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Abstract

We consider the generalised Mathieu series

∞
∑

n=1

nγ

(nλ + aλ)µ
(µ > 0)

when the parameters λ (> 0) and γ are both even integers for large
complex a in the sector | arg a| < π/λ. The asymptotics in this case
consist of a finite algebraic expansion together with an infinite sequence
of increasingly subdominant exponentially small expansions. When µ
is also a positive integer it is possible to give closed-form evaluations of
this series. Numerical results are given to illustrate the accuracy of the
expansion obtained.
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1. Introduction

This paper is a sequel to the asymptotic study of a generalised Mathieu series
carried out by the author in [4]. The functional series

∞
∑

n=1

n

(n2 + a2)µ
(1.1)

in the case µ = 2 was introduced by Mathieu in his 1890 book [2] dealing
with the elasticity of solid bodies. Considerable effort has been devoted to the
determination of upper and low bounds for the series with µ = 2 when the
parameter a > 0. Several integral representations for (1.1), and its alternating
variant, have been obtained; see [8] and the references therein.
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The asymptotic expansion of the more general functional series

Sµ,γ(a;λ) :=
∞
∑

n=1

nγ

(nλ + aλ)µ
(µ > 0, λ > 0, λµ− γ > 1) (1.2)

was considered by Zvastavnyi [11] for a → +∞ and by Paris [4] for |a| → ∞ in
the sector | arg a| < π/λ. In [4], the additional factor en := exp[−aλb/(nλ+aλ)]
(with b > 0) was included in the summand which, although not affecting the
rate of convergence of the series (since en → 1 as n → ∞), can modify the
large-a growth, particularly with the alternating variant of (1.2). Both these
authors adopted a Mellin transform method and obtained the result1, when
γ > −1,

Sµ,γ(a;λ)−
Γ(γ+1

λ
)Γ(µ− γ+1

λ
)

λΓ(µ)aλµ−γ−1
∼ 1

Γ(µ)

∞
∑

k=0

(−)kΓ(µ+ k)

k!aλ(k+µ)
ζ(−γ − λk) (1.3)

as |a| → ∞ in the sector | arg a| < π/λ, where ζ(s) denotes the Riemann zeta
function.

In this paper we also employ the Mellin transform approach used in [4, 11],
where our interest will be concerned with the parameter values µ > 0 and even
integer values of λ (> 0) and γ. In this case, the asymptotic series on the right-
hand side of (1.3) (the algebraic expansion) is either a finite series or vacuous
on account of the trivial zeros of ζ(s). We shall find that the asymptotic
expansion of Sµ,γ(a;λ) for large complex a in the sector | arg a| < π/λ for
these parameter values consists of a finite algebraic expansion together with
an infinite sequence (when µ is not an integer) of increasingly subdominant
exponentially small contributions. In the case of positive integer µ it is possible
to give a closed-form evaluation of Sµ,γ(a;λ).

It is perhaps rather surprising that such an innocent-looking series should
possess such an intricate asymptotic structure. A similar phenomenon has
been recently observed in the expansion of the generalised Euler-Jacobi series
∑∞

n=1 n
−w exp [−anp] as the parameter a → 0 when p and w are even integers;

see [5]. The leading terms in the expansion of Sµ,γ(a;λ) when γ = 0 and
λ = 2, 4 have been given in [10] using the Poisson-Jacobi formula.

In the application of the Mellin transform method to the series in (1.2)
and its alternating variant we shall require the following estimates for the
gamma function and the Riemann zeta function. For real σ and t, we have the
estimates

Γ(σ ± it) = O(tσ−
1

2 ), |ζ(σ ± it)| = O(tΩ(σ) logα t) (t → +∞), (1.4)

1The restriction γ > −1 was imposed in [4] to avoid the formation of a double pole for
odd negative integer values of γ; in [11], the parameter γ was allowed to assume arbitrary
real values and a → +∞.
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where Ω(σ) = 0 (σ > 1), 1
2
− 1

2
σ (0 ≤ σ ≤ 1), 1

2
− σ (σ < 0) and α = 1

(0 ≤ σ ≤ 1), α = 0 otherwise [9, p. 95]. The zeta function ζ(s) has a simple
pole of unit residue at s = 1 and the evaluations for positive integer k

ζ(0) = −1
2
, ζ(−2k) = 0, ζ(2k) =

(2π)2k

2(2k)!
|B2k| (k ≥ 1),

B0 = 1, B2 =
1
6
, B4 = − 1

30
, B6 =

1
42
, . . . , (1.5)

where Bk are the Bernoulli numbers. Finally, we have the well-known func-
tional relation satisfied by ζ(s) given by [3, p. 603]

ζ(s) = 2sπs−1ζ(1− s)Γ(1− s) sin 1
2
πs. (1.6)

2. An integral representation

The generalised Mathieu series defined in (1.2) can be written as

Sµ,γ(a;λ) = a−δ
∞
∑

n=1

h(n/a), h(x) :=
xγ

(1 + xλ)µ
, δ := λµ− γ (2.1)

where the parameter δ > 1 for convergence. We employ a Mellin transform
approach as discussed in [6, Section 4.1.1]. The Mellin transform of h(x) is
H(s) =

∫∞
0 xs−1h(x) dx, where

H(s) =
∫ ∞

0

xγ+s−1

(1 + xλ)µ
dx =

1

λ

∫ ∞

0

τ (γ+s)/λ−1

(1 + τ)µ
dτ

=
Γ(γ+s

λ
)Γ(µ− γ+s

λ
)

λΓ(µ)

in the strip −γ < ℜ(s) < δ. Using the Mellin inversion theorem (see, for
example, [6, p. 118]), we find

∞
∑

n=1

h(n/a) =
1

2πi

∞
∑

n=1

∫ c+∞i

c−∞i
H(s)(n/a)−sds =

1

2πi

∫ c+∞i

c−∞i
H(s)ζ(s)asds,

where 1 < c < δ. The inversion of the order of summation and integration is
justified by absolute convergence provided 1 < c < δ.

Then, from (2.1), we have [4, 11]

Sµ,γ(a;λ) =
a−δ

λΓ(µ)

1

2πi

∫ c+∞i

c−∞i
Γ
(

γ + s

λ

)

Γ
(

µ− γ + s

λ

)

ζ(s) asds, (2.2)
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where 1 < c < δ. From the estimates in (1.4), the integral in (2.2) then
defines Sµ,γ(a;λ) for complex a in the sector | arg a| < π/λ. The asymptotic
expansion of Sµ,γ(a;λ) for large a and real parameters λ, µ and γ, such that
δ > 1, is given in (1.4); see [4, Theorem 3] for complex a and [11] for positive
a and unrestricted γ.

We now suppose in the remainder of this paper that µ > 0, with λ (> 0)
and γ both chosen to be even integers. More specifically, we write

λ = 2p (p = 1, 2, . . .), γ = 2m (m = 0,±1,±2, . . .). (2.3)

The integration path in (2.2) lies to the right of the simple pole of ζ(s) at
s = 1 and the poles of Γ((γ + s)/λ) at s = −γ − λk (k = 0, 1, 2, . . . ), but
to the left of the poles of the second gamma function at s = δ + λk. When
γ = 2, 4, . . . , the poles at s = −γ − λk are cancelled by the trivial zeros of
ζ(s) at s = −2,−4, . . .. When γ = −2m, m = 0, 1, 2, . . . , however, there is a
finite set of poles of this sequence on the left of the integration path situated
in ℜ(s) ≥ 0 with 0 ≤ k ≤ k∗, where k∗ is the index that satisfies

m− k∗p ≥ 0, m− (k∗ + 1)p < 0. (2.4)

The remaining poles of this sequence corresponding to k > k∗ are cancelled
by the trivial zeros of ζ(s) with the result that there are again no poles in
ℜ(s) < 0.

We consider the integral in (2.2) taken round the rectangular contour with
vertices at c±iT and −c′±iT , where c′ > 0 and T > 0. The contribution from
the upper and lower sides of the rectangle s = σ ± iT , −c′ ≤ σ ≤ c, vanishes
as T → ∞ provided | arg a| < π/λ, since from (1.4), the modulus of the

integrand is controlled by O(TΩ(σ)+ 1

2
µ− 3

4 log T e−∆T ), where ∆ = π/λ−| arg a|.
Evaluation of the residues then yields

Sµ,γ(a;λ) =
Γ(γ+1

λ
)Γ(µ− γ+1

λ
)

λΓ(µ)aδ−1
+Hµ,γ(a;λ) + J(a), (2.5)

where the finite algebraic expansion Hµ,γ(a;λ) (with γ = 2m) is given by

Hµ,γ(a;λ) =















0 (m = 1, 2, . . .)

a−λµ

Γ(µ)

k∗
∑

k=0

(−)kΓ(µ+ k)

k! aλk
ζ(2m− 2kp) (m = 0,−1,−2, . . .),

(2.6)
with the index k∗ being defined in (2.4), and

J(a) =
a−δ

λΓ(µ)

1

2πi

∫ −c′+∞i

−c′−∞i
Γ
(

γ + s

λ

)

Γ
(

µ− γ + s

λ

)

ζ(s) asds (c′ > 0). (2.7)
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The values of ζ(s) at s = 2, 4, . . . can be expressed in terms of the Bernoulli
numbers, if so desired, by (1.5).

The integrand in J(a) is holomorphic in ℜ(s) < 0, so that further dis-
placement of the contour to the left can produce no additional terms in the
algebraic expansion of Sµ,γ(a;λ). We shall see in the next section that J(a)
possesses an infinite sequence of increasingly exponentially small terms in the
large-a limit.

3. The exponentially small expansion of J(a)

In the integral (2.7), we make the change of variable s → −s− γ to find

J(a) =
a−λµ

λΓ(µ)

1

2πi

∫ d+∞i

d−∞i
Γ
(−s

λ

)

Γ
(

µ+
s

λ

)

ζ(−s− γ) a−sds, d = c′ − γ.

We now employ (1.6) to convert the zeta function into one with real part
greater than unity. With the parameters λ and γ in (2.3), the above integral
can then be written in the form

J(a) =
(−)ma−λµ

(2π)γλΓ(µ)

1

2πi

∫ d+∞i

d−∞i
G(s) ζ(1+s+γ)(2πa)−s sin(

1
2
πs)

sin(πs
λ
)
ds,

where

G(s) :=
Γ(s+γ+1)Γ(µ+ s

λ
)

Γ(1+ s
λ
)

. (3.1)

Making use of the expansion

sin(1
2
πs)

sin(πs
λ
)

≡ sin(πps
λ
)

sin(πs
λ
)
=

p−1
∑

r=0

e−iωrs, ωr := (p−1−2r)
π

λ
, (3.2)

we then obtain

J(a) =
(−)ma−λµ

(2π)γλΓ(µ)

p−1
∑

r=0

Er(a), (3.3)

where

Er(a) =
1

2πi

∫ d+∞i

d−∞i
G(s) ζ(s+γ+1) (2πaeiωr)−sds (3.4)

and d+ γ = c′ > 0.
The integrals Er(a) (0 ≤ r ≤ p − 1) have no poles to the right of the

integration path, so that we can displace the path as far to the right as we
please. On such a displaced path, which we denote by L, |s| is everywhere large.
Let M denote an arbitrary positive integer. The quotient of gamma functions
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in G(s) may be expanded by appealing to the inverse-factorial expansion given
in [6, p. 53] to obtain

G(s) = λ1−µ
{M−1

∑

j=0

(−)jcjΓ(s+ϑ−j)+ρM (s)Γ(s+ϑ−M)
}

, ϑ := µ+γ, (3.5)

where c0 = 1 and ρM(s) = O(1) as |s| → ∞ in | arg s| < π. An algorithm for
the evaluation of the coefficients cj is discussed in Section 4.

Substitution of the expansion (3.5) into (3.4) then produces

Er(a) = λ1−µ
{M−1

∑

j=0

(−)jcj
1

2πi

∫

L
Γ(s+ϑ−j)ζ(s+γ+1) (2πaeiωr)−sds+RM,r

}

,

(3.6)
where the remainders RM,r are given by

RM,r =
1

2πi

∫

L
ρM (s)Γ(s+ϑ−M)ζ(s+γ+1) (2πaeiωr)−sds. (3.7)

The integrals appearing in (3.6) can be evaluated by making use of the well-
known result

1

2πi

∫

L′

Γ(s+ α)z−sds = zαe−z (| arg z| < 1
2
π),

where L′ is a path parallel to the imaginary s-axis lying to the right of all the
poles of Γ(s + α); see, for example, [6, Section 3.3.1]. Upon expansion of the
zeta function in (3.6) (since on L its argument satisfies ℜ(s) + γ + 1 > 1) we
find

1

2πi

∫

L
Γ(s+ϑ−j)ζ(s+γ+1) (2πaeiωr)−sds =

∞
∑

n=1

(2πnaeiωr)ϑ−j

n1+γ
exp [−2πnaeiωr ]

= Xϑ−j
r e−XrKj(Xr;µ), Xr := Xeiωr , X := 2πa, (3.8)

where we have defined the exponential sum

Kj(Xr;µ) :=
∞
∑

n=1

e−(n−1)Xr

n1−µ+j
. (3.9)

This evaluation is valid provided that the variable Xr satisfies the convergence
conditions

| arg a+ ωr| < 1
2
π (0 ≤ r ≤ p− 1).

From the definition of ωr in (3.2), it is easily verified that these conditions are
met when | arg a| < π/λ. It is then evident that Kj(Xr;µ) ∼ 1 as |a| → ∞ in
| arg a| < π/λ.
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Thus we find

Er(a) = λ1−µe−Xr

M−1
∑

j=0

(−)jcjX
ϑ−j
r Kj(Xr;µ) +RM,r. (3.10)

Bounds for the remainders of the type RM,r have been considered in [6, p. 71];
see also [1, §10.1]. The integration path in (3.7) is such that ℜ(s) + γ +1 > 1,
so that we may employ the bound |ζ(x+ iy)| ≤ ζ(x) for real x, y with x > 1.
A slight modification of Lemma 2.7 in [6, p. 71] then shows that

RM,r = O(Xϑ−M
r e−Xr) (3.11)

as |a| → ∞ in the sector | arg a| < π/λ.
The expansion of Sµ,γ(a;λ) then follows from (2.5), (3.3), (3.10) and (3.11)

and is given in the following theorem.

Theorem 1. Let µ > 0, γ = 2m, λ = 2p, where m = 0,±1,±2, . . . and
p = 1, 2, . . . . Further, let M denote a positive integer, ωr = π(p− 1− 2r)/(2p)
for 0 ≤ r ≤ p− 1 and δ = λµ− γ, ϑ = µ+ γ. Then

Sµ,γ(a;λ) =
Γ(γ+1

λ
)Γ(µ− γ+1

λ
)

λΓ(µ)aδ−1
+Hµ,γ(a;λ)+

(−)m

Γ(µ)

(

π

p

)µ

aµ−δ
p−1
∑

r=0

Er(a) (3.12)

as |a| → ∞ in the sector | arg a| < π/λ. The finite algebraic expansion
Hµ,γ(a;λ) is defined in (2.6) and the exponentially small expansions Er(a)
are given by

Er(a) = e−Xr+iϑωr

{M−1
∑

j=0

(−)jcjX
−j
r Kj(Xr;µ) +O(X−M

r )
}

(0 ≤ r ≤ p− 1),

(3.13)
where the leading coefficient c0 = 1 and Xr = 2πaeiωr . The infinite exponential
sums Kj(Xr;µ) are defined in (3.9).

When a is a real variable, the expansion in Theorem 1 can be expressed in
a different form. We have the following theorem.

Theorem 2. Let the parameters µ, γ, λ and δ, ϑ, ωr, m, p be as in Theorem
1. Then with N = ⌊1

2
p⌋ and X = 2πa, the expansion for Sµ,γ(a;λ) becomes

Sµ,γ(a;λ) =
Γ(γ+1

λ
)Γ(µ− γ+1

λ
)

λΓ(µ)aδ−1
+Hµ,γ(a;λ)

+
(−)m

Γ(µ)

(

π

p

)µ

aµ−δ
{N−1
∑

r=0

E∗
r (a) +

(

0
1
2
E∗

N(a)

)} {

p even
p odd

(3.14)
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as a → +∞, where for arbitrary positive integer M

E∗
r (a) = 2e−X cos ωr

{M−1
∑

j=0

(−)jcjX
−jK∗

j (X ;ωr) +O(X−M)
}

(0 ≤ r ≤ N)

(3.15)
and the infinite exponential sums K∗

j (X ;ωr) are defined by

K∗
j (X ;ωr) =

∞
∑

n=1

e−(n−1)X cosωr

n1−µ+j
cos [nX sinωr + (j − ϑ)ωr].

When p is odd, the quantity ωN = 0.

4. The coefficients cj

We describe an algorithm for the computation of the coefficients cj that appear
in the exponentially small expansions Er(a) and E∗

r (a) in (3.13) and (3.15).
The expression for the ratio of gamma functions inG(s) in (3.5) may be written
in the form

G(s)

Γ(s+ ϑ)
= λ1−µ

{M−1
∑

j=0

cj
(1− s− ϑ)j

+
ρM(s)

(1− s− ϑ)M

}

,

where (α)j = Γ(α + j)/Γ(α) is the Pochhammer symbol. If we introduce the

scaled gamma function Γ∗(z) = Γ(z)/(
√
2π zz−

1

2 e−z), then we have

Γ(βs+ γ) = Γ∗(βs+ γ)(2π)
1

2 e−βs(βs)βs+γ− 1

2 e(βs; γ),

where

e(βs; γ) := exp
[

(βs+ γ − 1
2
) log(1 +

γ

βs
)− γ

]

.

The above ratio of gamma functions may therefore be expressed as

R(s)Υ(s) =
M−1
∑

j=0

cj
(1− s− ϑ)j

+
ρM(s)

(1− s− ϑ)M
(4.1)

as |s| → ∞ in | arg s| < π, where

R(s) :=
e(s; γ+1) e(s/λ;µ)

e(s/λ; 1) e(s;ϑ)
, Υ(s) :=

Γ∗(s+γ+1) Γ∗(µ+s/λ)

Γ∗(1+s/λ) Γ∗(s+ϑ)
.

We now let ξ := s−1 and follow the procedure described in [6, p.47]. We
expand R(s) and Υ(s) for ξ → 0 making use of the well-known expansion (see,
for example, [6, p. 71])

Γ∗(z) ∼
∞
∑

k=0

(−)kγkz
−k (|z| → ∞; | arg z| < π),
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where γk are the Stirling coefficients, with

γ0 = 1, γ1 = − 1
12
, γ2 =

1
288

, γ3 =
139

51840
, γ4 = − 571

2488320
, . . . .

After some straightforward algebra we find that

R(s) = 1 + 1
2
(µ− 1){(λ− 1)µ− 2γ}ξ +O(ξ2),

Υ(s) = 1− 1
12
(µ− 1)(λ2 − 1)ξ2 +O(ξ3),

so that upon equating coefficients of ξ in (4.1) we can obtain c1. The higher
coefficients can be obtained by matching coefficients recursively with the aid
of Mathematica to find

c0 = 1, c1 =
1
2
(µ− 1){2γ − (λ− 1)µ},

c2 =
1
24
(µ− 1)(µ− 2){12γ(γ − (λ− 1)µ− 1) + (λ− 1)µ(5− 3µ+ λ(3µ− 1))},

c3 = − 1
48
(µ− 1)(µ− 2)(µ− 3){2− 2γ + (λ− 1)µ}{4γ(γ − (λ− 1)µ− 2)

+(λ− 1)µ(3 + λ(µ− 1)− µ)}, . . . . (4.2)

The rapidly increasing complexity of the coefficients with j ≥ 4 prevents their
presentation. However, this procedure is found to work well in specific cases
when the various parameters have numerical values, where many coefficients
have been so calculated. In Table 1 we present some values2 of the coefficients
cj for 1 ≤ j ≤ 10, which are used in the specific examples considered in Section
5.

4.1 The coefficients cj when λ = 2, γ = 0

When λ = 2 and γ = 0, it is possible to express the coefficients cj in closed
form for arbitrary µ > 0. From (3.1), we have

G(s) =
Γ(1 + s)Γ(µ+ 1

2
s)

Γ(1 + 1
2
s)

=
2s√
π
Γ(1

2
+ 1

2
s)Γ(µ+ 1

2
s)

upon use of the duplication formula for the gamma function. The inverse
factorial expansion of a product of two gamma functions with equal coefficients
of s is given in [6, pp. 51–52] in the form

Γ(s+ α)Γ(s+ β) ∼ 2
3

2
−α−β−2s

√
π

∞
∑

j=0

dj Γ(2s+α+β− 1
2
−j)

as |s| → ∞ in | arg s| < π, where the coefficients satisfy d0 = 1 and

dj =
2−j

j!

j
∏

r=1

{(α− β)2 − (r − 1
2
)2} (j ≥ 1).

2In the tables we write the values as x(y) instead of x× 10y.
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Table 1: The coefficients cj (1 ≤ j ≤ 10) for different γ when µ = 5/4 and λ = 4.

j γ = 0 γ = 2 γ = −2

1 −4.6875000000(−1) +3.1250000000(−2) −2.1250000000(+0)
2 −3.5888671875(−1) +1.5673828125(−1) −2.5546875000(+0)
3 −4.0534973145(−1) +2.3551940918(−1) −6.8701171875(+0)
4 −3.3581793308(−1) +1.6646325588(−1) −2.5683746338(+1)
5 +7.5268601999(−1) −9.0884858742(−1) −1.1944799423(+2)
6 +6.4821335676(+0) −6.6501405553(+0) −6.6193037868(+2)
7 +2.6358910987(+1) −2.7627888119(+1) −4.2794038211(+3)
8 +4.5855530043(+1) −5.8401959193(+1) −3.1831413077(+4)
9 −3.7955573596(+2) +2.8858407940(+2) −2.6901844936(+5)
10 −5.1286970180(+3) +4.6231064924(+3) −2.5504879368(+6)

Putting α = 1
2
and β = µ, with s → 1

2
s, we therefore obtain the coefficients

in the inverse factorial expansion of G(s) when λ = 2, γ = 0 and µ > 0 given
by

cj =
(−2)−j

j!

j
∏

r=1

(µ− r)(µ+ r − 1) (j ≥ 1). (4.3)

4.2 The coefficients cj when µ is an integer

A study of the coefficients cj with the aid of Mathematica enables us to con-
jecture that they possess the general form

cj = (µ− 1)(µ− 2) . . . (µ− j)Pj(µ, γ, λ) (j ≥ 1),

where Pj denotes a polynomial of degree j in the parameters µ, γ and λ. This
implies that the sequence of coefficients is finite for integer values of µ; that
is, for positive integer q, we have

cj = 0 (j ≥ q; µ = q, q = 1, 2, . . .).

This can also be seen from (3.1) where, with µ = q,

G(s) =
Γ(s+γ+1)Γ(q+ s

λ
)

Γ(1+ s
λ
)

= Γ(s+γ+1)
(

1 +
s

λ

)

q−1
. (4.4)

When q = 1, we have ϑ = 1 + γ and the expansion (3.5) is satisfied trivially
by terminating the series at the leading term with ρ1(s) ≡ 0. When q ≥ 2, the
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right-hand side of (3.5) must terminate at M = q with ρq(s) ≡ 0 to yield

G(s) = λ1−qΓ(s+γ+1)
q−1
∑

j=0

(−)jcj (s+ γ + 1)q−j−1 (4.5)

in order to have the polynomials in s in (4.4) and (4.5) of the same degree.
Then the exponential expansions Er(a) in (3.13) become the finite sums

Er(a) = e−Xr+iϑωr

q−1
∑

j=0

(−)jcjX
−j
r Kj(Xr; q), ϑ = q + γ,

where the infinite sums Kj(Xr; q) may be expressed exactly in terms of deriva-
tives of an exponential by

Kj(Xr; q) = eXr

∞
∑

n=1

nq−j−1e−nXr = (−1)q−j−1eXrDq−j−1
∞
∑

n=1

e−nXr

= (−)q−j−1eXrDq−j−1(eXr − 1)−1 (| arg a| < π/λ), (4.6)

with D ≡ d/dXr. The coefficients cj (0 ≤ j ≤ µ−1) are obtained by recursive
solution of (4.4) and (4.5) and are given below3 for µ = 1, 2, . . . , 5:

µ = 1 : c0 = 1

µ = 2 : c0 = 1, c1 = γ − λ− 1

µ = 3 : c0 = 1, c1 = 2γ − 3λ+ 3, c2 = (1 + γ − λ)(1 + γ − 2λ)

µ = 4 : c0 = 1, c1 = 3γ − 6λ+ 6, c2 = 3γ2 + 9γ + 7− 18λ− 12λγ + 11λ2,
c3 = (1 + γ − λ)(1 + γ − 2λ)(1 + γ − 3λ)

µ = 5 : c0 = 1, c1 = 4γ − 10λ+ 10, c2 = 6γ2 + 24γ + 25− 60λ− 30λγ + 35λ2,
c3 = (2γ − 5λ+ 3)(2γ2 + 6γ + 5− 15λ− 10λγ + 10λ2),
c4 = (1 + γ − λ)(1 + γ − 2λ)(1 + γ − 3λ)(1 + γ − 4λ).

(4.7)
The generalised Mathieu series when µ is an integer can therefore be ex-

pressed by the following closed-form evaluation.

Theorem 3. Let the parameters γ, λ, ωr and m, p be as in Theorem 1. Let
µ = q, where q is a positive integer, and δ = λq − γ, ϑ = q + γ. Then with
Xr = 2πaeiωr , the generalised Mathieu series has the closed-form evaluation

Sq,γ(a;λ) =
Γ(γ+1

λ
)Γ(q − γ+1

λ
)

λΓ(q)aδ−1
+Hq,γ(a;λ) +

(−)m

Γ(q)

(

π

p

)q

aq−δ
p−1
∑

r=0

Er(a), (4.8)

3The values of c1, c2 and c3 follow from (4.2).
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where Hq,γ(a;λ) is defined in (2.6) and

Er(a) = e−Xr+iϑωr

q−1
∑

j=0

(−)jcjX
−j
r Kj(Xr; q) (4.9)

with the sums Kj(Xr; q) expressed as derivatives of the exponential term in
(4.6). The coefficients cj (0 ≤ j ≤ q − 1) are given in (4.7) for q ≤ 5.

5. Numerical results and concluding remarks

We present some examples of the large-a expansion of Sµ,γ(a;λ) given in Sec-
tions 3 and 4 to demonstrate numerically the validity of our results.

Example 1. We select λ = 4 (p = 2, N = 1), so that for γ = 2m and µ > 0 we
obtain from Theorem 2

Sµ,γ(a; 4)−
Γ(γ+1

4
)Γ(µ− γ+1

4
)

4Γ(µ) a4µ−γ−1
−Hµ,γ(a; 4) =

(−)m(π/2)µ

Γ(µ) a3µ−γ
E∗

0(a), (5.1)

as a → +∞, where

E∗
0(a) = 2e−X/

√
2
{M−1

∑

j=0

(−)jcjX
−jK∗

j (X ; 1
4
π) +O(X−M)

}

,

and

K∗
j (X ; 1

4
π) =

∞
∑

n=1

e−(n−1)X/
√
2

n1−µ+j
cos

[

nX√
2
+ (j − µ− γ)

π

4

]

with X = 2πa and the coefficients cj ≡ cj(µ, γ). The leading term on the
right-hand side of (5.1) is easily seen to be given by

2(−)m(π/2)µ

Γ(µ) a3µ−γ
e−X/

√
2 cos

[

X√
2
− (µ+ γ)

π

4

]

(a → +∞).

This last approximation agrees with that obtained in [10] using different meth-
ods.

For numerical comparison, we take µ = 5
4
and three values of γ = 0,±2.

Then, we have from (5.1) the expansion

Ŝ := S 5

4
,γ(a; 4)−

Γ(γ+1
4
)Γ(1− γ

4
)

Γ(1
4
) a4−γ

−H 5

4
,γ(a; 4)

∼ (−)m27/4π5/4

Γ(1
4
) a15/4−γ

e−X/
√
2

∞
∑

j=0

(−)jcj
Xj

∞
∑

n=1

e−(n−1)X/
√
2

nj−1/4
cos

[

nX√
2
+ (j − 5

4
− γ)

π

4

]

,

(5.2)



Exponentially small expansions 193

Table 2: The absolute relative error in the computation of Ŝ from (5.2) for different γ and
truncation index j when µ = 5/4, λ = 4 and a = 5.

γ = 0 γ = 2 γ = −2

j Ŝ = −1.54766(−12) Ŝ = −3.59325(−11) Ŝ = +5.75174(−14)

0 1.980(−02) 1.178(−04) 3.237(−04)
1 3.378(−04) 1.568(−04) 1.530(−03)
2 1.102(−07) 1.086(−05) 2.066(−04)
3 3.649(−07) 1.758(−07) 1.920(−05)
4 2.697(−08) 4.874(−09) 3.210(−07)
6 2.785(−11) 1.265(−09) 1.437(−07)
8 1.220(−11) 3.334(−12) 1.363(−09)
10 9.421(−14) 1.497(−12) 9.459(−10)
12 2.607(−14) 1.277(−14) 2.768(−11)

as a → +∞, where from (2.6) the algebraic expansion is

H 5

4
,γ(a; 4) = 0 (γ = 2), − 1

2a5
(γ = 0),

π2

6a5
(γ = −2).

The coefficients cj (with c0 = 1) for the above three values of γ are tabulated
in Table 1 for 1 ≤ j ≤ 10. In Table 2, we show the absolute relative error in
the computation of Ŝ (defined as the left-hand side of (5.2)) for different γ and
truncation index j using the expansion (5.2) when a = 5. The corresponding
value of Ŝ is indicated at the head of each column. In these computations
the sum over n was evaluated to an accuracy commensurate with the overall
level of precision. The index j = 12 corresponds approximately to optimal
truncation of E∗

0(a); that is, truncation at or near the least term in absolute
value.

Example 2. In Theorem 3, we first consider the case µ = 1 where, from (4.9),

e−iϑωrEr(a) = e−Xr K0(Xr; 1) =
e−Xr

1− e−Xr

=
1

2
coth(πaeiωr)− 1

2
.

Some straightforward algebra shows, when ϑ = 1 + 2m, that

p−1
∑

r=0

eiϑωr = eπiϑ(p−1)/(2p)
p−1
∑

r=0

e−πiϑr/p =
sin (πϑ/2)

sin (πϑ/λ)
=

(−)m

sin (πϑ/λ)
.

It then follows from (4.8) (where the first term in (4.8) involving a1−δ cancels
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with the contribution from the above finite sum) that

S1,2m(a; 2p) =
∞
∑

n=1

n2m

n2p + a2p

= H1,2m(a; 2p) +
(−)mπ

2pa2p−2m−1

p−1
∑

r=0

eiϑωr coth(πaeiωr) . (5.3)

Series of this type have been expressed as infinite sums of Riemann zeta func-
tions in [7].

In the case γ = 0, λ = 2, we have m = 0, p = 1, ω0 = 0 and H1,0(a; 2) =
−1/(2a2). Then (5.3) yields the well-known result

S1,0(a; 2) =
∞
∑

n=1

1

n2 + a2
=

π

2a
coth πa− 1

2a2
.

When µ = 3, γ = λ = 2, we have ω0 = 0 and from (4.9)

E0(a) =
2

∑

j=0

cjX
−j D2−j(eX − 1)−1, X = 2πa.

The coefficients for these values of µ, γ and λ are, from (4.7), found to be
c0 = 1, c1 = 1 and c2 = −1, whence

S3,2(a; 2) =
∞
∑

n=1

n2

(n2 + a2)3
=

π

16a3
−π3

2a

e−X

1− e−X

{

(1 + e−X)

(1− e−X)2
+

1

X(1− e−X)
− 1

X2

}

.

Similarly, if γ = 2, λ = 4 we have ω0 =
1
4
, ω1 = −1

4
and c0 = 1, c1 = −5 and

c2 = 5. Then, for a > 0, we obtain

S3,2(a; 4) =
∞
∑

n=1

n2

(n4 + a4)3
=

5π
√
2

128a9

+
π3

8a7
ℜ
{

e−X0+πi/4

1− e−X0

[

(1 + e−X0)

(1− e−X0)2
+

5

X0(1− e−X0)
+

5

X2
0

]}

, X0 = 2πaeπi/4.

Finally, we remark that the asymptotic expansion of the alternating version
of (1.2) can be deduced by making use of the identity

S̃µ,γ(a;λ) :=
∞
∑

n=1

(−)n−1nγ

(nλ + aλ)µ
= Sµ,γ(a;λ)− 21−δSµ,γ(

1
2
a;λ). (5.4)

Substitution of the expansion for Sµ,γ(a;λ) in (3.12) into (5.4) leads to the
introduction of the alternating analogues H̃µ,γ(a;λ) and Ẽr(a) of the algebraic
and exponential expansions given by (with k∗ defined in (2.4))

H̃µ,γ(a;λ) =
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0 (m = 1, 2, . . .)

a−λµ

Γ(µ)

k∗
∑

k=0

(−)kΓ(µ+ k)

k! aλk
(1−22m+1+λk) ζ(2m−2kp) (m = 0,−1,−2, . . .)

(5.5)
and

Ẽr(a) = e−Xr/2+iϑωr

{M−1
∑

j=0

(−)jcjX
−j
r K̃j(Xr;µ) +O(X−M

r )
}

, (5.6)

for 0 ≤ r ≤ p− 1, where

K̃j(Xr;µ) = −eXr/2{e−XrKj(Xr;µ)− 21−µ+je−Xr/2Kj(
1
2
Xr;µ)}

= −eXr/2
∞
∑

n=1

{

e−nXr

n1−µ+j
− e−nXr/2

(1
2
n)1−µ+j

}

=
∞
∑

n=1

e−(n−1)Xr

(n− 1
2
)1−µ+j

.

We then have the following theorem.

Theorem 4. Let the parameters µ, γ, λ and the quantities δ, ϑ, ωr be as in
Theorem 1. Then the expansion of the alternating series is

S̃µ,γ(a;λ) = H̃µ,γ(a;λ) +
(−)m−1

Γ(µ)

(

π

p

)µ

aµ−δ
p−1
∑

r=0

Ẽr(a)

as |a| → ∞ in | arg a| < π/λ, where H̃µ,γ(a;λ) and Ẽr(a) are defined in (5.5)
and (5.6).
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