
Mathematica Aeterna, Vol. 4, 2014, no. 6, 683 - 698

Explicit building the nonlinear coherent states

associated to weighted shift zp d
p+1

dzp+1 of order p

in classical Bargmann representation

Abdelkader Intissar

*Equiped’Analyse spectrale, UMR-CNRS n: 6134, Université de Corse
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Abstract

This article is devoted to build the nonlinear coherent states associ-
ated to the some specific bakward shift unbounded operators
Hp = A

∗p
A
p+1; p = 0, 1, ..... realized as differential operators in classical

Bargmann space where A and A
∗ are the standard Bose annihilation and

creation operators such that [A,A∗] = I. We use the Gazeau-Klauder
formalism to construct the coherent states of this operator Hp and in-
vestigate some properties of these coherent states.
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1 Introduction

The coherent states play an important role in the context of Hermitian quan-
tum mechanics see for example [13, 24, 25]. In recent years non Hermitian
quantum mechanics have been extensively studied from various stand points
see for example [20, 21, 22] and recently the concept of coherent states was
also introduced to non Hermitian quantum systems see for example [1] or in
the quantization of a nonrenormalizable scalar quantum field theory by affine
techniques see for example [16]. However, as in Hermitian models, coherent
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states corresponding to arbitrary non Hermitian potential are not easy to con-
struct.
It is know that coherent states can be constructed by different techniques (e.g.,
a coherent state may be defined as a minimum uncertainly state, annihilation
operator eigenstate, etc ..) and usually they have different properties
In the Gazeau-Klauder formalism, a coherent state should satisfy the following
criteria [5]:
i) continuity of labelling, ii) temporel stability, iii)resolution of identity and
iv) action identity.
An essential ingredient in the definition of coherent states is the completeness
property (or the resolution of unity condition) and as sufficiently many eigen-
vectors of an unbounded operator is connected to its hypercyclity or its chaotic-
ity. More recently in [6] [ Advances in Mathematical Physics (2011)], we have
established that the backward shift unbounded operators Hp = A∗pAp+1 =

zp dp+1

dzp+1 ; p = 0, 1, ..... are non-wandering and hypercyclic operators on classical
Bargmann space, the space of entire functions with Gaussian measure.In this
way,the aim of this paper is to construct nonlinear coherent states correspond-
ing to Hp, where A and A∗ are the standard Boson annihilation and creation
operators satisfying the commutation relation [A,A∗] = I.
At this point, we note that coherent states can be constructed following any
of three methods
(i) By applying the unitary displacement operator to the ground state or (ii)
Defining coherent states as eigenstate of the lowering operator or (iii) Defining
coherent states as minimum uncertainty states.
These three methods are generally not equivalent and only in the case of stan-
dard harmonic oscillator, where the commutator of the raising and lowering
operator is the unit operator,these three methods are equivalent.
In this work we shall follow the second approch to give an explicit construction
of coherent states corresponding to Hp.
We now describe briefly the contents of this paper, section by section. In Sec-
tion 2, We make a review of some basic properties of coherent states and their
connections with classical Bargmann space within our necessity and we recall
some preliminaries results on the operator Hp. The section 3 deals with the
construction the non linear coherent states of Hp.
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2 Pedagogic review of some basic properties of

coherent states and their connections with

Bargmann space

Of special interest is a representation of operators A and A∗ as linear operators
in a separable Hilbert B (Fock space)spanned by eigenvectors (Dirac notation)
| n >;n = 0, 1, ...... of the positive semi-definite number operator N = A∗A
(number operator).One has the well-known relations:
[N,A∗] = A∗, [N,A] = −A, [A,A∗] = I. (2.1)
The actions of A and A∗ on B are given by
A | n >= √

n | n− 1 > and , A∗ | n >=
√
n+ 1 | n+ 1 > (2.2)

Where | 0 > is a normalized vacuum (A | 0 >= 0) and < 0 | 0 >= 1
From (2.2) state | n > for n ≥ 1 are given by

| n >= (A∗)n√
n!

| 0 > (2.3)
These states satisfy the orthogonality and completeness conditions

< m | n >= δmn,

∞∑

n=0

| n >< n |= 1 (2.4)

For the normalized state | z >∈ B; z ∈ C the following three conditions are
equivalent :
(i) A | z >= z | z > and < z | z >= 1 (2.5)

(ii) | z >= e−
1
2
|z|2

∞∑

n=0

zn√
n!

| n > (2.6)

(iii) | z >= ezA
∗−zA | 0 > (2.7)

This equivalence is based on the famous elementary Baker-Campbell-Hausdorff
formula
eA+B = e−

1
2
[A,B]eAeB (2.8)

whenever [A, [A,B]] = [B, [A,B]] = 0

Definition 2.1. (coherent state) The state |z > that satisfies one of (i)
or (ii) or (iii) above is called the coherent state.

Remark 2.2. (resolution of unity) 1) It is not easy to derive (iii) from
(ii) without knowing Baker-Campbell-Hausdorff formula. The coherent states
(iii) are called a Perelomov’s type and the coherent states (ii) are called a
Barut-Girardello’s type.
2) Let < z |=< 0 | ezA∗

e−
1
2
|z|2 the adjoint vector of coherent state | z > then

the important property of coherent states is the following resolution (partition)
of unity.

1
π

∫

C

| z >< z | dxdy =

∞∑

n=0

| n >< n |= 1 where z = x+ iy (2.9)
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Definition 2.3. (coherent states space) The space of coherent state vec-
tors B is the space spanned by the set {| z >} where

| z >= e−
1
2
|z|2

∞∑

n=0

zn√
n!

| n >; z = x+ iy (2.10)

From the above properties, we have A∗ | z >= ( z
2
+ ∂

∂z
) | z > and

A | z >= ( z
2
− ∂

∂z
) | z > where ∂

∂z
and ∂

∂z
are linear partial differential

operators on R2 given by
∂

∂z
=

∂

∂x
− i

∂

∂y
; z = x + iy and

∂

∂z
=

∂

∂x
+ i

∂

∂y
;

z = x− iy

Now, we recall that the space B of coherent state vectors is closely related to
classical Bargmann’s space which was used in [2] for the canonical commuta-
tion rules as representation space of quantum mechanics.
For any coherent state | φ >, we can define an entire analytic function by

φ(z) = e
1
2
|z|2 < φ | z >=

∞∑

n=0

zn√
n!
< φ | n > (2.11)

As

∫

C

|< φ | z >|2 dxdy <∞ then
∫

C

| φ(z) |2 e−|z|2dxdy <∞ (2.12)

We denote the classical Bargmann space by :

Definition 2.4. (Bargmann space) The classical Bargmann space is a sub-
space of the space O(C) of holomorphic functions on C given by
B = {φ ∈ O(C);< φ, φ ><∞} where the pairing <,> is defined by

< φ, ψ >=

∫

C

φ(z)ψ(z)e−|z|2dxdy (2.13)

for all φ, ψ ∈ O(IC) and Lebesgue measure dxdy on C.

It is easy to verify that the pairing (2.13) defined on the classical Bargmann
space is an inner product and the associated norm is

|| φ ||=
√∫

C

| φ(z) |2 e−|z|2dxdy (2.14)

Now, we can used a theorem of Weierstrass to show that any Cauchy sequence
in B has a limit φ ∈ O(C) and we check that φ ∈ B and indeed is the limit
of the Cauchy sequence in the norm || . || of B induced by the inner product.
These steps show that the space B is complete and we have

Lemma 2.5. i) The classical Bargmann space is a Hilbert space.
ii) An orthonormal basis of B is given by
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en(z) =
zn√
n!
;n = 0, 1, .... (2.15)

Suppose that we have a space of holomorphic functions in the variables z,
multiplication operators
W : φ(z) → Wφ(z) = zφ(z) and differential operators W : φ(z) → Wφ(z) =
d
dz
φ(z) so that the commutation relation [W,W] = I is satisfied.

Furthermore, suppose that there exists an inner product on this space of holo-
morphic functions that is of the form

< φ, ψ >=

∫

C

φ(z)ψ(z)ρ(z, z)dxdy (2.16)

for some weight function ρ(z, z). The following lemma explains why the space
of holomorphic functions is equipped with a Gaussian measure:

Lemma 2.6. (Gaussian measure) The Gaussian measure that is used in
the definition of the inner product (2.13) follows from the properties of the
operators W and W.In particular the requirement that W∗ = W where W∗ is
the adjoint of W.

Proof : The requirement that W∗ = W then gives that < d
dz
φ, ψ >=<

φ, zψ >, i.e.

∫

C

(
d

dz
φ(z))ψ(z)ρ(z, z)dxdy =

∫

C

φ(z)zψ(z)ρ(z, z)dxdy

As( d
dz
φ(z))ψ(z)ρ(z, z) = d

dz
(φ(z)ψ(z)ρ(z, z))−φ(z)( d

dz
ψ(z))ρ(z, z)−φ(z)ψ(z) d

dz
ρ(z, z)

then

∫

C

d

dz
(φ(z))ψ(z)ρ(z, z)dxdy =

∫

C

d

dz
(φ(z)ψ(z)ρ(z, z))dxdy−

∫

IC

φ(z)(
d

dz
ψ(z))ρ(z, z)dxdy−

∫

C

φ(z)ψ(z)
d

dz
ρ(z, z)dxdy

In the right hand side, the first term of the integrand vanishes if we assume
that the inner product between φ and ψ is finite, so that φψρ→ 0 sufficiently
fast as | z |→ ∞. The second term also vanishes,because ψ is holomorphic, so
that ψ is anti-holomorphic and hence d

dz
ψ(z) = 0 This gives∫

C

φ(z)zψ(z)ρ(z, z)dxdy +

∫

C

φ(z)ψ(z)
d

dz
ρ(z, z)dxdy = 0 (2.17)

which is solved for arbitrary φ and ψ if
zρ(z, z) + d

dz
ρ(z, z) = 0 (2.18)

giving ρ(z, z) = Ce−|z|2.The constant C is chosen to be 1
π
, so that the norm of

the constant function φ(z) = 1 is one. This explains why the space of holo-
morphic functions is equipped with a Gaussian measure.

Remark 2.7. Consider the following variant of classical Bargman space.
Let us consider functions f : R → C such that
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f(x) =
∞∑

n=0

an
xn√
n!
;

∞∑

n=0

| an |2<∞ (2.19)

the an being complex coefficients. Here our functions f are complex-valued
analytic functions of one real variable x. Call BV the space of all functions
satisfying (2.19). A basis for BV is given by the set of all real monomials
fn(x) :=

xn
√
n!
, n ∈ N (2.20)

We can define a scalar product on BV by declaring these monomials to be or-
thonormal,
((fn, fm)) = δnm n,m ∈ N (2.21)
and extending the above to all elements of BV by complex linearity. This
scalar product makes BV a complex Hilbert space. The difference with respect
to classical Bargmann space B is that, the functions f ∈ B depending on the
real variable x instead of the complex variable z, the scalar product on BV is
no longer given by (2.13), nor by its real analogue.

Indeed, given any two f ; g ∈ BV , the analogue of (2.13) for BV would be
the integral∫ ∞

−∞
f(x)g(x)e−x2

dx (2.22)

Although this integral does define a scalar product on BV , this scalar product
does not make the basis (2.20) orthogonal, as one readily verifies. Therefore
one, and only one, of the following properties can be satisfied:
i) the space BV is Hilbert with respect to the scalar product (2.22), but the
monomial basis (2.20) is not orthogonal with respect to it
ii) the space BV is Hilbert with respect to the scalar product (2.21), and the
monomial basis (2.20) is indeed orthonormal with respect to it, but this scalar
product is not given by the integral (2.22).
Now, after the above pedagogic analysis, we come back to classical Bargmann
representation, in this representation the annihilator and creator operators are
defined by
Aφ(z) = d

dz
φ(z) with domain D(A) = {φ ∈ B; d

dz
φ ∈ B} (2.23)

A∗φ(z) = zφ(z) with domain D(A∗) = {φ ∈ B; zφ ∈ B} (2.24)
B is closed in L2(C, dµ(z)) where the measure dµ(z) = e−|z|2dxdy and it is
closed related to L2(R):
The Schrödinger equation of harmonic oscillator in one dimension is:
Hf(x) = σf(x) (2.25)
and
H = 1

2m
(p2x +m2ω2x2), [x, px] = i~ (2.26)

put x =
√

~

mω
then we obtain

H = ~ω(p2 + q2) (2.27)
the solution of Schrödinger equation is
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Hun(q) = σnun(q), σn = ~ω(n+ 1
2
) (2.28)

with

un(q) = (
√
π2nn!)−

1
2 e−

q2

2 Hn(q), un(x) = (mω
~
)
1
4un(q) (2.29)

Hn(q) is the Hermite polynomial with
Hn(−q) = (−1)nHn(q) and un(−q) = (−1)nun(q) (2.30)
we find then the generating function(see :[18])

G(z, q) =
∞∑

n=0

zn√
n!
un(q) = π− 1

4 e−
q2

2
− z2

2
+
√
2qz (2.31)

In (2.31), we note that G(z, q) =

∞∑

n=0

un(q)en(z) where en(z) =
zn√
n!

is orthono-

mal basis of classical Bargmann space.We have also

1)

∫

C

eαzeβzdµ(z) = eαβ and φ(z) =

∫

C

ezξφ(ξ)dµ(ξ) (2.32)

where dµ(z) is the cylindrical measure and φ is in classical Bargmann space.
2) Let q̂ the multiplication operator with respect the variable q and | q > is
the eigenfunction which verify q̂ | q >= q | q > then we can define the Dirac
transform by:
< q |: un → un(q) =< q | n > where | n >= A∗n

√
n!

| 0 > and to get:

(i) G(z, q) =< q | z > where | z >= e−
|z|2

2 ezA
∗ | 0 > (2.33)

(ii) < q |=
∫

IC

G(z, q)dµ(z) < z | where < z | is the adjoint vector of coherent

state | z >. (2.34)

In [2], Bargmann have defined an integral transform I of L2(R) onto B by

[I(f)](z) = φ(z) =

∫

R

G(z, q)f(q)dq, f ∈ L2(R) (2.35)

Theorem 2.8. (Bargmann) 1) If f ∈ L2(R) the integral (2.35) converges
absolutely.
2) The Bargmann transform I : L2(R) → B : f → φ defined by

φ(z) =

∫

R

G(z, q)f(q)dq, f ∈ L2(R) and G(z, q) = π− 1
4 e−

q2

2
− z2

2
+
√
2qz is a sur-

jective isometry.

Now we define
Bp = {φ ∈ B; dj

dzj
φ(0) = 0, 0 ≤ j ≤ p} (2.36)

An orthonormal basis of Bp is given by
en(z) =

zn√
n!
;n = p+ 1, p+ 2, .... (2.37)

Hence a family of weighted shifts Hp as following
Hp = A∗pAp+1 with domain D(Hp) = {φ ∈ B;Hpφ ∈ B}⋂Bp (2.38)
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Remark 2.9. (i) For p = 0, the operator H0 = A is the derivation in
classical Bargmann space and it is the celebrated quantum annihilation opera-
tor.
(ii) H∗

0en =
√
n+ 1en+1 is weighted shift with weight ωn =

√
n+ 1 for n =

0, 1, .....
(iii) It is known that H0 with its domain D(H0) is an operator chaotic in clas-
sical Bargmann space.

(iv)H0φλ(z) = λφλ(z) for all λ ∈ C where φλ(z) =

∞∑

n=0

λn√
n!
en(z) and

|| φλ ||2= e|λ|
2

(v) The function e−|λ|2φλ(z) is called a coherent normalized quantum optics
(see [15] , [19] and [22]).

Remark 2.10. (i) For p = 1, the operator H1 = A∗A2 = z d2

dz2
has as

adjoint the operator H∗
1 = z2 d

dz

(ii) H∗
1en = n

√
n+ 1en+1is weighted shift with weight ωn = n

√
n+ 1 for

n = 1, ..... and it is known that H1 + H∗
1 is a not selfadjoint operator and

it is chaotic in classical Bargmann space [4]. This operator play an essential
role in Reggeon field theory (see [8] and [9])
(iii) The operators Hp arising also in the interaction picture the Jaynes-Cummings
models, see for example a model introduced by Obada-Abd Al-Kader in [23] the
interaction Hamiltonian for the model is :

HI = −
∞∑

p=0

{Ω1e
iφ1e−η21/2

(iη1)
2p+1

p!(p+ 1)!
H∗

p + Ω2e
iφ2e−η22/2

(iη2)
2p+1

p!(p+ 1)!
Hp}σ−+h.c(2.39)

Where Ωj are the Rabi frequencies and η2j are the Lamb-Dicke ; j = 1,2.
The operators σ− and σ+ act on the ground state | g > and excited state | e >
as follow σ± | g >= 1±1

2
| e > and σ± | e >= 1∓1

2
| g > .

(iv) On Bp, p = 0, 1, ...., which is the orthogonal of span {en;n ≤ p − 1} in
classical Bargmann space, the adjoint of Hp is H∗

p = zp+1 dp

dzp
such that

H
∗
pen = ωnen+1 with weight ωn =

√
n+ 1 n!

(n−p)!
for n ≥ p ≥ 0 (2.40).

We point out that a generalization of the coherent states was done by q-
deforming the basic commutation relation [A,A∗] = I . A further generalization
is to define states that are eigenstates of the operator f(A∗A)A where f(A∗A)
is a operator valued function of the number operator N = A∗A. These eigen-
states are called as non-linear coherent states [12] and they are nonclassical.
In the linear limit, f(A∗

A) = I, the non-linear coherent states become the usual
coherent states | z >.
We make contact with the combinatorial sequences appearing in the solution of
the boson normal ordering [7] for an explicit construction of operator valued
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function of the number operator N = A∗A and nonlinear coherent states related
to our operator Hp

In next section we verify that [N,H∗
p] = H∗

p, [N,Hp] = Hp and [Hp,H
∗
p] =

fp(n+ 1)− fp(n)
where fp is an entire function such that fp(p) = 0 and fp(n) > 0 as n > p.
If we consider the Fock space on which Hp and H∗

p act is {| |n >;n ≥ p}
whose actions are
H∗

p|n >=
√
fp(n+ 1)|n+ 1 >, n ≥ p (2.41)

Hp|n >=
√
fp(n)|n− 1 >, n ≥ p (2.42)

From (2.41) states |n > are given by

| n >= (H∗
p)

n√∏n
j=p+1 fp(j)

| p > (2.43)

On a generalized oscillator algebra {I,Hp,H
∗
p, N}, we are interesting to study

in detail the coherent states of Barut-Girardello’s type but we are not con-
cerned in this work to study
| z >= ezH

∗
p−zHp the coherent states of Perelomov’s type.

By using the commutation relation [A,A∗] = I of the Boson operators A and
A∗, it is easy to deduce the following lemmas:

Lemma 2.11. Let N = A∗A then
i) A

∗
N

m = (N− I)mA∗;m = 0, 1, .....
ii) A∗NmA = (N− I)mN;m = 0, 1, .....
iii) A∗mN = (N−mI)A∗m ;m = 0, 1, .....
iv) For 1 ≤ p ≤ m+ 1 we have

A∗m+1
Ap =

p−1∏

j=0

(N− (m− j)I)A∗m−(p−1)

v) A∗m+1
Am+1 =

m∏

j=0

(N− jI)

Lemma 2.12. (Blasiak-Penson-Solomon [3]) Let A and A∗ the Boson op-
erators then we have

i) (A∗A)m =
m∑

k=1

S(m, k)A∗k
A

k where S(m, k) are Stirling numbers of second

kind with corresponding numbers

B(m) =

m∑

k=1

S(m, k) called Bell numbers.

ii) (A∗rAs)m = A∗m(r−s)

ms∑

k=s

Sr,s(m, k)A
∗kAk where Sr,s(m, k) are generalized

Stirling numbers of second kind with corresponding generalized numbers
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Br,s(m) =
m∑

k=1

Sr,s(m, k) called generalized Bell numbers.

From the above lemmas we deduce the below properties

Lemma 2.13. Let N = A
∗
A and Hp = A

∗p
A

p+1p = 0, 1, ..... then
i) [A,A∗p] = pA∗p−1, [A∗,Ap] = −pAp−1, [A,A∗p] = pA∗p and [N,Ap] = −pAp

ii)[N,Hp] = −Hp and [N,H∗
p] = H∗

p

iii) [H0,H
∗
0] = I, [H1,H

∗
1] = 3N2 − N

and

[Hp,H
∗
p] = [(2p+ 1)N2 − p2N]

p−1∏

j=1

(N− jI)2

We end this section by recalling some spectral properties of Hp established
in [6] under theorem form

Theorem 2.14. Let Hp = zp
dp+1

dzp+1
= A

∗p
A

p+1 with domain

D(Hp) = {φ ∈ B;Hpφ ∈ B}
⋂

Bp and for each positive integer m, the operator
(Hp)

m, with domain D((Hp)
m) = {φ ∈ B; (Hp)

mφ ∈ B}
⋂
Bp, where

Bp = {φ ∈ B; dj

dzj
φ(0) = 0, 0 ≤ j ≤ p}.Then we have

i) (Hp)
m is a closed operator

ii) The spectrum of Hp fills the entire complex plane.
iii) Hp is hyper-cyclic operator
iv) Hp is non wandering operator
v) Hp is chaotic operator.

In the next section, we present the aim work of this paper, which can be
considered as a natural continuation of study doing in [6].

3 Construction the non-linear coherent states

of the operator Hp = zp
dp+1

dzp+1
on Bargmann

space

We shall now construct nonlinear coherent states corresponding to the opera-
tor Hp as eigenstates of this operator for p ≥ 1.We make the ansatz
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| z >p= N−1/2(| z |2)
∞∑

n=p

zn−p

ωp.ωp+1.......ωn−1

| n > (3.1)

The constant N(| z |2 is determined via the normalization of | z >p

p < z | z >p= N−1(| z |2)
∞∑

n=p

| z |2(n−p)

(ωp.ωp+1.......ωn−1)2
= 1 (3.2)

Then N(| z |2) can be expressed in terms of generalized hypergeometric func-
tions which are defined by

pFq(α1, α2, ......., αp, β1; β2, ...., βp; ξ) =
∞∑

m=0

(α1)mα2)m......αp)m
(β1)m(β2)m.......

.(βq)m
ξm

m!
(3.3)

where (α)m = Γ(α+m)
Γ(α)

is the Pochhammer’s symbol and Γ(α) is the usual Gauss
function.

Lemma 3.1. The normalization constant N(| z |2) is
N(| z |2) = γ2p .0F2p(β1, β2, ...., β2p, | z |2) where

γp =
√
p!

p∏

j=1

(p− j)! and β1 = p+ 1, βp+1 = 1 and

βj = βp+j = p+ 2− j; 2 ≤ j ≤ p

Proof : As ωn =
√
n + 1

p−1∏

j=0

(n− j) then

ωp.ωp+1......ωn−1 =

√
n!

p∏

j=1

(n− j)!

√
p!

p∏

j=1

(p− j)!

(3.4)

If we put γp =
√
p!

p∏

j=1

(p− j)! and apply the condition of the normalization we

obtain

N−1(| z |2)γ2p
∞∑

n=p

| z |2(n−p)

n!

p∏

j=1

(n− j)!2
= 1 (3.5)

Let m = n− p and from the above equation we deduce that

N−1(| z |2)γ2p
∞∑

m=0

| z |2m

(m+ p)!

p∏

j=1

(m+ p− j)!2
= 1 (3.6)
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i.e.
N−1(| z |2)γ2p .0F2p(β1, β2, ...., βp−1, | z |2) = 1 (3.7)
where β1 = p+ 1, βp+1 = 1, αj = βp+j = p+ 2− j; 2 ≤ j ≤ p

Another important property, namely, the resolutions of unity can also be ob-
tained for the non-linear coherent states via the Meijer’s G-function in the case
where the normalization constant is hypergeometric function.
The Meijer’s G-function is defined by a Mellin-Barnes type integral

Gm,n
p,q (z |a1,a2,......,apb1,b2,.......,bq

) = 1
2iπ

∫ .

L

m∏

j=1

}Γ(bj − s)

n∏

j=1

Γ(1− aj + s)

q∏

j=m+1

Γ(1− bj + s)

p∏

j=n+1

Γ(aj − s)

zsds (3.8)

where m,n, p, q are integers with q with q ≥ 1, 0 ≤ n ≤ p, 0 ≤ m ≤ q.
The parameters aj and bj are such that no pole of Γ(bj − s), j = 1, ...., m co-
incides with any pole of Γ(1− bj + s), j = 1, ...., n.
The poles of the integrand must be simple and those of Γ(bj − s), j = 1, ...., m
lie on one side of the contour L and those of Γ(1 − aj + s), j = 1, ...., n must
lie on the other side.
The connexion between the generalized hypergeometric functions and the Mei-
jer’s G-functions [17] is given by

pFq(α1, α2, ......., αp, β1; β2, ...., βp; z)

=

q∏

j=1

Γ(βj)

p∏

j=1

Γ(αj)

G
1,p
p,q+1(−z |

1−α1,1−α2,......,1−αp

0;1−β1,1−β2,.......,1−βq
) (3.9)

Now let
√
ρ(m) =

√
(m+ p)!

p∏

j=1

(m+ p− j)! (3.10)

we have
√
ρ(0) = γp.

By choosing
ρ̃(m) = 1

γ2
p
ρ(m) (3.11)

and

| p; z >= Ñ−1/2(| z |2)
∞∑

m=0

zm√
ρ̃(m)

(3.12)

Where

Ñ(| z |2) =
∞∑

m=0

| z |2m
ρ̃(m)

(3.13)

and following the nice article of Klauder-Penson-Sixdeniers [14] we shall show
that the sequence ρ̃(m) is adapted to satisfy a completeness relation for our
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specific Hamiltonian. Then we have

Theorem 3.2. There exists a probability density σ on the positive half-

line which verify the power moments

∫ ∞

0

xmσ(x)dx = ρ̃(m);m = 0, 1, .... and

there exists a positive measure µ(z, z) such that∫ .

IC

dµ(z, z) | p; z >< p; z |= 1 where dµ(z, z) = 1
2π
σ(x)Ñ(x)dxdθ with x =| z |2

and z =| z | eiθ

Proof : For | p; z > the resolution of unity 1 takes the form∫ .

C

dzdzµ(| z |2) | p; z >< p; z |= 1 (3.14)

with a positive weight function µ(x) depending on x =| z |2.
Introducing the states (3.12) into Eq.(3.14) and performing the angular inte-
gration, the following conditions result∫ ∞

0

xmσ(x)dx = ρ̃(m);m = 0, 1, .... (3.15)

where σ(x) =
µ(x)

Ñ(x)
which is given by the solution of a Stieltjes moment problem with the moments
given by ρ̃(m);m = 0, 1, ....
As shown by Klauder and al.[14], the solution can be obtained by using Mellin
transform techniques. Thus, replacing the discrete variable m by the complex
variable (s-1), the distribution σ(x) and the parameter function ρ̃(s − 1) be-
come a Melling transform related pair. There are well known references where
such pairs are tabulated [16] we find σ(x) in terms of the Meijer G-function∫ ∞

0

xs−1G
2p+1,0
0,2p+1(x |.β1,β2,....,β2p,0)dx = ρ̃(s− 1) (3.16)

it follows that the weight function is

µ(| z |2) = G
2p+1,0
0,2p+1(| z |2|.β1,β2,....,β2p,0

)

∞∑

m=0

| z |2m
ρ̃(m)

(4.16)

We denote Ep the space spanned by

| p; z >= Ñ−1/2(| z |2)
∞∑

m=0

zm√
ρ̃(m)

(3.17)

for each complex z = x+ iy

The vectors | p; z > are eigenvectors of our operator Hp, one has
Hp | p; z >= z | p; z > (3.18)
This space is closely related to Bargmann’s hypergeometric representation, for
any | φp > we can define an entire analytic function by
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φp(z) =
∞∑

m=0

zm√
ρ̃(m)

< φp | m > (3.19)

The resolution of unity can be used for define a scalar product

< φp, ψp >=
1

π

∫ .

IC

φp(z) ¯ψp(z)λ(| z |2)dzdz̄ (3.20)

Where λ(| z |2) = µ(| z |2)
Ñ(| z |2)

The usual Bargmann representation based on the coherent states recalled in
the introduction is recovered for p = 0.
The state | p; z > have the Fock representation :

< p; z | m >=
zm√

ρ̃(m)Ñ(| z |2)
, from which the photon number distribution

follows

P (m) =
1

ρ̃(m)

| z |2m
Ñ(| z |2)

(3.21)

Comparing the state | z >p with the state | p; z >, it is clear that
Hp | m >= 0 = H

∗
p | m > for 0 ≤ m ≤ p− 1 with p = 1, 2, .... (3.22)

We note that the states | z >p are not complete because of absence of the
states | 0 >, | 1 >, ...., | p − 1 >. We can, however, call this set of states the
photon-added states of order p.

We conclude that the results of this work can be improved to construct
non-linear coherent states associated to the operators defined in [10] on gen-
eralized Fock-Bargmann spaces or to operators defined in [11] on (Γ;χ)-theta
Fock-Bargmann spaces.
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Gribov dans l’espace de Bargmann, C. R. Acad. Sci. Paris , 331 (2000)

[5] J. P. Gazeau and J. R. Klauder, J. Phys. A32 (1999)



On coherent states associated to an chaotic shift 697

[6] A. Intissar, On a chaotic weighted shift zp dp+1

dzp+1 of order p in Bargmann
space, Advances in Mathematical Physics (2011)

[7] A. Intissar, An elementary construction on nonlinear coherent states as-
sociated to generalized Bargmann spaces, International Journal of Math-
ematics and Mathematical Sciences, (2010)

[8] A. Intissar, Analyse de scattering d’un opérateur cubique de Heun dans
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