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Abstract

This paper is concerned with new boundary value problems of non-
linear q-fractional differential equations with nonlocal and sub-strip type
fractional boundary conditions. the existence and uniqueness of solu-
tions of the equation are proved by using a generalized coupled point
theorem in the space of the continuous functions defined on [0,1], fixed
point theorem due to O’Regan and Banach’s contraction principle. Fi-
nally, the correctness of the conclusion in this paper is verified by some
examples.
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1 Introduction

In the recent years, extensive studies on fractional boundary value prob-
lems indicate that it is one of the hot topics of the present-day research. spe-
cially mathematics and engineering sciences. Many natural phenomena can be
present by boundary value problems of fractional differential equations. Many
authors in different fields such as chemical physics, engineering, biology, fluid
flows, electrical networks, visco-elasticity, try to modeling of these phenom-
ena by boundary value problems of fractional differential equations [1-4]. The
early work on q-difference calculus or quantum calculus dates back to Jacksons
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paper [5]. Basic definitions and properties of quantum calculus can be found
in the book [6]. The fractional q-difference calculus had its origin in the works
by Al-Salam [7] and Agarwal [8]. Motivated by recent interest in the study of
fractional-order differential equations, the topic of q-fractional equations has
attracted the attention of many researchers.

In 2012, Bashir Ahmad and Sotiris K Ntouya[9] studied the existence of
solutions for a new class of nonlocal boundary value problems of nonlinear
differential equations and inclusions of fractional order with strip conditions:

{
(cDqx)(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2;

x(0) = σ
∫ β
α
x(s)ds, x(1) = η

∫ δ
γ
x(s)ds, 0 < α < β < γ < δ < 1,

where cDq denotes the Caputo fractional derivation of order q, f : [0, 1]×R → R

is a given continuous function and σ, η are appropriately chosen real numbers.
In 2014, Suphawat Asawasamrit et al[10] studied the existence of solu-

tions for nonlocal fractional q-integral boundary value problem of nonlinear
fractional q-integrodifference equation:

{
Dα
q x(t) = f(t, x(t), Iδzx(t)), t ∈ (0, T );
x(0) = 0, λIβp x(η) = Iγr x(ξ),

where 0 < p, q, r, z < 1, 1 < α ≤ 2, β, γ, δ > 0, λ ∈ R are given constants, Dα
q

is the fractional q-derivative of Riemann-Liouville type of order α, Iψφ is the
fractional φ-integral of order ψ with φ = p, r, z, and ψ = β, γ, δ, f : [0, T ] ×
R× R → R is a continuous function.

In this paper, we consider the following boundary value problem of frac-
tional q-difference inclusions with nonlocal and sub-strip type boundary con-
ditions:

{
(Dα

q u)(t) =Mf(t, u(t), (Dµ
q u)(t)) +NIβq g(t, u(t), (D

µ
qu)(t)), t ∈ [0, 1];

u(0) =
∫ γ
λ
u(s)dqs = 0, (Dν

qu)(1) = k
∫ η
ξ
u(s)dqs,

(1)
where 0 < λ < γ < ξ < η < 1, f, g : [0, 1] × R × R −→ R are given contin-
uous functions Dα

q , D
µ
q and Dν

q denote the fractional q-derivative of Riemane-
Liouville type of order 2 < α ≤ 3, 0 < µ, ν < 1, α − µ > 2, α − ν > 2, Iβq (·)
denotes Riemann-Liouville integral with 0 < β < 1, k is appropriately chosen
real number and M,N being real constants.

The paper is organized as follows. In Section 2, we recall some fundamental
concepts of fractional q-calculus and establish a lemma for the linear variant
of the given problem. Section 3 contains the existence results for the problem
(1) which are shown by applying a generalized coupled point theorem in the
space of the continuous functions defined on [0,1], fixed point theorem due
to O’Regan and Banach’s contraction principle. Finally, we present three
examples to illustrate our main results.
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2 Preliminary

To make this paper self-contained, below we recall some known facts on
fractional q-calculus. The presentation here can be found in([11]-[12]).

For a real parameter q ∈ (0, 1), a q-real number denoted by [a]q is defined
by

[a]q =
1− qa

1− q
, a ∈ R.

The q-analogue of the power function (a − b)n with n ∈ N0 := {0, 1, 2, ...} is
defined by

(a− b)0 = 1, (a− b)(n) =

n−1∏

k=0

(a− bqk), n ∈ N, a, b ∈ R.

More generally, if α ∈ R,then

(a− b)(α) = aα
∞∏

k=0

a− bqk

a− bqα+k
, a 6= 0.

Clearly, if b = 0,then a(α) = aα. The q-gamma function is defined by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
, x ∈ R\{0,−1,−2, ...}.

and satisfies Γq(x+ 1) = [x]qΓq(x).
The q-derivative of a function f is defined by

(Dqf)(x) =
f(qx)− f(x)

(q − 1)x
, (Dqf)(0) = lim

x→0
(Dqf)(x).

and q-derivative of higher order by

(D0
qf)(x) = f(x), (Dn

q f)(x) = Dq(D
n−1
q f)(x), n ∈ N.

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf)(x) =

∫ x

0

f(s)dqs = x(1− q)

∞∑

k=0

f(xqk)qk, x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b],then its integral from a to b is
defined by ∫ b

a

f(s)dqs =

∫ b

0

f(s)dqs−

∫ a

0

f(s)dqs.
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Similar to that for derivatives, an operator Inq is given by

(I0q f)(x) = f(x), (Inq f)(x) = Iq(I
n−1
q f)(x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.

(DqIqf)(x) = f(x),

and if f is continuous at x = 0, then

(IqDqf)(x) = f(x)− f(0).

Definition 2.1 Let α ≥ 0 and f be function defined on [0, 1]. The frac-
tional q-integral of the Riemann-Liouville type is (I0q f) = f(x) and

(Iαq f)(x) =
1

Γq(α)

∫ x

0

(x− qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1].

Definition 2.2 The fractional q-derivative of the Riemann-Liouville type of
order α ≥ 0 is defined D0

qf(x) = f(x) and (Dα
q f)(x) = (Dm

q I
m−α
q f)(x), α > 0,

where m is the smallest integer greater than or equal to α.

Definition 2.3 An element (x, y) ∈ C[0, 1]× C[0, 1] is said to a ϕ-coupled
fixed point of a mapping G : C[0, 1] × C[0, 1] → C[0, 1] if G(x, y) = x and
G(x, y) = y. where x = x(ϕ(t)) for t ∈ [0, 1], ϕ is a continuous function.

Lemma 2.4 [13] Let α, β ≥ 0, and f be a function defined in [0,1]. Then,the
following formulas hold: (1)(Iβq I

α
q f)(x) = Iα+βq f(x); (2)(Dα

q I
α
q f)(x) = f(x).

Lemma 2.5 [13] Let α > 0 and n be a positive integer. Then, the following
equality holds:

(Iαq D
n
q f)(x) = (Dn

q I
n
q f)(x)−

n−1∑

k=0

xα−n+k

Γq(a+ k − n + 1)
(Dk

q f)(0).

Lemma 2.6 [13] Let α ∈ R
+, λ ∈ (−1,+∞), the following is valid:

Iαq ((t− a)λ) =
Γq(λ+ 1)

Γq(α+ λ+ 1)
(t− a)(α+λ), 0 < a < t < b.

Lemma 2.7 Let 2 < α ≤ 3, 0 < ν < 1, α− ν > 2, 0 < λ < γ < ξ < η < 1,
and k is appropriately chosen real number. Then for h ∈ C[0, 1], the unique
solution of boundary value problem:





(Dα
q u)(t) = h(t), t ∈ [0, 1];
u(0) =

∫ γ
λ
u(s)dqs = 0;

(Dν
qu)(1) = k

∫ η
ξ
u(s)dqs,

(2)
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is given by

u(t) =

∫ t

0

(t− qm)(α−1)

Γq(α)
h(m)dqm

+
(δ1t

α−2 − δ2t
α−1)

∆

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
h(m)dqm

+
(δ3t

α−2 − δ4t
α−1)

∆

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
h(m)dqm)dqs

+
k(δ2t

α−1 − δ1t
α−2)

∆

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
h(m)dqm)dqs.

where ∆ = δ1δ4 − δ2δ3 6= 0, δ1 =
(γα−λα)

[α]q
, δ2 =

(γα−1−λα−1)
[α−1]q

,

δ3 =
k(ηα−ξα)

[α]q
− Γq(α)

Γq(α−ν)
, δ4 =

k(ηα−1−ξα−1)
[α−1]q

− Γq(α−1)

Γq(α−ν−1)
.

Proof It is well known that the solution of q-fractional equation in (2) can
be written as

u(t) =

∫ t

0

(t− qm)(α−1)

Γq(α)
h(m)dqm+ C1t

α−1 + C2t
α−2 + C3t

α−3. (3)

where C1, C2, C3 ∈ R are constants. Using the boundary condition u(0) = 0.
we obtain C3 = 0. by Lemma 2.6, we find that

(Dν
qu)(t) =

∫ t

0

(t− qm)(α−ν−1)

Γq(α− ν)
h(m)dqm+

Γq(α)

Γq(α− ν)
C1t

α−ν−1 +
Γq(α− 1)

Γq(α− ν − 1)
C2t

α−ν−2.

Appling the boundary conditions
∫ γ
λ
u(s)dqs = 0, (Dν

qu)(1) = k
∫ η
ξ
u(s)dqs we

find that problem:

(γα − λα)

[α]q
C1 +

(γα−1 − λα−1)

[α− 1]q
C2 = −

∫ γ

λ

(∫ s

0

(s− qm)(α−1)

Γq(α)
h(m)dqm

)
dqs,

(k(ηα − ξα)

[α]q
−

Γq(α)

Γq(α− ν)

)
C1 +

(k(ηα−1 − ξα−1)

[α− 1]q
−

Γq(α− 1)

Γq(α− ν − 1)

)
C2

=

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
h(m)dqm− k

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
h(m)dqm)dqs

Solving these equations simultaneously, we obtain

C1 =
1

∆

{
− δ4

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
h(m)dqm)dqs

−δ2

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
h(m)dqm+ kδ2

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
h(m)dqm)dqs

}
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C2 =
1

∆

{
δ3

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
h(m)dqm)dqs

+δ1

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
h(m)dqm− kδ1

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
h(m)dqm)dqs

}

Substituting the values of C1 and C2 in (3), we get the desired result u(t).
Define B = {u : u ∈ C([0, 1]), Dµ

qu ∈ C([0, 1])} equipped with the norm
‖u‖ = maxt∈[0,1] |u(t)| + maxt∈[0,1] |(D

µ
q u)(t)|, The space B is a Banach space.

In this space we consider the classical given by d(u, v) = supt∈[0,1]{|u(t)−v(t)|},
and it is a known fact (B, d) is a complete metric space.

In view of Lemma 2.7, we defined an operator T : B → B by

(Tu)(t) =M
[ ∫ t

0

(t− qm)(α−1)

Γq(α)
f(m, u(m), (Dµ

q u)(m))dqm

+
(δ1t

α−2 − δ2t
α−1)

∆

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
f(m, u(m), (Dµ

qu)(m))dqm

+
(δ3t

α−2 − δ4t
α−1)

∆

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
f(m, u(m), (Dµ

qu)(m))dqm)dqs

+
k(δ2t

α−1 − δ1t
α−2)

∆

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
f(m, u(m), (Dµ

qu)(m))dqm)dqs
]

+N
[ ∫ t

0

(t− qm)(α+β−1)

Γq(α+ β)
g(m, u(m), (Dµ

qu)(m))dqm

+
(δ1t

α−2 − δ2t
α−1)

∆

∫ 1

0

(1− qm)(α+β−ν−1)

Γq(α + β − ν)
g(m, u(m), (Dµ

qu)(m))dqm

+
(δ3t

α−2 − δ4t
α−1)

∆

∫ γ

λ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
g(m, u(m), (Dµ

qu)(m))dqm)dqs

+
k(δ2t

α−1 − δ1t
α−2)

∆

∫ η

ξ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
g(m, u(m), (Dµ

qu)(m))dqm)dqs
]

for any t ∈ [0, 1].
For the sake of convenience, we set

∆1 =
|δ1|+ |δ2|

|∆|
; ∆2 =

|δ3|+ |δ4|

|∆|
;

∆3 =
Γq(α− 1)|δ1|

|∆|Γq(α− µ− 1)
+

Γq(α)|δ2|

|∆|Γq(α− µ)
;

∆4 =
Γq(α− 1)|δ3|

|∆|Γq(α− µ− 1)
+

Γq(α)|δ4|

|∆|Γq(α− µ)
;

µ1 =
Γq(α− µ+ 1) + Γq(α + 1)

Γq(α− µ+ 1)Γq(α + 1)
;µ2 =

Γq(α + β − µ+ 1) + Γq(α + β + 1)

Γq(α + β − µ+ 1)Γq(α + β + 1)
;
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µ3 =
∆1

Γq(α− ν + 1)
+

|k|∆1(η
α+1 − ξα+1)

Γq(α + 2)
+

∆2(γ
α+1 − λα+1)

Γq(α + 2)
;

µ4 =
∆1

Γq(α + β − ν + 1)
+

|k|∆1(η
α+β+1 − ξα+β+1)

Γq(α + β + 2)
+

∆2(γ
α+β+1 − λα+β+1)

Γq(α + β + 2)
;

µ5 =
∆3

Γq(α− ν + 1)
+

|k|∆3(η
α+1 − ξα+1)

Γq(α + 2)
+

∆4(γ
α+1 − λα+1)

Γq(α + 2)
;

µ6 =
∆3

Γq(α + β − ν + 1)
+

|k|∆3(η
α+β+1 − ξα+β+1)

Γq(α + β + 2)
+

∆4(γ
α+β+1 − λα+β+1)

Γq(α + β + 2)
;

Λ = |M |(µ1 + µ3 + µ5) + |N |(µ2 + µ4 + µ6).

3 Main results

Now, we prove the existence of solution of (1) relies on a generalized coupled
point theorem in the space of the continuous functions defined on [0,1].

For our study, we need to introduce the class of functions A defined by
those functions φ : [0,∞) → [0,∞) which are nondecreasing and such that
I−φ ∈ B. where I denotes the identity mapping on [0,∞) and B is the class
of function ψ : [0,∞) → [0,∞) which is nondecreasing and satisfies ψ(t) = 0
if and only if t = 0.

Lemma 3.1 [15] Let G : C[0, 1]×C[0, 1] → C[0, 1] be a mapping satisfying

d(G(u1, v1), G(u2, v2)) ≤ φ(max(d(u1, u2), d(v1, v2)));

for any u1, v1, u2, v2 ∈ C[0, 1].
Then G has a unique ϕ-coupled fixed point. where φ ∈ A and ϕ : [0, 1] → [0, 1]
is a continuous function.

Theorem 3.2 Assume that:
(H1) f, g ∈ C([0, 1]× R× R,R) and f, g satisfies

|f(t, u,Dµ
qu)− f(t, v,Dµ

q v)| ≤
γ1
2
φ1(max(|u− v|, |Dµ

qu−Dµ
q v|)),

|g(t, u,Dµ
qu)− g(t, v,Dµ

q v)| ≤
γ2
2
φ2(max(|u− v|, |Dµ

qu−Dµ
q v|)).

for any t ∈ [0, 1] and u, v,Dµ
qu,D

µ
q v ∈ R;

(H2) φ(max(d(u, v), d(D
µ
qu,D

µ
q v))) = max{φ1(max(d(u, v), d(D

µ
qu,D

µ
q v))),

φ2(max(d(u, v), d(D
µ
qu,D

µ
q v)))}

where φ, φ1, φ2 ∈ A and

0 < γ1 ≤ |M |−1
[ 1

Γq(α+ 1)
+ µ3

]−1

, 0 < γ2 ≤ |N |−1
[ 1

Γq(α + β + 1)
+ µ4

]−1

Then problem (1) has a unique solution on [0, 1]
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Proof we define the operator T̃ : B × B → B such that T̃ (u,Dµ
q u)(t) =

(Tu)(t), for any (u,Dµ
q u) ∈ C[0, 1] × C[0, 1], t ∈ [0, 1], by (H1), we have

T̃ (u,Dµ
qu) ∈ C[0, 1]. Notice that a solution u ∈ B of problem (1) is a ϕ-

coupled fixed point of the function T̃ : B → B. where ϕ : [0, 1] → [0, 1] is the
continuous function satisfying ϕ(t) = ρt, 0 < ρ < t.

We will show that T̃ satisfies assumption of Lemma 3.1.
In fact, taking into account our assumptions (H1)− (H2), for u, v,D

µ
qu,D

µ
q v ∈

C[0, 1] and t ∈ [0, 1], we have

d(T̃ (u,Dµ
qu), T̃ (v,D

µ
q v)) = sup

t∈[0,1]

{
|T̃ (u,Dµ

qu)(t)− T̃ (v,Dµ
q v)(t)|

}

≤ |M |
[ ∫ 1

0

(1− qm)(α−1)

Γq(α)
|f(m, u(m), (Dµ

qu)(m))− f(m, v(m), (Dµ
q v)(m))|dqm

+∆1

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
|f(m, u(m), (Dµ

qu)(m))− f(m, v(m), (Dµ
q v)(m))|dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
|f(m, u(m), (Dµ

qu)(m))− f(m, v(m), (Dµ
q v)(m))|dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
|f(m, u(m), (Dµ

qu)(m))− f(m, v(m), (Dµ
q v)(m))|dqm)dqs

]

+|N |
[ ∫ 1

0

(1− qm)(α+β−1)

Γq(α+ β)
|g(m, u(m), (Dµ

qu)(m))− g(m, v(m), (Dµ
q v)(m))|dqm

+∆1

∫ 1

0

(1− qm)(α+β−ν−1)

Γq(α + β − ν)
|g(m, u(m), (Dµ

qu)(m))− g(m, v(m), (Dµ
q v)(m))|dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
|g(m, u(m), (Dµ

qu)(m))− g(m, v(m), (Dµ
q v)(m))|dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
|g(m, u(m), (Dµ

qu)(m))− g(m, v(m), (Dµ
q v)(m))|dqm)dqs

]

≤ |M |
[ ∫ 1

0

(1− qm)(α−1)

Γq(α)

γ1

2
φ1(max(|u(m)− v(m)|, |(Dµ

qu)(m)− (Dµ
q v)(m)|))dqm

+∆1

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)

γ1

2
φ1(max(|u(m)− v(m)|, |(Dµ

qu)(m)− (Dµ
q v)(m)|))dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)

γ1

2
φ1(max(|u(m)− v(m)|, |(Dµ

qu)(m)− (Dµ
q v)(m)|))dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)

γ1

2
φ1(max(|u(m)− v(m)|, |(Dµ

qu)(m)− (Dµ
q v)(m)|))dqm)dqs

]

+|N |
[ ∫ 1

0

(1− qm)(α+β−1)

Γq(α+ β)

γ2

2
φ2(max(|u(m)− v(m)|, |(Dµ

q u)(m)− (Dµ
q v)(m)|))dqm
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+∆1

∫ 1

0

(1− qm)(α+β−ν−1)

Γq(α + β − ν)

γ2

2
φ2(max(|u(m)− v(m)|, |(Dµ

qu)(m)− (Dµ
q v)(m)|))dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)

γ2

2
φ2(max(|u(m)− v(m)|, |(Dµ

qu)(m)− (Dµ
q v)(m)|))dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)

γ2

2
φ2(max(|u(m)− v(m)|, |(Dµ

qu)(m)− (Dµ
q v)(m)|))dqm)dqs

]

≤
γ1

2
φ1(max(d(u, v), d(D

µ
qu,D

µ
q v)))|M |

[ ∫ 1

0

(1− qm)(α−1)

Γq(α)
dqm

+∆1

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
dqm+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
dqm)dqs

]

+
γ2

2
φ2(max(d(u, v), d(D

µ
qu,D

µ
q v)))|N |

[ ∫ 1

0

(1− qm)(α+β−1)

Γq(α + β)
dqm

+∆1

∫ 1

0

(1− qm)(α+β−ν−1)

Γq(α + β − ν)
dqm+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
dqm)dqs

]

=
|M |γ1

2
φ1(max(d(u, v), d(D

µ
qu,D

µ
q v)))

[ 1

Γq(α + 1)
+ µ3

]

+
|N |γ2
2

φ2(max(d(u, v), d((D
µ
qu), D

µ
q v)))

[ 1

Γq(α + β + 1)
+ µ4

]

≤ φ(max(d(u, v), d(Dµ
qu,D

µ
q v)))

where φ, φ1, φ2 are nondecreasing. Therefore, T̃ satisfies assumptions of Lemma
3.1, consequently, T̃ has a unique ϕ-conpled fixed point. Thus, the proof is
complete.

Our next existence result relies on a fixed point theorem due to O’Reganin.

Lemma 3.3 [15] Let U be an open set in a closed, convex set D of a Banach
space X. Assume 0 ∈ U . Also assume that T (U) is bounded and that T : U →
D is given by T = T1+T2, in which T1 = U → X is continuous and completely
continuous and T2 = U → X is a nonlinear contraction (i.e, there exists a
continuous nondecreasing function ρ : [0,∞) → [0,∞) satisfying ρ(z) < z for
z > 0 such that ‖T2(x) − T2(y)‖ ≤ ρ(‖x − y‖) for all x, y ∈ U). Then,either
(i) T has a fixed point in u ∈ U ; or
(ii) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λT (u), where U and ∂U ,
respectively, represent the closure and boundary of U on D.
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In the sequel, to apply Lemma 3.3, we define Ti : B → B, i = 1, 2 by

(T1u)(t) =M

∫ t

0

(t− qm)(α−1)

Γq(α)
f(m, u(m), (Dµ

q u)(m))dqm

+N

∫ t

0

(t− qm)(α+β−1)

Γq(α+ β)
g(m, u(m), (Dµ

qu)(m))dqm

(T2u)(t) =M
[(δ1tα−2 − δ2t

α−1)

∆

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
f(m, u(m), (Dµ

q u)(m))dqm

+
(δ3t

α−2 − δ4t
α−1)

∆

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
f(m, u(m), (Dµ

qu)(m))dqm)dqs

+
k(δ2t

α−1 − δ1t
α−2)

∆

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
f(m, u(m), (Dµ

qu)(m))dqm)dqs
]

+N
[(δ1tα−2 − δ2t

α−1)

∆

∫ 1

0

(1− qm)(α+β−ν−1)

Γq(α+ β − ν)
g(m, u(m), (Dµ

qu)(m))dqm

+
(δ3t

α−2 − δ4t
α−1)

∆

∫ γ

λ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
g(m, u(m), (Dµ

qu)(m))dqm)dqs

+
k(δ2t

α−1 − δ1t
α−2)

∆

∫ η

ξ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
g(m, u(m), (Dµ

qu)(m))dqm)dqs
]

Clearly

(Tu)(t) = (T1u)(t) + (T2u)(t), t ∈ [0, 1]

Theorem 3.4 Assume that
(H3) f, g : [0, 1]× R× R −→ R are continuous functions such that

|f(t, u,Dµ
qu)− f(t, v,Dµ

q v)| ≤ L1(|u− v|+ |Dµ
q u−Dµ

q v|),

|g(t, u,Dµ
qu)− g(t, v,Dµ

q v)| ≤ L2(|u− v|+ |Dµ
q u−Dµ

q v|)

for all t ∈ [0, 1], L1, L2 > 0, u, v,Dµ
qu,D

µ
q v ∈ R.

(H4) there exist functions h1, h2 ∈ C([0, 1],R+), and nondecreasing functions
ψ1, ψ2 : R

+ → R
+, (i = 1, 2), such that|f(t, u,Dµ

qu)| ≤ h1(t)ψ1(‖u‖), |g(t, u,D
µ
qu)| ≤

h2(t)ψ2(‖u‖)| for all t ∈ [0, 1], u,Dµ
qu ∈ R; where ‖hi(t)‖ = max0≤t≤1 |hi(t)|, i =

1, 2;
(H5) |M |L1(µ3 + µ5) + |N |L2(µ4 + µ6) < 1;
(H6) there exists a constant r > 0 such that

r

|M |h1(t)ψ1(‖r‖)(µ1 + µ3 + µ5) + |N |h2(t)ψ2(‖r‖)(µ2 + µ4 + µ6)
> 1

Then the boundary value problem (1) has at least one solution on [0, 1].
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Proof We shall show that the operators operators T1 and T2 satisfy all the
conditions of Lemma 3.3 on [0, 1].
For the sake of clarity, we split the proof into a number of steps.
Step 1. The operator T1 is continuous and completely continuous. For a
positive number r. Let us consider the set

Br = {u ∈ B : ‖u‖ ≤ r}

and show that T1(Br) is bounded. For any u ∈ Br, we have

|(T1u)(t)| = |M |

∫ t

0

(t− qm)(α−1)

Γq(α)
|f(m, u(m), (Dµ

q u)(m))|dqm

+|N |

∫ t

0

(t− qm)(α+β−1)

Γq(α + β)
|g(m, u(m), (Dµ

qu)(m))|dqm

≤
|M |‖h1‖ψ1(‖r‖)

Γq(α + 1)
+

|N |‖h2‖ψ2(‖r‖)

Γq(α + β + 1)

On the other hand we have

|Dµ
q (T1u)(t)| ≤ |M |

∫ t

0

(t− qm)(α−µ−1)

Γq(α− µ)
|f(m, u(m), (Dµ

qu)(m))|dqm

+|N |

∫ t

0

(t− qm)(α+β−µ−1)

Γq(α + β − µ)
|g(m, u(m), (Dµ

qu)(m))|dqm

≤
|M |‖h1‖ψ1(‖r‖)

Γq(α− µ+ 1)
+

|N |‖h2‖ψ2(‖r‖)

Γq(α+ β − µ+ 1)

thus, we have

‖T1u‖ ≤
Γq(α− µ+ 1) + Γq(α + 1)

Γq(α− µ+ 1)Γq(α + 1)
|M |‖h1‖ψ1(‖r‖)

+
Γq(α + β − µ+ 1) + Γq(α + β + 1)

Γq(α + β − µ+ 1)Γq(α + β + 1)
|N |‖h2‖ψ2(‖r‖)

= |M |‖h1‖ψ1(‖r‖)µ1 + |N |‖h2‖ψ2(‖r‖)µ2

Thus the operator T1(Br) is uniformly bounded. For any t1, t2 ∈ [0, 1], t1 < t2,
we have

|(T1u)(t1)− (T1u)(t2)| ≤
|M |

Γq(α)

{∫ t1

0

[
(t2 − qm)(α−1) − (t1 − qm)(α−1)

]

×|f(m, u(m), (Dµ
q u)(m))|dqm+

∫ t2

t1

(t2 − qm)(α−1)|f(m, u(m), (Dµ
qu)(m))|dqm

}

+
|N |

Γq(α + β)

{∫ t1

0

[
(t2 − qm)(α+β−1) − (t1 − qm)(α+β−1)

]
|g(m, u(m), (Dµ

qu)(m))|dqm
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+

∫ t2

t1

(t2 − qm)(α+β−1)|g(m, u(m), (Dµ
qu)(m))|dqm

}

≤
|M |‖h1‖ψ1(‖r‖)

Γq(α)

{∫ t1

0

[
(t2 − qm)(α−1) − (t1 − qm)(α−1)

]
dqm

+

∫ t2

t1

(t2 − qm)(α−1)dqm
}
+

|N |‖h2‖ψ2(‖r‖)

Γq(α+ β)

{∫ t1

0

[
(t2 − qm)(α+β−1)

−(t1 − qm)(α+β−1)
]
dqm+

∫ t2

t1

(t2 − qm)(α+β−1)dqm
}

On the other hand we have

|Dµ
q (T1u)(t1)−Dµ

q (T1u)(t2)| ≤
|M |

Γq(α− µ)

{∫ t1

0

[
(t2 − qm)(α−µ−1) − (t1 − qm)(α−µ−1)

]

×|f(m, u(m), (Dµ
q u)(m))|dqm+

∫ t2

t1

(t2 − qm)(α−µ−1)|f(m, u(m), (Dµ
qu)(m))|dqm

}

+
|N |

Γq(α + β − µ)

{∫ t1

0

[
(t2 − qm)(α+β−µ−1) − (t1 − qm)(α+β−µ−1)

]

×|g(m, u(m), (Dµ
qu)(m))|dqm+

∫ t2

t1

(t2 − qm)(α+β−µ−1)|g(m, u(m), (Dµ
qu)(m))|dqm

}

≤
|M |‖h1‖ψ1(‖r‖)

Γq(α− µ)

{∫ t1

0

[
(t2 − qm)(α−µ−1) − (t1 − qm)(α−µ−1)

]
dqm

+

∫ t2

t1

(t2 − qm)(α−µ−1)dqm
}
+

|N |‖h2‖ψ2(‖r‖)

Γq(α + β − µ)

×
{∫ t1

0

[
(t2 − qm)(α+β−µ−1) − (t1 − qm)(α+β−µ−1)

]
dqm+

∫ t2

t1

(t2 − qm)(α+β−µ−1)dqm
}

which is independent of u and tends to zero as t2 − t1 → 0. Thus, T1(Br)
is equicontinuous. Hence, by the Arzel-Ascoli theorem, T1(Br) is a rela-
tively compact set. Now, let un ∈ Br with ‖un − u‖ → 0. Then the limit
‖un(t) − u(t)‖ → 0 is uniformly valid on [0, 1]. From the uniform conti-
nuity of f(t, u,Dµ

qu) on the compact set [0, 1] × Br × Br. it follows that
‖f(t, un(t), (D

µ
q un)(t)) − f(t, u(t), (Dµ

qu)(t))‖ → 0 is uniformly valid on [0, 1].
Hence ‖T1un − T1u‖ → 0 as n → ∞ which proves the continuity of T1. This
completes the proof of step 1.
Step 2. T2 is a contraction on C([0, 1],R,R). For u, v ∈ B, we have

|(T2u)(t)− (T2v)(t)|

≤ |M |
[
∆1

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
|f(m, u(m), (Dµ

qu)(m))− f(m, v(m), (Dµ
q v)(m))|dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
|f(m, u(m), (Dµ

qu)(m))− f(m, v(m), (Dµ
q v)(m))|dqm)dqs



Existence of solutions for fractional q-difference equations ... 439

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
|f(m, u(m), (Dµ

qu)(m))− f(m, v(m), (Dµ
q v)(m))|dqm)dqs

]

+|N |
[
∆1

∫ 1

0

(1− qm)(α+β−υ−1)

Γq(α + β − υ)
|g(m, u(m), (Dµ

qu)(m))− g(m, v(m), (Dµ
q v)(m))|dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
|g(m, u(m), (Dµ

qu)(m))− g(m, v(m), (Dµ
q v)(m))|dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
|g(m, u(m), (Dµ

qu)(m))− g(m, v(m), (Dµ
q v)(m))|dqm)dqs

]

≤ |M |L1‖u− v‖
[ ∆1

Γq(α− υ + 1)
+

|k|∆1(η
α+1 − ξα+1)

Γq(α + 2)
+

∆2(γ
α+1 − λα+1)

Γq(α + 2)

]

+|N |L2‖u− v‖
[ ∆1

Γq(α + β − υ + 1)
+

|k|∆1(η
α+β+1 − ξα+β+1)

Γq(α + β + 2)
+

∆2(η
γ+β+1 − ξλ+β+1)

Γq(α + β + 2)

]

≤ (|M |L1µ3 + |N |L2µ4)‖u− v‖

On the other hand we have

|Dµ
q (T2u)(t)−Dµ

q (T2v)(t)| ≤ (|M |L1µ5 + |N |L2µ6)‖u− v‖

Thus, we have

‖T2u− T2v‖ ≤ [(|M |L1(µ3 + µ5) + |N |L2(µ4 + µ6)]‖u− v‖

Step 3. The set T (Br) is bounded. For any u ∈ Br, we have

|(T2u)(t)| ≤ |M |[∆1

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
|f(m, u(m), (Dµ

qu)(m))|dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
|f(m, u(m), (Dµ

qu)(m))|dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
|f(m, u(m), (Dµ

qu)(m))|dqm)dqs]

+|N |[∆1

∫ 1

0

(1− qm)(α+β−ν−1)

Γq(α + β − ν)
|g(m, u(m), (Dµ

qu)(m))|dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
|g(m, u(m), (Dµ

qu)(m))|dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
|g(m, u(m), (Dµ

qu)(m))|dqm)dqs]

≤ |M |‖h1‖ψ1(‖r‖)µ3 + |N |‖h2‖ψ2(‖r‖)µ4

On the other hand we have

|Dµ
q (T2u)(t)| ≤ |M |‖h1‖ψ1(‖r‖)µ5 + |N |‖h2‖ψ2(‖r‖)µ6
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Thus, we have

‖T2u‖ ≤ |M |‖h1‖ψ1(‖r‖)(µ3 + µ5) + |N |‖h2‖ψ2(‖r‖)(µ4 + µ6)

Thus, with the boundedness of the set T2(Br) implies that the set T (Br) is
bounded.
Step 4. Finally, it will be shown that either case (i) or case (ii) in Lemma 3.3
holds, we show that the case (ii) is not possible. On the contrary, we suppose
that (ii) holds. then, we have that there exist λ ∈ (0, 1) and u ∈ ∂Br, such
that u = λTu. so, we have ‖u‖ = r and

u(t) = λM
[ ∫ t

0

(t− qm)(α−1)

Γq(α)
f(m, u(m), (Dµ

qu)(m))dqm

+
(δ1t

α−2 − δ2t
α−1)

∆

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
f(m, u(m), (Dµ

qu)(m))dqm

+
(δ3t

α−2 − δ4t
α−1)

∆

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
f(m, u(m), (Dµ

qu)(m))dqm)dqs

+
k(δ2t

α−1 − δ1t
α−2)

∆

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
f(m, u(m), (Dµ

qu)(m))dqm)dqs
]

+λN
[ ∫ t

0

(t− qm)(α+β−1)

Γq(α+ β)
g(m, u(m), (Dµ

qu)(m))dqm

+
(δ1t

α−2 − δ2t
α−1)

∆

∫ 1

0

(1− qm)(α+β−ν−1)

Γq(α + β − ν)
g(m, u(m), (Dµ

qu)(m))dqm

+
(δ3t

α−2 − δ4t
α−1)

∆

∫ γ

λ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
g(m, u(m), (Dµ

qu)(m))dqm)dqs

+
k(δ2t

α−1 − δ1t
α−2)

∆

∫ η

ξ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
g(m, u(m), (Dµ

qu)(m))dqm)dqs
]

Using the assumptions (H4) and (H6), we get

|u(t)| ≤ λ|M |‖h1‖ψ1(‖r‖)
( 1

Γq(α + 1)
+ µ3

)
+ λ|N |‖h2‖ψ2(‖r‖)

( 1

Γq(α+ β + 1)
+ µ4

)

On the other hand we have

|Dµ
q u(t)| ≤ λ|M |‖h1‖ψ1(‖r‖)

( 1

Γq(α− µ+ 1)
+ µ5

)

+λ|N |‖h2‖ψ2(‖r‖)
( 1

Γq(α+ β − µ+ 1)
+ µ6

)

Thus, we have

‖u(t)‖ ≤ λ|M |‖h1‖ψ1(‖r‖)
( 1

Γq(α + 1)
+ µ3

)
+ λ|N |‖h2‖ψ2(‖r‖)

( 1

Γq(α + β + 1)
+ µ4

)
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+λ|M |‖h1‖ψ1(‖r‖)
( 1

Γq(α− µ+ 1)
+ µ5

)
+ λ|N |‖h2‖ψ2(‖r‖)

( 1

Γq(α + β − µ+ 1)
+ µ6

)

= λ|M |‖h1‖ψ1(‖r‖)(µ1 + µ3 + µ5) + λ|N |‖h2‖ψ2(‖r‖)(µ2 + µ4 + µ6)

Which yields

r ≤ λ|M |‖h1‖ψ1(‖r‖)(µ1 + µ3 + µ5) + λ|N |‖h2‖ψ2(‖r‖)(µ2 + µ4 + µ6)

Thus, we get a contradiction: Which yields

r

|M |‖h1‖ψ1(‖r‖)(µ1 + µ3 + µ5) + |N |‖h2‖ψ2(‖r‖)(µ2 + µ4 + µ6)
≤ λ < 1

Thus the operators T1 and T2 satisfy all the conditions of Lemma 3.3. Hence,
the operator T has at least one fixed point u ∈ Br, which is the solution of
the problem. This completes the proof.

Theorem 3.5 Suppose that the assumption (H3) holds and that ΛK < 1
and L = max{L1, L2}. Then the boundary value problem (1) has a unique
solution.

Proof Let us fix maxt∈[0,1] |f(t, 0, 0)| = K1,maxt∈[0,1] |g(t, 0, 0)| = K2 and

K = max{K1, K2}, choosing r > Λ
1−ΛL

, We show that TBr ∈ Br, where

Λ = |M |K1(µ1+µ3+µ5)+ |M |K2(µ2+µ4+µ6). and Br = {u ∈ B : ‖u‖ ≤ r}.
For u ∈ Br, we have

|(Tu)(t)| ≤ |M |
[ ∫ 1

0

(t− qm)(α−1)

Γq(α)
[|f(m, u(m), (Dµ

qu)(m))− f(m, 0, 0)|+ |f(m, 0, 0)|]dqm

+∆1

∫ 1

0

(1− qm)(α−ν−1)

Γq(α− ν)
[|f(m, u(m), (Dµ

qu)(m))− f(m, 0, 0)|+ |f(m, 0, 0)|]dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
[|f(m, u(m), (Dµ

qu)(m))− f(m, 0, 0)|+ |f(m, 0, 0)|]dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α−1)

Γq(α)
[|f(m, u(m), (Dµ

qu)(m))− f(m, 0, 0)|+ |f(m, 0, 0)|]dqm)dqs
]

+|N |
[ ∫ t

0

(t− qm)(α+β−1)

Γq(α + β)
[|g(m, u(m), (Dµ

qu)(m))− g(m, 0, 0)|+ |g(m, 0, 0)|]dqm

+∆1

∫ 1

0

(1− qm)(α+β−ν−1)

Γq(α + β − ν)
[|g(m, u(m), (Dµ

qu)(m))− g(m, 0, 0)|+ |g(m, 0, 0)|]dqm

+∆2

∫ γ

λ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
[|g(m, u(m), (Dµ

qu)(m))− g(m, 0, 0)|+ |g(m, 0, 0)|]dqm)dqs

+|k|∆1

∫ η

ξ

(

∫ s

0

(s− qm)(α+β−1)

Γq(α + β)
[|g(m, u(m), (Dµ

qu)(m))− g(m, 0, 0)|+ |g(m, 0, 0)|]dqm)dqs
]

≤ |M |(L1r +K1)
( 1

Γq(α + 1)
+ µ3

)
+ |N |(L2r +K2)

( 1

Γq(α+ β + 1)
+ µ4

)
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On the other hand we have

|Dµ
q (Tu)(t)| ≤ |M |(L1r +K1)

( 1

Γq(α− µ+ 1)
+ µ5

)
+ |N |(L2r +K2)

( 1

Γq(α+ β − µ+ 1)
+ µ6

)

thus, we have

‖Tu‖ ≤
[
|M |(µ1 + µ3 + µ5) + |N |(µ2 + µ4 + µ6)

]
Lr

+
[
|M |K1(µ1 + µ3 + µ5) + |N |K2(µ2 + µ4 + µ6)

]

= ΛLr + Λ ≤ r

Which means that TBr ∈ Br.
Now, for u, v ∈ B we obtain

|(Tu)(t)− (Tv)(t)| ≤ |M |L1‖u− v‖
( 1

Γq(α + 1)
+ µ3

)
+ |N |L2‖u− v‖

( 1

Γq(α + β + 1)
+ µ4

)

On the other hand we have

|Dµ
q (Tu)(t)−Dµ

q (Tv)(t)| ≤ |M |L1‖u− v‖
( 1

Γq(α− µ+ 1)
+ µ5

)

+|N |L2‖u− v‖
( 1

Γq(α + β − µ+ 1)
+ µ6

)

thus, we have

‖Tu− Tv‖ ≤ |M |L1(µ1 + µ3 + µ5)‖u− v‖+ |N |L2(µ2 + µ4 + µ6)‖u− v‖ ≤ ΛL‖u− v‖

As ΛL < 1, therefore T is a contraction. Thus, the conclusion of the theorem
follows by the contraction mapping principle (the Banach fixed point theorem).

4 Some examples

In this section we present some examples to illustrate our results.

Example 4.1 Consider the following fractional q-difference boundary value
problem:

{
(D2.5

q u)(t) = 1
6
f(t, u(t), (D0.2

q u)(t)) + 1
4
I0.5q g(t, u(t), (D0.2

q u)(t));

u(0) =
∫ 1

4

1

6

u(s)dqs = 0, (D0.3
q u)(1) =

∫ 1

2

1

3

u(s)dqs.

where α = 2.5, β = 0.5, µ = 0.2, υ = 0.3, q = 0.5, λ = 1
6
, γ = 1

4
, ξ = 1

3
, η =

1
2
, k = 1,M = 1

6
, N = 1

4
, f(t, u,D0.2

q u) = t2

2

(
|u(t)|+|(D0.2

q
u)(t)|

1+|u(t)|+|(D0.2
q
u)(t)|

+sint
)
, g(t, u,D0.2

q u) =
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|u(t)|+|(D0.2
q u)(t)|+cost+1, It is clear thatf, g ∈ C([0, 1]×R×R.R). Moreover

for t ∈ [0, 1] and u, v,D0.2
q u,D0.2

q v ∈ R, we have

|f(t, u,D0.2
q u)− f(t, v,D0.2

q v)|

≤
1

2

( |u(t)− v(t)|+ |(D0.2
q u)(t)− (D0.2

q v)(t)|

(1 + |u(t)|+ |(D0.2
q u)(t)|)(1 + |v(t)|+ |(D0.2

q v)(t)|)

)

≤
1

2

( |u(t)− v(t)|

1 + |u(t)− v(t)|
+

|(D0.2
q u)(t)− (D0.2

q v)(t)|

1 + |(D0.2
q u)(t)− (D0.2

q v)(t)|

)

≤ max(φ1(|u(t)− v(t)|), φ1(|(D
0.2
q u)(t)− (D0.2

q v)(t)|))

= φ1(max(|u(t)− v(t)|, |(D0.2
q u)(t)− (D0.2

q v)(t)|))

On the other hand we have

|g(t, u,D0.2
q u)− g(t, v,D0.2

q v)|

≤ |u(t)− v(t)|+ |(D0.2
q u)(t)− (D0.2

q v)(t)|

≤ 2max(φ2(|u(t)− v(t)|), φ2(|(D
0.2
q u)(t)− (D0.2

q v)(t)|))

= φ2(max(
1

2
|u(t)− v(t)|,

1

2
|(D0.2

q u)(t)− (D0.2
q v)(t)|))

Where φ, φ1, φ2 : [0,∞) → [0,∞) and given by φ1(t) = t
1+t
, φ2(t) = t

2
, so

φ(t) = t
1+t

. It is easily checked that φ is nondecreasing and φ ∈ A . With the

given data, it is found that 2 = γ1 < |M |−1
[

1
Γq(α+1)

+ µ3

]−1

≈ 2.477779; 2 =

γ2 < |N |−1
[

1
Γq(α+β+1)

+ µ4

]−1

≈ 2.602678. Thus, By Theorem 3.2, the bound-

ary value problem has a unique solution on [0, 1].

Example 4.2 Consider the following fractional q-difference boundary value
problem:

{
(D2.5

q u)(t) = 1
6
f(t, u(t), (D0.3

q u)(t)) + 1
8
I0.5q g(t, u(t), (D0.3

q u)(t));

u(0) =
∫ 1

4

1

6

u(s)dqs = 0, (D0.3
q u)(1) =

∫ 1

2

1

3

u(s)dqs.

where α = 2.5, β = 0.5, µ = υ = 0.3, q = 0.5, λ = 1
6
, γ = 1

4
, ξ = 1

3
, η = 1

2
, k =

1,M = 1
6
, N = 1

8
, f(t, u,D0.3

q u) = 1
(3+t)2

(
|u(t)|+2|(D0.3

q u)(t)|+ |u(t)|
1+|u(t)|

)
, g(t, u,D0.3

q u) =

1
5+t2

(
2|u(t)|+|(D0.3

q u)(t)|+
|(D0.3

q
u)(t)|

1+|(D0.3
q
u)(t)|

)
,It is clear that L1 =

2
9
;L2 =

2
5
; h1(t) =

1
(3+t)2

; h2(t) = 1
5+t2

; Ψ1(‖u‖) = Ψ2(‖u‖) = 2‖u‖ + 1. With the given data, it

is found that |M |L1(µ3 + µ5) + |N |L2(µ4 + µ6) ≈ 0.168965 < 1, r > 0.210682.
Thus all the assumptions of theorem 3.2 are satisfied. Hence, the boundary
value problem has at least one solution on [0, 1].



444 Chengtao Fan and Qi Ge

Example 4.3 Consider the following fractional q-difference boundary value
problem:

{
(D2.5

q u)(t) = 1
5
f(t, u(t), (D0.3

q u)(t)) + 1
10
I0.5q g(t, u(t), (D0.3

q u)(t));

u(0) =
∫ 1

4

1

6

u(s)dqs = 0, (D0.3
q u)(1) =

∫ 1

2

1

3

u(s)dqs.

where α = 2.5, β = 0.5, µ = υ = 0.3, q = 0.5, λ = 1
6
, γ = 1

4
, ξ = 1

3
, η = 1

2
, k =

1,M = 1
5
, N = 1

10
, f(t, u,D0.3

q u) = 1
(t+2)2

(
|u(t)|+

|(D0.3
q
u)(t)|

1+|D0.3
q
u)(t)|

)
+sint, g(t, u,D0.3

q u) =

t2

5

(
|u(t)|

1+|u(t)|
+ |(D0.3

q u)(t)|
)
+ cost.It is easily checked thatL1 = 1

4
, L2 = 1

5
.as

|f(t, u,D0.3
q u)−f(t, v,D0.3

q v)| < 1
4

(
|u(t)−v(t)|+|(D0.3

q u)(t)−(D0.3
q v)(t)|

)
; |g(t, u,D0.3

q u)−

g(t, v,D0.3
q v)| < 1

5

(
|u(t)−v(t)|+|(D0.3

q u)(t)−(D0.3
q v)(t)|

)
, Clearly L = max{L1, L2} =

1
4
, With the given data, it is found that µ1 ≈ 1.373854;µ2 ≈ 0.835951;µ3 ≈

1.64881;µ4 ≈ 1.155926;µ5 ≈ 1.174139;µ6 ≈ 0.828387;∆ ≈ 1.121388. so
∆L = 0.280347 < 1. Which satisfies theorem 3.5. Thus the boundary value
problem has a unique solution.
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