J. Zhou and C.L. Mu [19] obtained sufficient conditions
about the extinction of solutions by the upper and lower solutions methods. As
a natural continuation, J.X. Yin et al.[20] investigated the case m(p− 1) ≥ 1
and showed the non-extinction property of nontrivial solutions. Lately, Z.B.
Fang and G. Li [21] proved that the sufficient condition for the extinction of
solutions for (1.8) to occur was 0 < m(p−1) ≤ q < 1. S.N. Antontsev et al.[22]
studied the finite time extinction, space and time localization of solutions of
elliptic and parabolic equations (but without nonlocal term) of a general view
by using energy methods which are applied in many research fields, especially
for those situations in which traditional methods based on maximum princi-
ples or comparison principles have failed (including equations with variable
coefficients). Furthermore, for the extinction of the porous medium equations
or the p-Laplacian equations, we refer to [23-25] and the references therein for
details.
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Recently, for (1.1), when p = 2, m = k = 1 and q > 0, the conditions
about the extinction and non-extinction of solutions and the corresponding
decay estimates under the assumption N > 2 have been obtained (see [26]).
Then, for the case 1 < p < 2, m = k = 1 and q > 0 in (1.1), we showed
that p = q + 1 was the critical extinction exponent in the whole dimensional
space and obtained precise decay estimates which depended on the choices of
initial data, coefficients and domain (see [27]). As far as we know, no work has
dealt with the extinction phenomenon for the fast diffusive polytropic filtration
equation with coefficients and nonlocal source and absorption term like (1.1).

Motivated by the above works, the main goal of our work is to investigate
whether the effect of the absorption can change extinction behavior of solu-
tions for problem (1.1)-(1.3) in the whole dimensional space. When the linear
absorption is contained in (1.1), we find that the critical exponent of extinction
for the weak solution is determined by the competition of two nonlinear terms,
and the critical case does not depend on the first eigenvalue of the correspond-
ing operator, which is different from that of the local source case. Moreover,
extinction can always occur when 0 < k ≤ q < 1, and the decay estimates
depend on the choices of initial data, coefficients and domain. The detailed
results as follows.

Theorem 1.1 Assume that 1 < p < 2, k = 1, 0 < m(p− 1) = q < 1
(1) If N = 1 or 2, the non-negative nontrivial weak solution of problem (1.1)-
(1.3) vanishes in finite time for any non-negative initial data provided that |Ω|
(or λ) is sufficiently small, and

‖u(·, t)‖2 ≤ [(‖u0‖
1−m(p−1)
2 +

C1

β
)e[m(p−1)−1]βt −

C1

β
]

1
1−m(p−1) , t ∈ [0, T1),

‖u(·, t)‖2 ≡ 0, t ∈ [T1,+∞),

where C1, T1 are given by (3.4)(3.5) respectively.
(2) If N > 2, the non-negative nontrival weak solution of problem (1.1)-(1.3)
vanishes in finite time for any non-negative initial data provided that |Ω| (or
λ) is sufficiently small, and
(a) If N−2

N+2
≤ m(p− 1) < 1,

‖u(·, t)‖d+1 ≤ [(‖u0‖
1−m(p−1)
d+1 +

C2

β
)e[m(p−1)−1]βt −

C2

β
]

1
1−m(p−1) , t ∈ [0, T2),

‖u(·, t)‖d+1 ≡ 0, t ∈ [T2,+∞).

(b) If 0 < m(p− 1) < N−2
N+2

,

‖u(·, t)‖r+1 ≤ [(‖u0‖
1−m(p−1)
r+1 +

C3

β
)e[m(p−1)−1]βt −

C3

β
]

1
1−m(p−1) , t ∈ [0, T3),
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‖u(·, t)‖r+1 ≡ 0, t ∈ [T3,+∞),

where d = 2m(p−1)+2
p

−1, r = N−p−Nm(p−1)
p

, C2, C3, T2, T3 are given by (3.10)(3.14)

(3.11)(3.15) respectively.

Theorem 1.2 Assume that 1 < p < 2, k = 1, m(p− 1) < q

(1) If N = 1 or 2, the non-negative nontrivial weak solution of problem (1.1)-
(1.3) vanishes in finite time provided that u0 (or |Ω| or λ) is sufficiently small,
and

‖u(·, t)‖2 ≤ ‖u0‖2e
−α1t, t ∈ [0, T4),

‖u(·, t)‖2 ≤ [(‖u(·, T4)‖
1−m(p−1)
2 +

C4

β
)e[m(p−1)−1]β(t−T4)−

C4

β
]

1
1−m(p−1) , t ∈ [T4, T5),

‖u(·, t)‖2 ≡ 0, t ∈ [T5,+∞),

where C4, T5 are given by (3.19)(3.20) respectively.
(2) If N > 2, the non-negative nontrivial weak solution of problem (1.1)-(1.3)
vanishes in finite time provided that u0 (or |Ω| or λ) is sufficiently small, and
(a) If N−2

N+2
≤ m(p− 1) < 1,

‖u(·, t)‖d+1 ≤ ‖u0‖d+1e
−α2t, t ∈ [0, T6),

‖u(·, t)‖d+1 ≤ [(‖u(·, T6)‖
1−m(p−1)
d+1 +

C5

β
)e[m(p−1)−1]β(t−T6)−

C5

β
]

1
1−m(p−1) , t ∈ [T6, T7),

‖u(·, t)‖d+1 ≡ 0, t ∈ [T7,+∞).

(b) If 0 < m(p− 1) < N−2
N+2

,

‖u(·, t)‖r+1 ≤ ‖u0‖r+1e
−α3t, t ∈ [0, T8),

‖u(·, t)‖r+1 ≤ [(‖u(·, T8)‖
1−m(p−1)
r+1 +

C6

β
)e[m(p−1)−1]β(t−T8)−

C6

β
]

1
1−m(p−1) , t ∈ [T8, T9),

‖u(·, t)‖r+1 ≡ 0, t ∈ [T9,+∞),

where d = 2m(p−1)+2
p

−1, r = N−p−Nm(p−1)
p

, C5, C6, T7, T9 are given by (3.23)(3.27)

(3.24)(3.28) respectively.

Theorem 1.3 Assume 1 < p < 2, k = 1, m(p − 1) > q, then the non-
negative weak solution of problem (1.1)-(1.3) can not vanish in finite time for
any non-negative initial data.

Remark 1.1 According to Theorems 1.1-1.3, we observe that m(p−1) = q

is the critical exponent of extinction for the solution of (1.1)-(1.3) when k = 1.
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Remark 1.2 We also use Lp− integral norm estimate method to prove our
main results. However, in the critical case, for (1.1), we only need to deal with
λ
∫
Ω uq(x, t)dx by Hölder inequality to predigest the original problem which does

not depend on the first eigenvalue of the corresponding operator any longer.

Remark 1.3 If the coefficients of the nonlinear source term and linear ab-
sorption term change signs, the behavior of solution for problem(1.1)-(1.3) will
also change. For instance, when λ < 0, β > 0, the non-negative weak solution
of problem (1.1)-(1.3) vanishes in finite time for any non-negative initial data;
when λ < 0, β < 0, the non-negative weak solution of problem (1.1)-(1.3) van-
ishes in finite time provided that u0 is sufficiently small or β is sufficiently
large, especially that when N > 2, N−2

N+2
≤ m(p − 1) < 1, the non-negative

weak solution of problem (1.1)-(1.3) also vanishes in finite time provided that
|Ω| is sufficiently small; when λ > 0, β < 0, the non-negative weak solution of
problem (1.1)-(1.3) blows up in infinite time for any non-negative initial data
provided that β is sufficiently small.

Theorem 1.4 Assume that 1 < p < 2, 0 < k < 1, 0 < m(p − 1) =
q < 1, then the non-negative nontrivial weak solution of problem (1.1)-(1.3)
vanishes in finite time for any non-negative initial data provided that |Ω| (or
λ)is sufficiently small.

Theorem 1.5 Assume that 1 < p < 2, 0 < k < 1, then the non-negative
nontrivial weak solution of problem (1.1)-(1.3) vanishes in finite time provided

that u0 (or |Ω| or λ) is sufficiently small and q > pk(s+1)+N [m(p−1)−k]
p(s+1)+N [m(p−1)−k]

. (If N = 1

or 2, then s = 1; if N > 2, then s > max{2m(p−1)+2
p

− 1, N−p−Nm(p−1)
p

}.)

Remark 1.4 If k ≥ m(p − 1), the conditions in Theorem 1.5 imply that
q > m(p− 1) (see the proof of Theorem 1.5 for details).

Theorem 1.6 Assume that 1 < p < 2, 0 < k < 1, m(p − 1) > q ≥ k,
then the non-negative nontrivial weak solution of problem (1.1)-(1.3) vanishes
in finite time for any non-negative initial data provided that β is sufficiently
large.

Remark 1.5 One can see from Theorems 1.4-1.6 that extinction can always
occur when 0 < k ≤ q < 1.

Remark 1.6 Theorems 1.1-1.6 all require that |Ω| or λ or u0 should be suf-
ficiently small or β should be sufficiently large, and we will give more concrete
conditions which they satisfy in the later proofs.

The outline of the paper is as follows. In Section 2, we firstly give the defini-
tion of weak solutions for problem (1.1)-(1.3), and then show some preliminary
lemmas. In Section 3, we mainly prove Theorems 1.1-1.3 which deal with the
case k = 1. Finally, the proofs of Theorems 1.4-1.6 in the case 0 < k < 1 are
the subject of Section 4.
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2 Preliminary knowledge

Due to the singularity of the equation that we consider with, the problem
of (1.1)-(1.3) has no classical solutions in general. So we consider its weak
solutions in the following sense.

Definition 2.1 Assume that u(x, t) satisfies the following conditions

(1)u ∈ L2q(QT )∩L
2(QT ), ut ∈ L2(QT ),∇um ∈ Lp(QT ),

(2)
∫ ∫

QT

(utϕ+|∇um|p−2∇um∇ϕ+βukϕ)dxdt = λ

∫ ∫
QT

ϕ(
∫
Ω
uq(y, t)dy)dxdt,

where ϕ ≥ 0, ϕ ∈ L2(QT ), ϕt ∈ L2(QT ), ∇ϕ ∈ Lp(QT ), ϕ|∂Ω = 0 and
QT = Ω× (0, T ), T > 0,

(3)u(x, 0) = u0(x), u|∂Ω×(0,T ) = 0,

then u(x, t) is called the weak solution of problem (1.1)-(1.3).

We can also define the weak lower solution and upper solution of problem
(1.1)-(1.3) in the same way except that the ”=” in Definition 1 is replaced
by ”≤” and ”≥” respectively. The existence and regularity of non-negative
solution of problem (1.1)-(1.3) can be studied as in [2,8,28].

Before proving our main results, we show some preliminary lemmas which
are very important in the following proofs. For convenience, we only give these
lemmas (the detail proofs can been seen in [26,29-31]).

Lemma 2.2 Let y(t) be a non-negative absolutely continuous function on
[0,+∞) satisfying

dy

dt
+ αyk ≤ 0, t ≥ 0; y(0) ≥ 0,

where α > 0 is a constant and k ∈ (0, 1), then we have decay estimate

y(t) ≤ [(y1−k(0)− α(1− k)t]
1

1−k , t ∈ [0, T∗),

y(t) ≡ 0, t ∈ [T∗,+∞),

where T∗ =
y1−k(0)
α(1−k)

.

Lemma 2.3 ([29]) Let y(t) be a non-negative absolutely continuous func-
tion on [0,+∞) satisfying

dy

dt
+ αyk + βy ≤ 0, t ≥ T0; y(T0) ≥ 0,
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where α, β > 0 are constants and k ∈ (0, 1), then we have decay estimate

y(t) ≤ [(y1−k(T0) +
α

β
)e(k−1)β(t−T0) −

α

β
]

1
1−k , t ∈ [T0, T∗),

y(t) ≡ 0, t ∈ [T∗,+∞),

where T∗ =
1

(1−k)β
ln(1 + β

α
y1−k(T0)) + T0.

Lemma 2.4 ([30]) Let 0 < k < m ≤ 1, y(t) ≥ 0 be a solution of the
differential inequality

dy

dt
+ αyk + βy ≤ γym, t ≥ 0; y(0) = y0 > 0,

where α, β > 0, γ is a positive constant such that γ < αyk−m
0 , then there exists

η > β, such that
0 ≤ y(t) ≤ y0e

−ηt, t ≥ 0.

Lemma 2.5 ([26]) Let α, β, γ > 0 and 0 < m < k < 1, then exists at least
one non-constant solution of the ODE problem

dy

dt
+ αyk + βy ≤ γym, t ≥ 0; y(0) = y0 > 0, y(t) > 0, t > 0.

Lemma 2.6 ([31]) (Gagliardo-Nirenberg inequality) Suppose that u ∈ W
k,m
0 (Ω),

1 ≤ m ≤ +∞, 0 ≤ j < k, 1 ≥ 1
r
≥ 1

m
− k

N
, then we have

‖Dju‖q ≤ C‖Dku‖θm‖u‖
1−θ
r ,

where C is a constant depending only on N,m, r, j, k, q and 1
q
= j

N
+ θ( 1

m
−

k
N
) + 1−θ

r
. While if m < N

k−j
, then q ∈ [ Nr

N+rj
, Nm
N−(k−j)m

], if m ≥ N
k−j

, then

q ∈ [ Nr
N+rj

,+∞].

3 The case 1 < p < 2, 0 < m(p − 1) < 1, k = 1:

proofs of Theorems 1.1-1.3

3.1 proof of Theorem 1.1

(1)If N = 1 or 2, multiplying (1.1) by u and integrating over Ω, we have

1

2

d

dt
‖u‖22 +

mp−1pp

[m(p− 1) + 1]p
‖∇u

m(p−1)+1
p ‖pp + β‖u‖22 = λ

∫
Ω
um(p−1)dx

∫
Ω
udx.

(3.1)
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By the Hölder inequality, we have

∫
Ω
um(p−1)dx

∫
Ω
udx ≤ |Ω|

2s1−m(p−1)−1

s1 ‖u‖m(p−1)+1
s1

,

where s1 ≥ 1 will be determined later. Setting s1 = 2, one can get

1

2

d

dt
‖u‖22 +

mp−1pp

[m(p− 1) + 1]p
‖∇u

m(p−1)+1
p ‖pp + β‖u‖22 ≤ λ|Ω|

3−m(p−1)
2 ‖u‖

m(p−1)+1
2 .

(3.2)
By the Sobolev embedding inequality, there exists an embedding constant
γ(N,Ω) > 0 such that

‖u
m(p−1)+1

p ‖s2 ≤ γ(N,Ω)‖∇u
m(p−1)+1

p ‖p,

where s2 ≥ p will be determined later.
i.e.

γ−p(N,Ω)‖u‖
m(p−1)+1
[m(p−1)+1]s2

p

≤ ‖∇u
m(p−1)+1

p ‖pp.

Here we set s2 =
2p

m(p−1)+1
, then the above inequality turns to

γ−p(N,Ω)‖u‖
m(p−1)+1
2 ≤ ‖∇u

m(p−1)+1
p ‖pp. (3.3)

So we have
d

dt
‖u‖2 + C1‖u‖

m(p−1)
2 + β‖u‖2 ≤ 0,

where

C1 =
mp−1pp

[m(p− 1) + 1]pγp
− λ|Ω|

3−m(p−1)
2 . (3.4)

By Lemma 2.3, we have

‖u(·, t)‖2 ≤ [(u0‖
1−m(p−1)
2 +

C1

β
)e[m(p−1)−1]βt −

C1

β
]

1
1−m(p−1) , t ∈ [0, T1),

‖u(·, t)‖2 ≡ 0, t ∈ [T1,+∞),

provided that

|Ω| < {
mp−1pp

[m(p− 1) + 1]pγpλ
}

2
3−m(p−1) ,

where

T1 =
1

[1−m(p− 1)]β
ln(1 +

β

C1

‖u0‖
1−m(p−1)
2 ). (3.5)
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(2) If N > 2,

(a) If N−2
N+2

≤ m(p−1) < 1, multiplying (1.1) by ud ( here d = 2m(p−1)+2
p

−1 ≥ 1

) and integrating over Ω, we have

1

d+ 1

d

dt
‖u‖d+1

d+1+
dmp−1pp

[m(p− 1) + d]p
‖∇u

m(p−1)+d

p ‖pp+β‖u‖d+1
d+1 = λ

∫
Ω
um(p−1)dx

∫
Ω
uddx.

(3.6)
By the Hölder inequality, we have

∫
Ω
um(p−1)dx

∫
Ω
uddx ≤ |Ω|

2s3−m(p−1)−d

s3 ‖u‖m(p−1)+d
s3

,

where s3 ≥ 1 will be determined later. Setting s3 = d+ 1, one can get

1

d+ 1

d

dt
‖u‖d+1

d+1 +
dmp−1pp

[m(p− 1) + d]p
‖∇u

m(p−1)+d

p ‖pp + β‖u‖d+1
d+1

≤ λ|Ω|
d−m(p−1)+2

d+1 ‖u‖
m(p−1)+d
d+1 . (3.7)

By the Sobolev embedding inequality, there exists an embedding constant
C0 > 0 such that

‖u
m(p−1)+d

p ‖pNp

N−p

≤ C
p
0‖∇u

m(p−1)+d

p ‖pp. (3.8)

By the Hölder inequality, we have

‖u‖
m(p−1)+d
d+1 ≤ |Ω|

m(p−1)+d

d+1
−N−p

N ‖u
m(p−1)+d

p ‖pNp

N−p

. (3.9)

So we have
d

dt
‖u‖d+1 + C2‖u‖

m(p−1)
d+1 + β‖u‖d+1 ≤ 0,

where

C2 =
dmp−1pp

[m(p− 1) + d]p
C

−p
0 |Ω|

N−p

N
−

m(p−1)+d

d+1 − λ|Ω|
d−m(p−1)+2

d+1 . (3.10)

By Lemma 2.3, we have

‖u(·, t)‖d+1 ≤ [(‖u0‖
1−m(p−1)
d+1 +

C2

β
)e[m(p−1)−1]βt −

C2

β
]

1
1−m(p−1) , t ∈ [0, T2),

‖u(·, t)‖d+1 ≡ 0, t ∈ [T2,+∞),

provided that

|Ω| < {
dmp−1pp

[m(p− 1) + d]pCp
0λ

}
N

N+p ,
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where

T2 =
1

[1−m(p− 1)]β
ln(1 +

β

C2
‖u0‖

1−m(p−1)
d+1 ). (3.11)

(b) If 0 < m(p−1) < N−2
N+2

, multiplying (1.1) by ur ( here r = N−p−Nm(p−1)
p

)
and integrating over Ω, we have

1

r + 1

d

dt
‖u‖r+1

r+1+
dmp−1pp

[m(p− 1) + r]p
‖∇u

m(p−1)+r

p ‖pp+β‖u‖r+1
r+1 = λ

∫
Ω
um(p−1)dx

∫
Ω
urdx.

(3.12)
By the embedding theorem and the specific choice of r, there exists an embed-
ding constant C00 > 0 such that

‖u‖
m(p−1)+r
N[m(p−1)+r]

N−p

≤ C
p
00‖∇u

m(p−1)+r

p ‖pp.

i.e.

C
−p
00 ‖u‖

m(p−1)+r
r+1 ≤ ‖u

m(p−1)+r

p ‖pp. (3.13)

By the Hölder inequality, we have

∫
Ω
um(p−1)dx

∫
Ω
urdx ≤ |Ω|

2s4−m(p−1)−r

s4 ‖u‖m(p−1)+r
s4

,

where s4 ≥ 1 will be determined later. Here we set s4 = r+1 ≥ 1, and obtain

d

dt
‖u‖r+1 + C3‖u‖

m(p−1)
r+1 + β‖u‖r+1 ≤ 0,

where

C2 =
rmp−1pp

[m(p− 1) + r]pCp
00

− λ|Ω|
r−m(p−1)+2

r+1 . (3.14)

By Lemma 2.3, we have

‖u(·, t)‖r+1 ≤ [(‖u0‖
1−m(p−1)
r+1 +

C3

β
)e[m(p−1)−1]βt −

C3

β
]

1
1−m(p−1) , t ∈ [0, T3),

‖u(·, t)‖r+1 ≡ 0, t ∈ [T3,+∞),

provided that

|Ω| < {
rmp−1pp

[m(p− 1) + r]pCp
00λ

}
r+1

r−m(p−1)+2 ,

where

T3 =
1

[1−m(p− 1)]β
ln(1 +

β

C3

‖u0‖
1−m(p−1)
r+1 ). (3.15)
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3.2 proof of Theorem 1.2

Firstly, we consider the case q ≤ 1.
(1)If N = 1 or 2, multiplying (1.1) by u and integrating over Ω, we have

1

2

d

dt
‖u‖22 +

mp−1pp

[m(p− 1) + 1]p
‖∇u

m(p−1)+1
p ‖pp + β‖u‖22 = λ

∫
Ω
uqdx

∫
Ω
udx. (3.16)

By the Hölder inequality, we have
∫
Ω
uqdx

∫
Ω
udx ≤ |Ω|

2s5−q−1
s5 ‖u‖q+1

s5
,

where s5 ≥ 1 will be determined later. Here we set s5 = 2, and obtain

1

2

d

dt
‖u‖22 +

mp−1pp

[m(p− 1) + 1]p
‖∇u

m(p−1)+1
p ‖pp + β‖u‖22 ≤ λ|Ω|

3−q

2 ‖u‖q+1
2 . (3.17)

We substitute (3.3) into (3.17), and set s2 =
2p

m(p−1)+1
, so we have

d

dt
‖u‖2 +

mp−1pp

[m(p− 1) + 1]pγp
‖u‖

m(p−1)
2 + β‖u‖2 ≤ λ|Ω|

3−q

2 ‖u‖q2. (3.18)

By Lemma 2.4, there exists α1 > β, such that

0 ≤ ‖u(·, t)‖2 ≤ ‖u0‖2e
−α1t, t ≥ 0,

provided that

‖u0‖2 < {
mp−1pp

[m(p− 1) + 1]pγpλ|Ω|
3−q

2

}
1

q−m(p−1) .

Furthermore, there exists T4 > 0, such that

mp−1pp

[m(p− 1) + 1]pγp
− λ|Ω|

3−q

2 ‖u‖
q−m(p−1)
2

≥
mp−1pp

[m(p− 1) + 1]pγp
− λ|Ω|

3−q

2 (‖u0‖2e
−α1T4)q−m(p−1) = C4 > 0, (3.19)

holds for t ∈ [T4,+∞). Therefore, when t ∈ [T4,+∞), we have

d

dt
‖u‖2 + C4‖u‖

m(p−1)
2 + β‖u‖2 ≤ 0.

By Lemma 2.3, we have

‖u(·, t)‖2 ≤ [(‖u(·, T4)‖
1−m(p−1)
2 +

C4

β
)e[m(p−1)−1]β(t−T4)−

C4

β
]

1
1−m(p−1) , t ∈ [T4, T5),
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‖u(·, t)‖2 ≡ 0, t ∈ [T5,+∞),

where

T5 =
1

[1−m(p− 1)]β
ln(1 +

β

C4

‖u(·, T4)‖
1−m(p−1)
2 ) + T4. (3.20)

(2) If N > 2,

(a) If N−2
N+2

≤ m(p−1) < 1, multiplying (1.1) by ud ( here d = 2m(p−1)+2
p

−1 ) and
integrating over Ω, and then using the Hölder inequality and the embedding
theorem, we have

d

dt
‖u‖d+1 +

dmp−1pp

[m(p− 1) + d]p
C

−p
0 |Ω|

N−p

N
−

m(p−1)+d

d+1 ‖u‖
m(p−1)
d+1 + β‖u‖d+1

≤ λ|Ω|
d−q+2
d+1 ‖u‖qd+1. (3.21)

By Lemma 2.4, there exists α2 > β, such that

0 ≤ ‖u(·, t)‖d+1 ≤ ‖u0‖d+1e
−α2t, t ≥ 0,

provided that

‖u0‖d+1 < {
dmp−1pp

[m(p− 1) + d]pCp
0λ|Ω|

m(p−1)−q

d+1
+N+p

N

}
1

q−m(p−1) . (3.22)

Furthermore, there exists T6 > 0, such that

dmp−1pp

[m(p− 1) + d]p
C

−p
0 |Ω|

N−p

N
−

m(p−1)+d

d+1 −λ|Ω|
d−q+2
d+1 ‖u‖

q−m(p−1)
d+1

≥
dmp−1pp

[m(p− 1) + d]p
C

−p
0 |Ω|

N−p

N
−

m(p−1)+d

d+1 −λ|Ω|
d−q+2
d+1 (‖u0‖d+1e

−α2T6)q−m(p−1) = C5 > 0,

(3.23)
holds for t ∈ [T6,+∞). Therefore, when t ∈ [T6,+∞), we have

d

dt
‖u‖d+1 + C5‖u‖

m(p−1)
d+1 + β‖u‖d+1 ≤ 0.

By Lemma 2.3, we have

‖u(·, t)‖d+1 ≤ [(‖u(·, T6)‖
1−m(p−1)
d+1 +

C5

β
)e[m(p−1)−1]β(t−T6)−

C5

β
]

1
1−m(p−1) , t ∈ [T6, T7),

‖u(·, t)‖d+1 ≡ 0, t ∈ [T7,+∞),

where

T7 =
1

[1−m(p− 1)]β
ln(1 +

β

C5

‖u(·, T6)‖
1−m(p−1)
d+1 ) + T6. (3.24)
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(b) If 0 < m(p−1) < N−2
N+2

, multiplying (1.1) by ur ( here r = N−p−Nm(p−1)
p

)
and integrating over Ω, then using the Hölder inequality and the embedding
theorem, we have

d

dt
‖u‖r+1+

rmp−1pp

[m(p− 1) + r]pCp
00

‖u‖
m(p−1)
r+1 +β‖u‖r+1 ≤ λ|Ω|

r−q+2
r+1 ‖u‖qr+1. (3.25)

By Lemma 2.4, there exists α3 > β, such that

0 ≤ ‖u(·, t)‖r+1 ≤ ‖u0‖r+1e
−α3t, t ≥ 0,

provided that

‖u0‖r+1 < {
rmp−1pp

[m(p− 1) + r]pCp
00λ|Ω|

r−q+2
r+1

}
1

q−m(p−1) . (3.26)

Furthermore, there exists T8 > 0, such that

rmp−1pp

[m(p− 1) + r]pCp
00

− λ|Ω|
r−q+2
r+1 ‖u‖

q−m(p−1)
r+1

≥
rmp−1pp

[m(p− 1) + r]pCp
00

− λ|Ω|
r−q+2
r+1 (‖u0‖r+1e

−α3T8)q−m(p−1) = C6 > 0, (3.27)

holds for t ∈ [T8,+∞). Therefore, when t ∈ [T8,+∞), we have

d

dt
‖u‖r+1 + C6‖u‖

m(p−1)
r+1 + β‖u‖r+1 ≤ 0.

By Lemma 2.3, we have

‖u(·, t)‖r+1 ≤ [(‖u(·, T8)‖
1−m(p−1)
r+1 +

C6

β
)e[m(p−1)−1]β(t−T8)−

C6

β
]

1
1−m(p−1) , t ∈ [T8, T9),

‖u(·, t)‖r+1 ≡ 0, t ∈ [T9,+∞),

where

T9 =
1

[1−m(p− 1)]β
ln(1 +

β

C6

‖u(·, T8)‖
1−m(p−1)
r ) + T8. (3.28)

For the case q > 1.
Assume that λ1 is the first eigenvalue of

−div(|∇φ|p−2∇φ) = λ|φ|p−2φ, x ∈ Ω; φ(x) = 0, x ∈ ∂Ω, (3.29)

and φ(x) ≥ 0, ‖φ(x)‖∞ = 1 is the eigenfunction corresponding to the eigenvalue
λ1.
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For sufficiently small a > 0, it can be easily verified that aφ
1
m (x) is a

upper solution of (1.1)-(1.3) if u0(x) ≤ aφ
1
m (x), x ∈ Ω. Then u(x, t) ≤

aφ
1
m (x), x ∈ Ω, t > 0 by the comparison principle. Therefore we can rewrite

(3.18)(3.21)(3.25) as (e.g.(3.21))

d

dt
‖u‖d+1 +

dmp−1pp

[m(p− 1) + d]p
C

−p
0 |Ω|

N−p

N
−

m(p−1)+d

d+1 ‖u‖
m(p−1)
d+1 + β‖u‖d+1

≤ λ|Ω|aq−1‖u‖d+1. (3.30)

The above argument can also be applied and hence we omit it.

Remark 3.1 If q > 1, the non-negative nontrivial weak solution of problem
(1.1)-(1.3) vanishes in finite time, and it still has exponential decay estimates.
But u0 and decay estimates should be changed accordingly. Here we only give
the concrete decay estimates under the condition of q ≤ 1 in Theorem 1.2.

Remark 3.2 For the other properties of the first eigenvalue and the cor-
responding function for problem (3.29), we refer the reader to [24] and the
references therein.

3.3 proof of Theorem 1.3

Let v(x, t) = g(t)φ
1
m (x), where φ(x) is still the first eigenfunction correspond-

ing to the eigenvalue λ1 for problem (3.29), while g(t) satisfies the ODE prob-
lem

g′(t) + λ1g
m(p−1)(t) + βg(t) = λ

∫
Ω
φ

q

m (x)dxgq(t), t ≥ 0; g(0) = 0.

Then we have
∫ ∫

QT

{vtϕ− |∇vm|p−2∇vm∇ϕ+ βvϕ− λϕ

∫
Ω
vq(x, t)dx}dxdt

=
∫ ∫

QT

{g′(t)φ
1
m (x)+λ1φ

p−1(x)gm(p−1)(t)+βg(t)φ
1
m (x)−λgq(t)

∫
Ω
φ

q

m (x)dx}ϕdxdt

≤
∫ ∫

QT

{g′(t) + λ1g
m(p−1)(t) + βg(t)− λgq(t)

∫
Ω
φ

q

m (x)dx}ϕdxdt = 0.

Moreover, v(x, 0) = g(0)φ
1
m (x) = 0 ≤ u0(x), x ∈ Ω; v(x, t) = 0, x ∈ ∂Ω, t >

0.
Therefore, we have

u(x, t) ≥ v(x, t) > 0, x ∈ Ω, t > 0.

i.e. v(x, t) is a non-extinction lower solution of problem (1.1)-(1.3).
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4 The case 1 < p < 2, 0 < m(p−1) < 1, 0 < k < 1:

proofs of Theorems 1.4-1.6

4.1 proof of Theorem 1.4

(1)If N = 1 or 2, applying the same computation as for(3.1)-(3.2), one can get

1

2

d

dt
‖u‖22 + {

mp−1pp

[m(p− 1) + 1]p
− λ|Ω|

3−m(p−1)
2 γp}‖∇u

m(p−1)+1
p ‖pp + β‖u‖k+1

k+1 ≤ 0.

(4.1)
By the Gagliardo-Nirenberg inequality, we have

‖u‖2 ≤ C(N, p, k)‖u‖1−θ1
k+1 ‖∇u

m(p−1)+1
p ‖

θ1p

m(p−1)+1
p , (4.2)

where θ1 = m(p−1)+1
p

( 1
k+1

− 1
2
)[ 1

N
− 1

p
+ m(p−1)+1

p
1

k+1
]−1 = N(1−k)[m(p−1)+1]

2{p(k+1)+N [m(p−1)−k]}
.

Since 1 < p < 2, 0 < m(p−1) < 1 and 0 < k < 1, we can easily get 0 < θ1 < 1.
It follows from (4.2) and the Young’s inequality that

‖u‖k12 ≤ C(N, p, k)k1‖u‖
k1(1−θ1)
k+1 ‖∇u

m(p−1)+1
p ‖

k1θ1p

[m(p−1)+1]
p

≤ C(N, p, k)k1(η1‖∇u
m(p−1)+1

p ‖pp + C(η1)‖u‖
k1(1−θ1)[m(p−1)+1]

m(p−1)+1−k1θ1
k+1 ), (4.3)

where k1 > 1 and η1 > 0 will be determined later. Here we choose k1 =
(k+1)[m(p−1)+1]

(1−θ1)[m(p−1)+1]+θ1(k+1)
= 2(k+1){p(k+1)+N [m(p−1)−k]}

2{p(k+1)+N [m(p−1)−k]}+N(1−k)[k−m(p−1)]
, then 1 < k1 < 2

and k1(1−θ1)[m(p−1)+1]
m(p−1)+1−k1θ1

= k + 1. Thus, (4.3) becomes

C(N, p, k)−k1β

C(η1)
‖u‖k12 ≤

η1β

C(η1)
‖∇u

m(p−1)+1
p ‖pp + β‖u‖k+1

k+1. (4.4)

We substitute (4.4) into (4.1) to get

1

2

d

dt
‖u‖22 + {

mp−1pp

[m(p− 1) + 1]p
− λ|Ω|

3−m(p−1)
2 γp −

η1β

C(η1)
}‖∇u

m(p−1)+1
p ‖pp

+
C(N, p, k)−k1β

C(η1)
‖u‖k12 ≤ 0.

Here we can choose η1 and λ or |Ω| small enough such that mp−1pp

[m(p−1)+1]p
−

λ|Ω|
3−m(p−1)

2 γp − η1β
C(η1)

≥ 0. Setting C01 =
C(N,p,k)−k1β

C(η1)
, we have

d

dt
‖u‖2 + C01‖u‖

k1−1
2 ≤ 0.
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By Lemma 2.2, we have

‖u‖2 ≤ [‖u0‖
2−k1
2 − C01(2− k1)t]

1
2−k1 , t ∈ [0, T01),

‖u‖2 ≡ 0, t ∈ [T01,+∞),

where T01 =
‖u0‖

2−k1
2

C01(2−k1)
.

(2) If N > 2,
(a) If N−2

N+2
≤ m(p−1) < 1, multiplying (1.1) by us (s > d ≥ 1) and integrating

over Ω, one can get

1

s+ 1

d

dt
‖u‖s+1

s+1+{
smp−1pp

[m(p− 1) + s]p
−λC

p
0 |Ω|

1+ p

N }‖∇u
m(p−1)+s

p ‖pp+β‖u‖k+s
k+s ≤ 0.

(4.5)
By the Gagliardo-Nirenberg inequality, we have

‖u‖s+1 ≤ C(N, p, k, s)‖u‖1−θ2
k+s ‖∇u

m(p−1)+s

p ‖
θ2p

m(p−1)+s
p , (4.6)

where θ2 =
m(p−1)+s

p
( 1
k+s

− 1
s+1

)[ 1
N
−1

p
+m(p−1)+s

p
1

k+s
]−1 = N(1−k)[m(p−1)+s]

(s+1){p(k+s)+N [m(p−1)−k]}
.

Since 1 < p < 2, N−2
N+2

≤ m(p − 1) < 1 and 0 < k < 1, we can easily get
0 < θ2 < 1. It follows from (4.6) and the Young’s inequality that

‖u‖k2s+1 ≤ C(N, p, k, s)k2‖u‖
k2(1−θ2)
k+s ‖∇u

m(p−1)+s

p ‖
k2θ2p

m(p−1)+s
p

≤ C(N, p, k, s)k2(η2‖∇u
m(p−1)+s

p ‖pp + C(η2)‖u‖
k2(1−θ2)[m(p−1)+s]

m(p−1)+s−k2θ2
k+s , (4.7)

where k2 > 0 and η2 > 0 will be determined later. Here we choose k2 =
(k+s)[m(p−1)+s]

(1−θ2)[m(p−1)+s]+θ2(k+s)
= p(s+1)(k+s)+N(s+1)[m(p−1)−k]

p(s+1)+N [m(p−1)−k]
, then s < k2 < s + 1 and

k2(1−θ2)[m(p−1)+s]
m(p−1)+s−k2θ2

= k + s. Thus, (4.7) becomes

C(N, p, k, s)−k2β

C(η2)
‖u‖k2s+1 ≤

η2β

C(η2)
‖∇u

m(p−1)+s

p ‖pp + β‖u‖k+s
k+s. (4.8)

We substitute (4.8) into (4.5) to get

1

s + 1

d

dt
‖u‖s+1

s+1 + {
smp−1pp

[m(p− 1) + s]p
− λC

p
0 |Ω|

1+ p

N −
η2β

C(η2)
}‖∇u

m(p−1)+s

p ‖pp

+
C(N, p, k, s)−k2β

C(η2)
‖u‖k2s+1 ≤ 0.

Here we can choose η2 and λ or |Ω| small enough such that smp−1pp

[m(p−1)+s]p
−

λC
p
0 |Ω|

1+ p

N − η2β
C(η2)

≥ 0. Setting C02 =
C(N,p,k,s)−k2β

C(η2)
‖u‖k2s+1, we have

d

dt
‖u‖s+1 + C02‖u‖

k2−s
s+1 ≤ 0.
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By Lemma 2.2, we have

‖u‖s+1 ≤ [‖u0‖
s+1−k2
s+1 − C02(s+ 1− k2)t]

1
s+1−k2 , t ∈ [0, T02),

‖u‖s+1 ≡ 0, t ∈ [T02,+∞),

where T02 =
‖u0‖

s+1−k2
s+1

C02(s+1−k2)
.

(b)If 0 < m(p − 1) < N−2
N+2

, the proof of (a) can also be applied and hence
we omit it here.

4.2 proof of Theorem 1.5

(1)If N = 1 or 2, multiplying (1.1) by u and integrating over Ω, we have

1

2

d

dt
‖u‖22+

mp−1pp

[m(p− 1) + 1]p
‖∇u

m(p−1)+1
p ‖pp+β‖u‖k+1

k+1 = λ

∫
Ω
uqdx

∫
Ω
udx. (4.9)

Substituting (4.4) into (4.9) and using the Hölder inequality, one can get

1

2

d

dt
‖u‖22 + {

mp−1pp

[m(p− 1) + 1]p
−

η1β

C(η1)
}‖∇u

m(p−1)+1
p ‖pp +

C(N, p, k)−k1β

C(η1)
‖u‖k12

≤ λ|Ω|
3−q

2 ‖u‖q+1
2 .

By choosing η1 small enough such that mp−1pp

[m(p−1)+1]p
− η1β

C(η1)
≥ 0, we get

d

dt
‖u‖2 + ‖u‖k1−1

2 [
C(N, p, k)−k1β

C(η1)
− λ|Ω|

3−q

2 ‖u‖q−k1+1
2 ] ≤ 0.

Therefore,
d

dt
‖u‖2 + C03‖u‖

k1−1
2 ≤ 0,

provided that

‖u0‖2 < [
C(N, p, k)−k1β

C(η1)λ|Ω|
3−q

2

]
1

q−k1
+1
,

and

q > k1 − 1 =
2kp+N [m(p− 1)− k]

2p+N [m(p− 1)− k]
,

where C03 =
C(N,p,k)−k1β

C(η1)
− λ|Ω|

3−q

2 ‖u0‖
q−k1+1
2 > 0.

(2) If N > 2,
(a) If N−2

N+2
≤ m(p−1) < 1, multiplying (1.1) by us (s > d ≥ 1) and integrating

over Ω, we have

1

s+ 1

d

dt
‖u‖s+1

s+1+
smp−1pp

[m(p− 1) + s]p
‖∇u

m(p−1)+s

p ‖pp+β‖u‖k+s
k+s = λ

∫
Ω
uqdx

∫
Ω
usdx.

(4.10)
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Substituting (4.8) into (4.10) and using the Hölder inequality, one can get

1

s+ 1

d

dt
‖u‖s+1

s+1 + {
smp−1pp

[m(p− 1) + s]p
−

η2β

C(η2)
}‖∇u

m(p−1)+s

p ‖pp

+
C(N, p, k, s)−k2β

C(η2)
‖u‖k2s+1 ≤ λ|Ω|

s−q+2
s+1 ‖u‖q+s

s+1.

By choosing η2 small enough such that smp−1pp

[m(p−1)+s]p
− η2β

C(η2)
≥ 0, we get

d

dt
‖u‖s+1 + ‖u‖k2−s

s+1 [
C(N, p, k, s)−k2β

C(η2)
− λ|Ω|

s−q+2
s+1 ‖u‖q−k2+s

s+1 ] ≤ 0.

Therefore,
d

dt
‖u‖s+1 + C04‖u‖

k2−s
s+1 ≤ 0,

provided that

‖u0‖s+1 < [
C(N, p, k, s)−k2β

C(η2)λ|Ω|
s−q+2
s+1

]
1

q−k2+s ,

and

q > k2 − s =
pk(s+ 1) +N [m(p− 1)− k]

p(s+ 1) +N [m(p− 1)− k]
,

where C04 =
C(N,p,k,s)−k2β

C(η2)
− λ|Ω|

s−q+2
s+1 ‖u0‖

q−k2+s
s+1 > 0.

Since s > d, we have p(s+1) > 2m(p− 1) + 2. Therefore, if k ≥ m(p− 1),
then q > k2−s ≥ m(p−1). For the case q > 1, we can rewrite (4.9) and (4.10)
as (3.30), so the above argument can also be applied and we omit it here.

(b)If 0 < m(p − 1) < N−2
N+2

, the proof will be similar to (a) and hence we
omit it.

4.3 proof of Theorem 1.6

(1)If N = 1 or 2, multiplying (1.1) by u and integrating over Ω, and then using
the Hölder inequality, we can get∫

Ω
uqdx

∫
Ω
udx ≤ |Ω|‖u‖q+1

q+1.

By the Gagliardo-Nirenberg inequality, we have

‖u‖q+1 ≤ C(N, p, k, q)‖u‖1−θ3
k+1 ‖∇u

m(p−1)+1
p ‖

θ3p

m(p−1)+1
p , (4.11)

where θ3 =
m(p−1)+1

p
( 1
k+1

− 1
q+1

)[ 1
N
−1

p
+m(p−1)+1

p
1

k+1
]−1 = N(q−k)[m(p−1)+1]

(q+1){[p(k+1)+N [m(p−1)−k]}
∈

[0, 1). Since q < m(p− 1), we have m(p− 1) + 1− (q + 1)θ3 > 0. Therefore, it
follows from (4.11) and the Young’s inequality that

λ|Ω|‖u‖q+1
q+1 ≤ λ|Ω|C(N, p, k, q)q+1‖u‖

(q+1)(1−θ3)
k+1 ‖∇u

m(p−1)+1
p ‖

(q+1)θ3p

m(p−1)+1
p
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≤ λ|Ω|C(N, p, k, q)q+1(η3‖∇u
m(p−1)+1

p ‖pp + C(η3)‖u‖
(q+1)(1−θ3)[m(p−1)+1]

m(p−1)+1−(q+1)θ3
k+1 ), (4.12)

where η3 will be determined later. Substituting (4.12) into (4.9), one can get

1

2

d

dt
‖u‖22+ {

mp−1pp

[m(p− 1) + 1]p
− η3λ|Ω|C(N, p, k, q)q+1}‖∇u

m(p−1)+1
p ‖pp+β‖u‖k+1

k+1

≤ C(η3)λ|Ω|C(N, p, k, q)q+1‖u‖
(q+1)(1−θ3)[m(p−1)+1]

m(p−1)+1−(q+1)θ3
k+1 .

We then substitute (3.3) into the above inequality to get

1

2

d

dt
‖u‖22 + {

mp−1pp

[m(p− 1) + 1]p
− η3λ|Ω|C(N, p, k, q)q+1}γ−p‖u‖

m(p−1)+1
2

+‖u‖k+1
k+1[β − C(η3)λ|Ω|C(N, p, k, q)q+1‖u‖α1

k+1] ≤ 0,

where α1 =
(q+1)(1−θ3)[m(p−1)+1]
m(p−1)+1−(q+1)θ3

− (k + 1) = p(q−k)(k+1)
p(k+1)+N [m(p−1)−q]

≥ 0. We choose

η3 small enough such that C05 = { mp−1pp

[m(p−1)+1]p
−η3λ|Ω|C(N, p, k, q)q+1}γ−p > 0.

Once η3 is fixed, we can choose β large enough such that

β − C(η3)λ|Ω|C(N, p, k, q)q+1‖u‖α1
k+1 ≥ 0.

Thus, we have
d

dt
‖u‖2 + C05‖u‖

m(p−1)
2 ≤ 0,

which implies the result.
(2) If N > 2,

(a) If N−2
N+2

≤ m(p − 1) < 1, multiplying (1.1) by us and integrating over Ω,
and then using the Hölder inequality, we can get

∫
Ω
uqdx

∫
Ω
usdx ≤ |Ω|‖u‖q+s

q+s.

By the Gagliardo-Nirenberg inequality, we have

‖u‖q+s ≤ C(N, p, k, q, s)‖u‖1−θ4
k+s ‖∇u

m(p−1)+s

p ‖
θ4p

m(p−1)+s
p , (4.13)

where θ4 =
m(p−1)+s

p
( 1
k+s

− 1
q+s

)[ 1
N
−1

p
+m(p−1)+s

p
1

k+s
]−1 = N(q−k)[m(p−1)+s]

(q+s){[p(k+s)+N [m(p−1)−k]}
∈

[0, 1). Since q < m(p− 1), we have m(p− 1) + s− (q + s)θ4 > 0. Therefore, it
follows from (4.12) and the Young’s inequality that

λ|Ω|‖u‖q+s
q+s ≤ λ|Ω|C(N, p, k, q, s)q+s‖u‖

(q+s)(1−θ4)
k+s ‖∇u

m(p−1)+s

p ‖
(q+s)θ4p

m(p−1)+s
p

≤ λ|Ω|C(N, p, k, q, s)q+s(η4‖∇u
m(p−1)+s

p ‖pp + C(η4)‖u‖
(q+s)(1−θ4)[m(p−1)+s]

m(p−1)+s−(q+s)θ4
k+s ),

(4.14)
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where η4 will be determined later. Substituting (4.14) into (4.10), one can get

1

s+ 1

d

dt
‖u‖s+1

s+1 + {
smp−1pp

[m(p− 1) + s]p
− η4λ|Ω|C(N, p, k, q, s)q+s}‖∇u

m(p−1)+s

p ‖pp

+β‖u‖k+s
k+s ≤ C(η4)λ|Ω|C(N, p, k, q, s)q+s‖u‖

(q+s)(1−θ4)[m(p−1)+s]

m(p−1)+s−(q+s)θ4
k+s .

We then substitute (3.8) (3.9) into the above inequality to get

1

s+ 1

d

dt
‖u‖s+1

s+1+{
smp−1pp

[m(p− 1) + s]p
−η4λ|Ω|C(N, p, k, q, s)q+s}C−p

0 |Ω|
N−p

N
−

m(p−1)+s

s+1

·‖u‖
m(p−1)+s
s+1 + ‖u‖k+s

k+s[β − C(η4)λ|Ω|C(N, p, k, q, s)q+s‖u‖α2
k+s] ≤ 0,

where α2 = (q+s)(1−θ4)[m(p−1)+s]
m(p−1)+s−(q+s)θ4

− (k + s) = p(q−k)(k+s)
p(k+s)+N [m(p−1)−q]

≥ 0. We can
choose η4 small enough such that

C06 = {
smp−1pp

[m(p− 1) + s]p
− η4λ|Ω|C(N, p, k, q, s)q+s}C−p

0 |Ω|
N−p

N
−

m(p−1)+s

s+1 > 0.

Once η4 is fixed, we choose β large enough that

β − C(η4)λ|Ω|C(N, p, k, q, s)q+s‖u‖α2
k+s ≥ 0.

Thus, we have

d

dt
‖u‖s+1 + C06‖u‖

m(p−1)
s+1 ≤ 0,

which implies the result.

(b)If 0 < m(p − 1) < N−2
N+2

, the proof will be similar to the proof of (a),
hence we omit it here.
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