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Abstract

Let µ be a measure on a cofinal monotonically dense subring R of a
Boolean δ-ring D. Denote by R

ց and R
ր the classes of those A ∈ D

which are the greatest lower (respectively: least upper) bound of some
decreasing (respectively: increasing) sequence inR. First we extend µ to
these classes by monotonic continuity and then introduce the functions
µ∗(A) = sup

B∈Rց, B≤A

µ(B) and µ∗(A) = inf
B∈Rր, B≥A

µ(B) on D. Denote

A = {A ∈ D : µ∗(A) = µ∗(A)}. For A ∈ A we set µ(A) = µ∗(A), or,
equivalently, µ(A) = µ∗(A). It is shown that A = D and thus extended
function µ is a measure on D.
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1 Introduction

The result of this paper is not a theorem but a new proof of the classical
Lebesgue’s theorem on extension of measure. It relies on the synthesis of two
approaches to the extending which apart of each other do not yield the final
solution of the problem.

The first approach comes back to ancient Greeks. It defines the measure
of a set (say the area of a figure) as the common value the least upper bound
of the measures of inscribed elementary sets (say polygons) and the greatest
lower bound of the measures of described elementary sets. In the modern
terminology, this is the Jordan measure. But its domain of definition is not
closed with respect to the monotonic bounded passage to the limit.

The second approach is due to Borel. Each Borel set in R
d arises from

elementary ones (say finite unions of parallelepipeds) by virtue of at most
countably many monotonic passages to the limit. So if A is the limit of a
monotonic sequence (An) of Borel sets with already determined measures, and
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the measure of A has not been determined yet, then we put µ(A) = limµ(An)
and continue this process, encompassing more and more sets. Thus we obtain
the transfinite sequence of extensions of function µ. The union of their domains
of definition coincides with the Borel σ-algebra — but “. . . the justification
of Borel’s scheme (i. e., the proof of countable additivity of thus constructed
function on the σ-algebra) has been given only within the frames of Lebesgue’s
approach (though later on it was shown that the straightforward justification
with the aid of transfinite induction is also possible)” [2, vol. 1, p.498].

Lebesgue’s idea to use the induced outer measure as the tool (see [4] for the
authentic version and [2, vol. 1] for the modern exposition) issued in the com-
plete solution of the problem and pushed the preceding approaches aside. But
at the same time it divorced with the geometric nature of the problem, since
Lebesgue’s approach is rather set-theoretical. The question arises, whether
there exists a scheme of extension based on the duly modified antique ap-
proach. In this article, we construct such a scheme. More definitely, we adapt
for our goal the proposed in [8] scheme of extending abstract integral. Just
note that Daniell’s scheme for integrals (see items 16–18, 61, 62 in [5] or sec-
tion 7.8 in [2]) has nothing common with Lebesgue’s scheme for measures. A
remarkable fact is that the respective alternative schemes proposed here and in
[8] differ one from another only with technical details (and, inevitably, notation
and terminology).

To state the result we define some notions figuring in its assertion. All of
them are well known but named differently in different works.

We will say that a subset X0 of an ordered set X is cofinal (in X) if for
any x ∈ X there exist x ∈ X0 and x ∈ X0 such that x ≤ x ≤ x. If an ordered
set contains the greatest lower (least upper) bound x of a decreasing (increas-
ing) sequence (xn) of its members, then they write xn ց x (respectively:
xn ր x). In both cases, we write x = lim xn and say that this sequence con-
verges to x . Note that we define convergence only of monotonic sequences.
A function f on an ordered set X will be called monotonically continuous
at a point x if f(xn) → f(x) for every converging to x monotonic sequence
(xn) ∈ XN.

A subset of an ordered set will be called monotonically closed if it contains
the greatest lower bound of every bounded decreasing sequence and the least
upper bound of every bounded increasing sequence of its members (the bound-
edness demand in this definition is essential). A subset X0 of a monotonically
closed ordered set X will be called monotonically dense (in X) if there are no
containing X0 monotonically closed subsets of X except X itself.

One can easily show that, for any elements A and B of a distributive lattice
L having the least element 0, there exists at most one element C ∈ L such
that C ∨ B = A ∨ B and C ∧ B = 0. In the lattice theory, this element, if it
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exists, is usually denoted by A⊖B. Thus, by definition,

(A⊖ B) ∨ B = A ∨ B, (A⊖B) ∧ B = 0. (1)

A distributive lattice is called Boolean lattice if it has the least element (this
will be the tacit assumption throughout below) and A⊖ B exists for any two
its elements A and B. A fundamental theorem of Stone establishes the one-to-
one correspondence between Boolean lattices and Boolean rings. Neither this
theorem nor even the algebraic definition of Boolean ring is used below, but
the theorem entitles us to use the terms ‘Boolean lattice’ and ‘Boolean ring’
as the synonyms. It is Stone’s theorem that justifies the term ‘ring of sets’ in
measure theory (though the definition prompts ‘lattice of sets’).

We will say that a mapping ν of a Boolean ring into an additive semigroup
is Boolean-additive if ν(A1 ∨A2) = ν(A1) + ν(A2) for any two disjoint A1 and
A2. In measure theory, such mappings are called simply additive, but this
terminology is unacceptable in the context where we consider the genuine (not
Boolean) additivity entering, for example, the axiomatic definition of integral.
An R+-valued Boolean-additive monotonically continuous (at all points) func-
tion on a Boolean ring is called measure. As is seen from this definition, we
consider only finite measures.

A monotonically closed lattice will be called δ-lattice. This is, due to the
boundedness condition in the definition of monotonic closedness, an analog of
δ-ring (not σ-ring) of sets. Obviously, a δ-lattice contains both exact bounds
of any (not certainly monotonic) bounded sequence of its members.

Theorem 1.1. Let R be a cofinal monotonically dense subring of a Boolean
δ-ring D. Then any measure on R uniquely extends to a measure on D.

2 Preliminaries

This section contains ancillary results on lattices. Most of them are known
(sometimes in less general form), but they are scattered in the literature (see,
e. g., [1, 3, 5, 6, 7]), so we adduce both the assertions and the proofs, the latter
being pretty standard. The reader inclined to consider rather rings of sets than
general Boolean rings may skip this section.

Lemma 2.1. Let x1, x2 . . . , x, y1, y2 . . . y be elements of an ordered set X

containing the greatest lower bound of each its finite subset. Suppose that
xn ց x and yn ց y. Then xn ∧ yn ց x ∧ y.

Proof. Obviously, the sequence (xn ∧ yn) decreases and xn ∧ yn ≥ x ∧ y for
all n. So it suffices to show the following: if z is such an element of X that
z ≤ xn ∧ yn for all n, then x ≤ x ∧ y.
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For n > m we have xm ∧ yn ≥ xn ∧ yn (since (xn) decreases) and therefore
xm ∧ yn ≥ z. Consequently, z ≤ inf

m
inf
n
(xm ∧ yn ∧ z). It remains to recall that,

for any u, v1, v2 . . . ∈ X, inf
k
(u ∧ vk) = u ∧ inf

k
vk provided inf

k
vk exists.

Likewise proved is

Lemma 2.2. Let x1, x2 . . . , x, y1, y2 . . . y be elements of an ordered set X

containing the least upper bound of each its finite subset. Suppose that xn ր x

and yn ր y. Then xn ∨ yn ր x ∨ y.

The following statement is obvious (however, the proof is adduced in [8]).

Lemma 2.3. Let (xn) and (yn) be convergent monotonic sequences in an
ordered set. Suppose that xn ≤ yn for all n. Then lim xn ≤ lim yn.

For an arbitrary subset L of an ordered set X we denote by Lր (respec-
tively, Lց) the set of the limits of all increasing (respectively, decreasing)
convergent sequences in X . Otherwise speaking, x ∈ Lր if and only if there
exists an increasing sequence (xn) ∈ XN such that xn ր x. The following
statement is immediate from Lemmas 2.1 and 2.2.

Lemma 2.4. Let L be a subset of an ordered set and let L contain the exact
upper (lower) bound of each its finite subset. Then so does Lր (respectively,
Lց).

Lemma 2.5. Let A and B be elements of a distributive lattice and let A⊖B

exist. Then A⊖ B ≤ A.

Proof. The first equality in formula (1) implies that A⊖B ≤ A∨B; the second
yields (A⊖B) ∧ A = (A⊖B) ∧ (A ∨ B).

Lemma 2.6. Let A and B be elements of a distributive lattice and let A⊖B

exist. Then, for any element C of this lattice, (A⊖B)∧C = (A∧C)⊖(B∧C).

Proof. Denote D = (A⊖B)∧C. By construction D ≤ A⊖B, which together
with the second equality (1) implies that B ∧D = 0 and all the more

B ∧ C ∧D = 0. (2)

Also by construction D ≤ C. So

(B ∧ C) ∨D = (B ∨D) ∧ C. (3)

Further, D ∨ B = ((A ⊖ B) ∨ B) ∧ (C ∨ B)
(1)
= (A ∨ B) ∧ (C ∨ B), whence

(B ∨D) ∧ C = (A ∨B) ∧ C, which converts (3) to

D ∨ (B ∧ C) = (A ∧ C) ∨ (B ∧ C).

And this jointly with (2) implies that D = (A ∧ C)⊖ (B ∧ C).
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Lemma 2.7. Let A,A′, B, B′ be elements of a Boolean lattice and let
A′ ≤ A, B′ ≥ B. Then A′ ⊖ B′ ≤ A⊖ B.

Proof. Lemma 2.6 and the second equality (1) yield (A ⊖ B) ∧ (A′ ⊖ B) =
(A⊖ B) ∧ A′, whence by Lemma 2.6

(A⊖ B) ∧ (A′ ⊖B) = (A ∧A′)⊖ (B ∧A′). (4)

Herein (A ∧ A′) = A′ ∧ A′ by assumption A′ ≤ A), so Lemma 2.6 asserts that
(A ∧ A′)⊖ (B ∧ A′) = (A′ ⊖ B) ∧ A′. This together with (4) and Lemma 2.5
shows that (A⊖ B) ∧ (A′ ⊖B) = (A′ ⊖ B) A′ ⊖ B ≤ A⊖ B.

Further, (A′⊖B′)∧ (A′⊖B) = ((A′⊖B′)∧A′)⊖ ((A′⊖B′)∧B) by Lemma
2.6. Herein (A′ ⊖ B′) ∧ B ≤ (A′ ⊖ B′) ∧ B′ = 0. So (A′ ⊖ B′) ∧ (A′ ⊖ B) =
(A′ ⊖ B′) ∧ A′ = A′ ⊖ B′ (the last equality relies on Lemma 2.5). Thus
A′ ⊖B′ ≤ A′ ⊖ B.

Lemma 2.8. For any elements E, F1, . . . , En of a Boolean lattice

E ⊖ (F1 ∧ . . . ∧ Fn) =
n∨

i=1

E ⊖ Fi.

Proof. Denote Gi = E ⊖ F1, so that Gi ∨ Fi = E ∨ Fi, Gi ∧ Fi = 0. Then

(G1 ∨G2) ∧ (F1 ∧ F2) = 0 (5)

and (G1 ∨ G2) ∨ (F1 ∧ F2) = (E ∨ F1 ∨ G2) ∧ (G1 ∨ E ∨ F2). Noting that
Gi ≤ E by Lemma 2.5, we convert the last equality to (G1 ∨G2)∨ (F1 ∧F2) =
(E∨F1)∧(∨E∨F2) ≡ E∨(F1∧F2), which together with (5) proves the lemma
for n = 2. To deduce hence the general statement by induction it suffices to
write F1 ∧ . . . ∧ Fn+1 = F ′

1 ∧ . . . ∧ F ′
n, where F ′

n = Fn ∧ Fn+1 and F ′
i = Fi for

i < n.

An order-preserving mapping of one ordered set into another is otherwise
called isotonic.

Lemma 2.9. Let ϕ be an isotonic function on a Boolean lattice B such that
for all B1, B2 ∈ B

ϕ(B1 ∨ B2) ≤ ϕ(B1) + ϕ(B2). (6)

Then for all n ∈ N, A1, . . . , An ∈ B

ϕ(A1 ∨ . . . ∨ An) ≤ ϕ(A1) +
n∑

k=2

ϕ(Ak ⊖ Ak−1). (7)
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Proof. Denote Ek = A1 ∨ . . . ∨ Ak. Then, for k > 1, Ek = Ek−1 ∨ Ak ≡
Ek−1∨(Ak⊖Ek−1), whence by condition (6) ϕ(Ek) ≤ ϕ(Ek−1)+ϕ(Ak⊖Ek−1).
By Lemma 2.7 Ak ⊖ Ek−1 ≤ Ak ⊖ Ak−1, which together with isotonicity of ϕ
implies that ϕ(Ak⊖Ek−1) ≤ ϕ(Ak ⊖Ak−1). Consequently, ϕ(Ek)−ϕ(Ek−1) ≤
ϕ(Ak⊖Ak−1). Summing this inequality by k from 2 to n and taking to account
that E1 = A1, we arrive at (7).

Lemma 2.10. Let ν be a Boolean-additive map of a Boolean ring into an
additive semigroup. Then for every A and B from this ring

ν(A) + ν(B ⊖ A) = ν(A ∨B), ν(A ∧B) + ν(B ⊖ A) = ν(B).

Proof. The first equality is immediate from (1) and Boolean additivity of ν.
Replacing in it A with A ∧B and taking to account Lemma 2.6, we get

ν(A ∧B) + ν((B ⊖ A) ∧ B) = ν(B).

It remains to note that B ⊖ A ≤ B by Lemma 2.5.

Corollary 2.11. Let ν be a Boolean-additive function on a Boolean ring.
Then for every A and B from this ring

ν(A) + ν(B) = ν(A ∨B) + ν(A ∧ B).

Corollary 2.12. Let ν be an isotonic Boolean-additive function on a Boolean
ring. Then for every C and D from this ring one has ν(C)−ν(D) ≤ ν(C⊖D).

Proof. ν(C)− ν(D) ≤ ν(C ∨D)− ν(D) = ν(C ⊖D).

Corollary 2.13. Every nonnegative Boolean-additive function on a Boolean
ring is isotonic.

We will say that a lattice L is countably distributive if it has the following
two properties.

(i) If L contains the exact upper bound of an increasing sequence (Gn) of
its elements, then for any F ∈ L

F ∧ sup
n

Gn = sup
n

(F ∧Gn).

(ii) If L contains the exact lower bound of a decreasing sequence (Hn) of
its elements, then for any F ∈ L

F ∨ inf
n
Hn = inf

n
(F ∨Hn).

Lemma 2.14. Let A1, A2 . . . , A, B1, B2 . . . B be elements of a countably dis-
tributive lattice. Suppose that An ց A and Bn ց B. Then An ∨Bn ց A∨B.
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Proof. Obviously, (An ∨ Bn) decreases and for any m ∈ N inf
n
(An ∨ Bn) ≤

inf
n
(Am ∨ Bn). By the assumptions of the lemma inf

n
(Am ∨ Bn) = Am ∨B. So

inf
n
(An ∨ Bn) ≤ inf

m
(Am ∨ B). And the right-hand side equals A ∨ B by the

assumptions of the lemma. Thus inf
n
(An∨Bn) ≤ A∨B. The reverse inequality

is evident.

Likewise proved is

Lemma 2.15. Let A1, A2 . . . , A, B1, B2 . . . B be elements of a countably dis-
tributive lattice. Suppose that An ր A and Bn ր B. Then An ∧Bn ց A∧B.

Corollary 2.16 (of Lemmas 2.4, 2.14 and 2.15). Let L be a sublattice of a
countably distributive lattice. Then Lր and Lց are lattices, too.

We will say that a subset of an ordered set X is exactly bounded from above
(from below) if it has the least upper (respectively, greatest lower) bound in X .

Lemma 2.17. Let {Bξ, ξ ∈ Ξ} be an exactly bounded from above subset of
a Boolean lattice L. Then for any A ∈ L

A ∧ sup
ξ∈Ξ

Bξ = sup
ξ∈Ξ

(A ∧ Bξ).

Proof. Denote B = supBξ. By this definition and Lemma 2.5

(B ⊖A) ∨Bξ ≤ B (8)

for all ξ. Besides, A ∧Bξ ≤ A ∧B, so it suffices to show the following: if F is
such an element of the lattice that F ≥ A ∧ Bξ for all ξ, then F ≥ A ∧ B.

By the choice of F for any ξ ∈ Ξ and E ∈ L one has E∨F ≥ E∨ (A∧Bξ).
Hence, writing

(B ⊖ A) ∨ (A ∧ Bξ) = ((B ⊖A) ∨A) ∧ ((B ⊖ A) ∨Bξ)
(1)
=

(B ∨A) ∧ ((B ⊖ A) ∨ Bξ)
(8)
= (B ⊖ A) ∨ Bξ ≥ Bξ,

we get (B ⊖ A) ∨ F ≥ Bξ. Consequently, (B ⊖ A) ∨ F ≥ B and therefore

A∧((B⊖A)∨F ) ≥ A∧B. Herein A∧((B⊖A)∨F ) = (A∧(B⊖A))∨(A∧F )
(1)
=

0 ∨ (A ∧ F ). Thus A ∧ F ≥ A ∧B and all the more F ≥ A ∧B.

Lemma 2.18. Let {Dξ, ξ ∈ Ξ} be an exactly bounded from below subset of
a Boolean lattice L. Then for any C ∈ L

C ∨ inf
ξ∈Ξ

Dξ = inf
ξ∈Ξ

(C ∨Dξ).
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Proof. Since for every ξ C ∨ Dξ ≥ C ∨ D, where D = infDξ, it suffices to
show the following: if G is such an element of the lattice that G ≤ C ∨Dξ for
all ξ, then G ≤ C ∨D.

Fix ξ0 ∈ Ξ and denote B = C ∨Dξ0. By the choice of G

C ∨G ≤ B. (9)

Again by the choice of G for any ξ ∈ Ξ and E ∈ L one has E∧G ≤ E∧(C∨Dξ).
Hence, writing

(B ⊖ C) ∧ (C ∨Dξ) = ((B ⊖ C) ∧ C) ∨ ((B ⊖ C) ∧Dξ)
(1)
= (B ⊖ C) ∧Dξ,

we get (B ⊖ C) ∧ G ≤ Dξ. Consequently, (B ⊖ C) ∧ G ≤ D and therefore

C∨((B⊖C)∧G) ≤ C∨D. Herein C∨((B⊖C)∧G) = (C∨(B⊖C))∧(C∨G)
(1)
=

(C∨B)∧(C∨G)
(9)
= C∨G. Thus C∨G ≤ C∨D and all the more G ≤ C∨D.

Corollary 2.19 (of Lemmas 2.17 and 2.18). Boolean lattice is countably
distributive.

Corollary 2.20 (of Corollaries 2.16 and 2.19). Rց and Rր are lattices.

Lemma 2.21. Let A1, A2 . . . , A, B1, B2 . . . B be elements of a Boolean lat-
tice. Suppose that An ց A and Bn ր B. Then An ⊖Bn ց A⊖B.

Proof. Denote En = An ⊖ Bn. By Lemma 2.7 the sequence (En) decreases,
since (An) decreases and (Bn) increases. By the same lemma En ≥ A ⊖ B.
So it suffices to show the following: if F is such an element of the lattice that
En ≥ F for all n, then (A⊖ B) ∧ F = F .

The last equality is tantamount, since (A⊖B)∧F = (A∧F )⊖ (B ∧F ) by
Lemma 2.6, to the pair of equalities F ∧B = 0, F ∨ (B ∧F ) = A∧F ∨B ∧F ,
or the same, B ∧ F = 0, F = A ∧ F .

By Corollary 2.19 and the assumptions of the lemma F ∧B = sup
n

(F ∧Bn).

But F ∧ Bn ≤ En ∧ Bn, and the right-hand side equals 0 by the construction
of En.

By Lemma 2.5 En ≤ An and all the more F ≤ An, whence F ≤
inf
n
An ≡ A.

Lemma 2.22. Let A1, A2 . . . , A be elements of a Boolean lattice, and let
An ց A. Then, for any element G of this lattice, G⊖An ր G⊖A.

Proof. Denote Bn = G⊖An. By Lemma 2.7 the sequence (Bn) increases and
Bn ≤ G ⊖ A. So it suffices to show the following: if F is such an element of
the lattice that F ≥ Bn for all n, then F ≥ G⊖ A.
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By the choice of F and by the definition of Bn An ∨ F ≥ An ∨ Bn =
An ∨ G. By the assumptions of the lemma and by Corollary 2.19 An ∨ F ց
A∨F, An ∨G ց A∨G, which together with the established above inequality
An ∨ F ≥ An ∨ G implies, by lemma 2.1, that A ∨ F ≥ A ∨ G. Hence
we get with account of Lemma 2.5 (A ∨ F ) ∧ (G ⊖ A) ≥ G ⊖ A. Herein

(A ∨ F ) ∧ (G ⊖ A) = A ∧ (G ⊖ A) ∨ F ∧ (G ⊖ A)
(1)
= F ∧ (G ⊖ A). Thus

F ∧ (G⊖A) ≥ G⊖ A and all the more F ≥ G⊖ A.

3 Preparatory Extension

Lemma 3.1. Let µ be a measure on R, and (Cn), (Dn) be monotonic
convergent sequences in R such that limCn ≤ limDn. Then lim µ(Cn) ≤
limµ(Dn). In particular, if limCn = limDn, then limµ(Cn) = limµ(Dn).

Proof. Let at first Cn ց A,Dn ր B ≥ A. Then by Lemma 2.21
Cn ⊖ Dn ց A ⊖ B (= 0) and therefore µ(Cn ⊖ Dn) → 0, whence by
Corollaries 2.13 and 2.12 lim(µ(Cn) − µ(Dn)) ≤ 0. Recall that, for arbitrary
sequences (an) and (bn) of real numbers, lim(an + bn) ≤ lim an + lim bn. Put
an = µ(Dn), bn = µ(Cn)− µ(Dn).

Let now Cn ր A,Dn ր B ≥ A. Then by what was proved µ(Ck) ≤
limµ(Dn) for all k. It remains to let k → ∞.

Let further Cn ց A,Dn ց B ≥ A. Denote G = C1 ∨ D1, En =
G ⊖ Dn, Fn = G ⊖ Cn. Then by Lemma 2.22 En ր G ⊖ B,Fn ր G ⊖ A ≥
G ⊖ B, so according to the previous paragraph, limµ(En) ≤ limµ(Fn). It
remains to note that µ(En) = µ(G)− µ(Dn) and µ(Fn) = µ(G)− µ(Cn) since
Dn ≤ G,Cn ≤ G and G ∈ R.

Finally, the case Cn ր A,Dn ց B ≥ A is trivial.

Let us denote R̃ = Rր ∪ Rց and extend µ to R̃, setting, for any A ∈
R̃, µ(A) = limµ(Cn), where (Cn) is an arbitrary converging to A monotonic
sequence in R (Lemma 3.1 asserts that µ(A) does not depend on the choice
of the sequence (Cn) with these properties). From now on till Proposition
5.2, inclusive, µ signifies the just constructed (preparatory) extension of the
likewise denoted measure defined initially on R.

Corollary 3.2 (of Lemma 3.1 Corollary 2.13and). µ is isotonic on R̃.

Lemma 3.3. For any A and B both belonging either Rց or Rր one has

µ(A) + µ(B) = µ(A ∨B) + µ(A ∧B).

Proof. Let there exist sequences (Cn) and (Dn) such that Cn, Dn ∈ R,

Cn ց A, Dn ց B. Then by Lemmas 2.14 and 2.1,

Cn ∨Dn ց A ∨B, Cn ∧Dn ց A ∧B.
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These four relations imply that

µ(Cn) → µ(A), µ(Dn) → µ(B), µ(Cn∨Dn) → µ(A∨B), µ(Cn∧Dn) → µ(A∧B).

It remains to note that µ(Cn) + µ(Dn) = µ(Cn ∨ Dn) + µ(Cn ∧ Dn) by the
choice of the sequences and by Corollary 2.11.

For A,B ∈ Rր, we argue likewise, referring to Lemma 2.15 instead of
Lemma 2.14.

Lemma 3.4. Let (An) be an increasing sequence inRր (decreasing sequence
in Rց) converging to some A. Then A ∈ Rր (respectively, A ∈ Rց) and
µ(A) = limµ(An).

Proof. Let An ∈ R
ր,

An ր A. (10)

By the choice of the An’s, for each n there exists an increasing sequence
(Cnk, k ∈ N) ∈ R

N such that

Cnk ր An as k → ∞. (11)

Denote Dk = C1k ∨ . . . ∨ Ckk (∈ R since R is a lattice). By construction
Dk ≤ C1,k+1 ∨ . . . ∨ Ck,k+1 and all the more Dk ≤ Dk+1. Herein Cik ≤ Ai as
i ≤ k and all the more (since (Ak) increases) Cik ≤ Ak as i ≤ k. Consequently,
Dk ≤ Ak, whence in view of (10) Dk ≤ A. Thus the sequence (Dk) increases
and is bounded from above, which together with monotonic closedness of D
implies existence of an element D ∈ D such that Dk ր D. By construction
Dk ≥ Cnk as k ≥ n, which together with the preceding relation and (11)
yields, by Lemma 2.3, D ≥ An. Hence we get with account of (10) D ≥ A.
On the other hand, the relations Dk ≤ Ak, Dk ր D and assumption (10)
imply, by the same lemma, that D ≤ A. Thus D = A and therefore Dk ր A

(so that A ∈ Rր), whence by the definition of µ as a function on Rր we have
µ(Dk) ր µ(A). Herein µ(Dk) ≤ µ(Ak) ≤ µ(A), because Dk ≤ Ak ≤ A and µ

is isotonic by Corollary 2.13. We have proved the lemma for the first of two
cases. For the second case, the rationale is similar.

4 The Tools for the Final Extension

Denote, for A ∈ D,

µ∗(A) = sup
B∈Rց, B≤A

µ(B), µ∗(A) = inf
B∈Rր, B≥A

µ(B), (12)

The next two statements are immediate from these equalities and Corollary 3.2.

Lemma 4.1. For any A ∈ D µ∗(A) ≤ µ∗(A).
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Lemma 4.2. The functions µ∗ and µ∗ are isotonic.

Lemma 4.3. For any disjoint B1, B2 ∈ D

µ∗(B1) + µ∗(B2) ≤ µ∗(B1 ∨ B2).

Proof. Corollary 2.20 implies that

sup
E∈Rց:E≤B1∨B2

µ(E) ≥ sup
A1,A2∈Rց:
A1≤B1,A2≤B2

µ(A1 ∨ A2). (13)

Any two elements A1 ≤ B1 and A2 ≤ B2 are disjoint, since so are B1 and B2.
So by Lemma 3.3 µ(A1 ∨A2) = µ(A1) +µ(A1) (if A1 and A2 taken from Rց),
which converts (13) to

sup
E∈Rց:E≤B1∨B2

µ(E) ≥ sup
A1∈Rց:A1≤B1

µ(A1) + sup
A2∈Rց:A2≤B2

µ(A2).

It remains to make use of (12).

Lemma 4.4. For any B1, B2 ∈ D

µ∗(B1 ∨ B2) ≤ µ∗(B1) + µ∗(B2).

Proof. Corollary 2.20 implies that

inf
F∈Rր:F≥B1∨B2

µ(F ) ≤ inf
A1,A2∈Rր:
A1≥B1,A2≥B2

µ(A1 ∨A2),

which together with Lemma 3.3 yields

inf
F∈Rր:F≥B1∨B2

µ(F ) ≤ inf
A1∈Rր:A1≥B1

µ(A1) + inf
A2∈Rր:A2≥B2

µ(A2).

It remains to make use of (12).

Corollary 4.5. Let B1 and B2 be disjoint elements of D such that µ∗(Bi) =
µ∗(Bi), i = 1, 2. Then

µ∗(B1) + µ∗(B2) = µ∗(B1 ∨B2) = µ∗(B1 ∨B2) = µ∗(B1) + µ∗(B2).

Corollary 4.6 (of Lemmas 4.2, 4.4 and 2.9). For all n ∈ N, A1, . . . , An ∈ D

µ∗(A1 ∨ . . . ∨ An) ≤ µ∗(A1) +
n∑

k=2

µ∗(Ak ⊖Ak−1).
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Corollary 4.7 (of Lemmas 4.4 and 2.8). For all n ∈ N, E, F1, . . . , Fn ∈ D

µ∗(E ⊖ (F1 ∧ . . . ∧ Fn)) ≤
n∑

k=1

µ∗(E ⊖ Fk).

Lemma 4.8. For any A ∈ Rց µ∗(A) = µ(A); for any A ∈ Rր µ∗(A) =
µ(A). In particular, for any A ∈ R

µ∗(A) = µ(A) = µ∗(A). (14)

Proof. Let A ∈ Rց. Then µ∗(A) ≥ µ(A) because of (12) and the trivial
inequality A ≥ A. On the other hand if A,B ∈ Rց and A ≥ B, then
µ(A) ≥ µ(B) by Corollary 3.2. Hence and from (12) we get µ(A) ≥ µ∗(A).

The proof of the second statement is similar.

Lemma 4.9. Equalities (14) hold for all A ∈ R̃.

Proof. Let Cn ր A, where Cn ∈ R. Then by the construction of the prepara-
tory extension µ(Cn) → µ(A). Besides, µ∗(A) ≥ µ∗(Cn) = µ(Cn), where the
inequality follows from Lemma 4.2 and the equality – from Lemma 4.8. Thus
µ∗(A) ≥ µ(A). Hence, noting that µ(A) = µ∗(A) by Lemma 4.8, we get
µ∗(A) ≥ µ∗(A), which together with Lemma 4.1 completes the proof for the
case A ∈ Rր. The case A ∈ Rց is treated similarly.

5 Final Extension

Denote A = {A ∈ D : µ∗(A) = µ∗(A)}. Lemma 4.9 asserts that R̃ ⊂ A.

Lemma 5.1. Let A,B ∈ A, A ≤ B. Then µ∗(B ⊖ A) = µ∗(B) − µ∗(A),
µ∗(B ⊖A) = µ∗(B)− µ∗(A) and therefore B ⊖ A ∈ A.

Proof. Applying Corollary 4.5 to B1 = A, B2 = B ⊖ A, we get µ∗(B) =
µ∗(A) + µ∗(B ⊖A) = µ∗(A) + µ∗(B ⊖ A) = µ∗(B).

Proposition 5.2. Let (An) be a monotonic convergent sequence in A. Then
limAn ∈ A and

µ∗(limAn) = limµ∗(An). (15)

By the choice of the sequence (An) and according to the first statement of
the lemma equality (15) is tantamount to µ∗(limAn) = limµ∗(An).

Proof. 1◦. Let An ր A and

µ∗(An) = µ∗(An). (16)
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Fix ε > 0 and take, for each k ∈ N, an existing by the definition of µ∗ element
Bε

k ∈ Rր such that
Bε

k ≥ Ak (17)

and
µ(Bε

k) < µ∗(Ak) + 2−kε. (18)

Cofinality of R allows us to consider that the sequence (Bε
k) is bounded from

above (otherwise we will take an arbitrary H ∈ R≥A and replace Bε
k with

Bε
k ∧H).
Denote F ε

n = Bε
1 ∨ . . . ∨ Bε

n (∈ R
ր by construction and Lemma 2.4). By

Lemma 4.9 and Corollary 4.5

µ(F ε
n) = µ∗(F ε

n) ≤ µ∗(Bε
1) +

n∑

k=2

µ∗(Bε
k ⊖ Bε

k−1). (19)

From (17) we have by Lemmas 2.7and 4.2

µ∗(Bε
k ⊖Bε

k−1) ≤ µ∗(Bε
k ⊖ Ak−1). (20)

By assumption Ak−1 ≤ Ak, whence because of (17) Ak−1 ≤ Bε
k. Herein Bε

k ∈ A

by Lemma 4.9; Ak−1 ∈ A in view of (16). From the last three relations we get
by Lemma 5.1

µ∗(Bε
k ⊖ Ak−1) = µ∗(Bε

k)− µ∗(Ak−1). (21)

By Lemma 4.9 µ∗(Bε
k) = µ(Bε

k), which together with (19) – (21) implies that

µ(F ε
n) ≤ µ(Bε

1) +

n∑

k=2

(µ(Bε
k)− µ∗(Ak−1)) .

Herein −µ∗(Ak−1) < 2−(k−1)ε− µ(Bε
k−1) because of (18). So µ(F ε

n) < µ(Bε
n) +

ε
n−1∑
k=1

2−k, which together with (18) yields

µ(F ε
n) < µ∗(An) + ε. (22)

By construction the sequence (F ε
n) increases and is bounded from above.

So there exists F ε ∈ D such that F ε
n ր F ε. By Lemma 3.4 F ε ∈ Rր and

µ(F ε) = limµ(F ε
n). (23)

Relations An ≤ Bε
n ≤ F ε

n and An ր A imply by Lemma 3.1 that A ≤ F ε,
hereon Lemma 4.2 asserts that µ∗(A) ≤ µ∗(F ε). But µ∗(F ε) = µ(F ε) by
Lemma 4.9. Thus

µ∗(A) ≤ µ(F ε). (24)
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Take, for each n ∈ N, an existing by the definition of µ∗ element Gn ∈ Rց

such that Gn ≤ An and

µ(Gn) > µ∗(An)− 2−n. (25)

Since Gn ≤ An ≤ F ε
n, Corollary 3.2 asserts that µ(Gn) ≤ µ(F ε

n), which together
with (22) and (25) yields

µ∗(An)− 2−n < µ(Gn) ≤ µ(F ε
n) < µ∗(An) + ε.

Hence we get with account of (15) 0 ≤ µ(F ε
n)− µ(Gn) < ε+ 2−n. This jointly

with (23) implies that µ(F ε) ≤ limµ(Gn) + ε, which together with (24) yields

µ∗(A) ≤ limµ(Gn) + ε. (26)

On the other hand, the inequalities Gn ≤ An ≤ A imply by Lemma 4.2 that
µ∗(Gn) ≤ µ∗(An) ≤ µ∗(A). Besides, by the choice of Gn and by Lemma 4.9
µ∗(Gn) = µ(Gn). So limµ(Gn) ≤ limµ∗(An) ≤ µ∗(A). Comparing this with
(26), we see that, for any ε > 0, µ∗(A) ≤ limµ∗(An) ≤ µ∗(A)+ε. Hence and
from (15) we get by Lemma 4.1 µ∗(A) = limµ∗(An) = limµ∗(An) = µ∗(A).
Thus we have proved the lemma for increasing sequences.

2◦. Let now An ∈ A, An ց A and (16) hold. Then:

A1 ⊖An ∈ A (27)

by Lemma 5.1; A1⊖An ր A1⊖A by Lemma 2.21. Hence we get by what was
proved

limµ∗(A1 ⊖ An) = µ∗(A1 ⊖ A). (28)

Writing

µ∗(A1 ⊖ A) + µ∗(A) ≥ µ∗(A1) = µ∗(A1) ≥

µ∗(A1 ⊖ An) + µ∗(An) = µ∗(A1 ⊖ An) + µ∗(An) (29)

(the inequalities rely on Lemmas 4.4 and 4.3, the equalities — on (15) and
(27)), we get with account of (28) µ∗(A) ≥ limµ∗(An). On the other hand
µ∗(A) ≤ µ∗(An) by Lemma 4.2. So µ∗(A) = limµ∗(An). Now, it suffices, in
view of (15) and (16), to show that, under the assumptions of this item,

µ∗(A) = limµ∗(An).

Fix ε > 0 and take, for each k ∈ N, an existing by the definition of µ∗

element Cε
k ∈ Rց such that

Cε
k ≤ Ak (30)
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and
µ(Cε

k) > µ∗(Ak)− 2−kε. (31)

Denote Dε
n = Cε

1 ∧ . . . ∧ Cε
n. By Corollary 4.7

µ∗(An ⊖Dε
n) ≤

n∑

k=1

µ∗(An ⊖ Cε
k). (32)

By assumption An ≤ Ak as n ≥ k, whence by Lemmas 2.7 and 4.2

µ∗(An ⊖ Cε
k) ≤ µ∗(Ak ⊖ Cε

k) as n ≥ k. (33)

By Lemma 4.9 Ck ∈ A; by assumption An ∈ A, so Lemma 5.1 asserts that

µ∗(Ak ⊖ Cε
k) = µ∗(Ak)− µ∗(C

ε
k). (34)

By the choice of Cε
k and by Lemma 4.9 µ∗(C

ε
k) = µ(Cε

k), which together
with (31) – (34) yields µ∗(An ⊖ Dε

n) < ε. By construction and Lemma 2.4
Dε

n ∈ Rց, whence by Lemma 4.9 Dε
n ∈ A. Also by construction Dε

n ≤ An.
By condition (15) An ∈ A. The last three relations imply by Lemma 5.1 that
µ∗(An ⊖ Dε

n) = µ∗(An) − µ∗(Dε
n). Herein µ∗(Dε

n) = µ(Dε
n) by Lemma 4.9.

Thus µ∗(An) ≤ µ(Dε
n) + ε, which in view of (15) can be written as

µ∗(An) ≤ µ(Dε
n) + ε. (35)

The sequence (Dε
n) decreases, by construction, so there exists Dε ∈ D such

that Dε
n ց Dε. Lemma 3.4 asserts that Dε ∈ Rց and µ(Dε) = limµ(Dε

n),
which together with (35) yields

limµ∗(An) ≤ µ(Dε) + ε. (36)

Besides, µ(Dε) = µ∗(D
ε) (by Lemma 4.8) and Dε ≤ A (by Lemma 2.3). From

the last two relations we get by Lemma 4.2 µ(Dε) ≤ µ∗(A), hereon formula
(36) where ε is an arbitrary positive number yields lim µ∗(An) ≤ µ∗(A). On the
other hand, the assumed in this item relation An ≥ A implies by Lemma 4.2
that limµ∗(An) ≥ µ∗(A).

Proof of Theorem 1.1. Every bounded monotonic sequence in A converges
in D, since D is a δ-lattice. By Proposition 5.2 its limit belongs to A. So A is
monotonically closed.

For A ∈ A we put µ(A) = µ∗(A) (= µ∗(A) by the choice of A). Lemma
4.9 asserts that thus defined function µ is an extension of likewise denoted
function defined hitherto only on R̃ (and prior to the preparatory extension
– only on R). By construction R ⊂ A ⊂ D, which together with monotonic
closedness ofA and assumed monotonic denseness ofR inD entails the equality
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A = D. The extended function µ is isotonic by Lemma 4.2, Boolean additive
by Corollary 4.5 and monotonically continuous by Proposition 5.2. So it is a
measure.

If µ1 and µ2 are measures on D, then the set {A ∈ D : µ1(A) = µ2(A)} is,
obviously, monotonically closed. Consequently, any measure defined initially
on a monotonically dense Boolean sublattice ofD admits at most one extension
to D. �

The above scheme of extension applies to integrals, as well. Namely, let
I be an integral (= additive isotonic upper continuous at zero functional)
on an additive sublattice F of an additive δ-lattice E. Suppose that F is
cofinal and monotonically dense in E. First we extend I to Fց ∪ Fր by
monotonic continuity and then introduce the functionals I∗x = sup

u∈Fց, u≤x

Iu

and I∗x = inf
v∈Fր,v≥x

Iv on E. Denote L = {x ∈ E : I∗x = I∗x}. For x ∈ L we

put Ix = I∗x, or, equivalently, Ix = I∗x. It was shown in [8] that L = E and
thus extended I is an integral on E.
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