# EXISTENCE AND REGULARITY OF SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS WITHOUT SIGN CONDITION 

Jaouad IGBIDA<br>Département de Mathématiques, Centre Régional des Métiers<br>de l'Education et de la Formation El Jadida, Maroc.

Ahmed JAMEA<br>Département de Mathématiques, Centre Régional des Métiers de l'Education et de la Formation El Jadida, Maroc.

Abderrahmane EL HACHIMI<br>Département de Mathématiques,<br>Faculté des Sciences, Université Mohammed V- Agdal Rabat, Maroc.


#### Abstract

In this paper we study the existence of bounded weak solutions for some nonlinear Dirichlet problems in a bounded domains. Without any sign condition on the term which growth quadratically on the gradient and for a given function $f$ in $L^{m}(\Omega)$ with $m>N / 2$, we prove the existence of bounded weak solutions via $L^{\infty}$-estimates. Our methods relay on Schauder fixed point theorem, a priori estimates and Stampacchia's $L^{\infty}$-regularity.


Mathematics Subject Classification: 35K55, 35B45, 35B65.

Keywords: Nonlinear elliptic equations, critical growth, absorption terms, existence, a priori estimates, weak solutions.

## 1 Introduction

This article is devoted to study the Dirichlet problem for some non linear elliptic equations whose simplest model is

$$
\begin{gathered}
a(x, u)-\Delta u+g(x, u)|\nabla u|^{2}=f(x) \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0 .
\end{gathered}
$$

For a bounded domain $\Omega$ in $\mathbb{R}^{N}, N>2, \Delta$ denotes the Laplace operator.
Our research are considered without imposing any limitation on the growth of $g(x, s)$ as tends to infinity and without assuming any sign condition on the Carathéodory function $g$. Let us note that $g(x, s)$ is a Carathéodory function on $\Omega \times(0,+\infty)$ which may have a singularity at $s=0$ and my change of sign. The Carathéodory function $a(.,$.$) grows in u$ like $|u|^{r}$ and satisfy some supplementary conditions which are described below. Under suitable conditions on the data, we shall study existence and regularity of solutions for problem $(P)$.

On the on hand, in some papers, it is proved existence of solutions when the source therm $f$ is small in a suitable norm. On the other hand, condition on the function $g$ have been considered in order to get a solution for $f$ in a given Lebesgue space. Let us not that in [11] the function $g$ is considerer such that $g(x, s)=b(s)$ and $b$ is an increasing function with $b(0)=0$.

In this paper, to prove existence of bounded weak solutions, we assume that $f \in L^{m}, m>\frac{N}{2}, g(x, s)$ is a Carathéodory function on $\Omega \times(0,+\infty)$ may have a singularity at $s=0$ and my change of sign and $a(.,$.$) is a Carathéodory$ function satisfying some conditions as bellow. We shall obtain solution by approximating process. Using a priori estimates, Schauder fixed point theorem and Stampacchia's $L^{\infty}$-regularity results we shall show that the approximated solutions converges to a solution of problem $(P)$.

After the classical references of Ladyzenskaja and Lions (see [19] and [20]), many works have been devoted to elliptic problems with lower order terms having quadratic growth with respect to the gradients (see e.g. [8], [9], [14], [16], [17], [18], [23] and the references therein).

This kind of problems though being physically natural, does not seem to have been studied in the literature. For the simpler case where $a=0, g$ is a constant (we can assume $g=1$ without loss of generality) and $f \in L^{\frac{N}{2}}$; that is when $(P)$ of the form

$$
\begin{align*}
-\Delta u & =|\nabla u|^{2}+f(x) \text { in } \Omega  \tag{1}\\
u & =0 \text { on } \partial \Omega
\end{align*}
$$

the problem has been studied in [18], where the change of variable $v=e^{u}-1$ leads to the following problem

$$
\begin{align*}
-\Delta v & =f(x)(v+1) \text { in } \Omega,  \tag{2}\\
v & =0 \text { on } \partial \Omega .
\end{align*}
$$

Then, provided that $f \in L^{\frac{N}{2}}$, it is proved there that (1) admits a unique solution in $W_{0}^{1,2}(\Omega)$.

In the case where $g$ is constant and $f=0, a=0$, which is special situations, this equation may be considered as the stationary part of equation

$$
u_{t}-\Delta u=\epsilon|\nabla u|^{2} .
$$

This equation is well known as the Kardar-Parisi-Zhang equation (see [17]). It presents also the viscosity approximation as $\epsilon \rightarrow+\infty$ of Hamilton-Jacobi equations from stochastic control theory (see [22]).

Finally, let us recall that the case where $f \in L^{q}$ with $q>\frac{N}{2}, a=0$, and $g$ is a Carathéodory function satisfying sign conditions, have been considered in $[1,4,8]$. Existence and regularity results have been obtain in $[6,8,9]$ and the uniqueness results have been shown in [2].

## 2 Assumptions and main result

We are interested in establishing an existence result for the following elliptic problem in $\Omega$

$$
\begin{gathered}
-\Delta u+a(x, u)+h(x, u, \nabla u)=f(x) \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0 .
\end{gathered}
$$

$\Omega$ is a bounded domain of $\mathbb{R}^{N}$ with $N>2$, with boundary $\Gamma=\partial \Omega$. Let us set

$$
h(x, u, \nabla u)=g(x, u)|\nabla u|^{2} .
$$

We assume that there exist an increasing function

$$
b:(0,+\infty) \rightarrow(0,+\infty)
$$

and $\beta \in(0,1)$ such that the Carathéodory function $g$ satisfies the following hypothesis

$$
\begin{equation*}
-\beta \leq s g(x, s) \leq b(s), \quad \forall s>0, \text { and a.e. } x \in \Omega \tag{3}
\end{equation*}
$$

We remarque that no condition on the upper growth of $g(x, s)$ as $s$ goes to infinity is imposed. In particular, the nonlinearity can have a singularity at zero.

The function $a(.,$.$) satisfy the following hypothesis:$
$\left(A_{1}\right) a(x, s): \Omega \times R \rightarrow R$ is measurable in $x \in R^{N}$ for any fixed $s \in R$ and continuous in $s$ for a.e. $x$.
$\left(A_{2}\right)$ There exists a constant $c>0$ and a positive function $\gamma(x) \in L^{\infty}(\Omega)$ such that for all $s$ and almost every $x$

$$
a(x, s) \geq \gamma(x) s+c
$$

$\left(A_{3}\right)$ For any $\alpha>0$ the function

$$
a_{\alpha}(x)=\sup _{|s| \leq \alpha}\left\{a(x, s)|s|^{r-1}\right\}
$$

is integrable over $\Omega$.

The source terms $f$ satisfies the following hypotheses

$$
f \in L^{m}(\Omega), m>\frac{N}{2}
$$

We look for a solution $u$ in $H_{0}^{1}(\Omega)$ such that both function $a(x, u)$ and $h(x, u, \nabla u)$ are integrable, and the following equality holds

$$
\begin{equation*}
\int_{\Omega} a(x, u) \phi+\int_{\Omega} \nabla u \nabla \phi+\int_{\Omega} h(x, u, \nabla u) \phi=\int_{\Omega} f \phi \tag{4}
\end{equation*}
$$

for any test function $\phi$ in $C_{0}^{\infty}(\Omega)$.
For all $k \in \mathbb{R}^{+}$, we recall the definition of a truncated function $T_{k}(s)$ defined by

$$
T_{k}(z)=\left\{\begin{array}{ccc}
z & \text { if } & |z| \leq k \\
k & \text { if } & z>k \\
-k & \text { if } & z<-k
\end{array}\right.
$$

We also consider

$$
G_{k}(z)=z-T_{k}(z)=(|z|-k)^{+} \operatorname{sign}(z) .
$$

Theorem 2.1. Let $r>1$ and $m>\frac{N}{2}$. If we assume that (3) and $\left(A_{1}-A_{3}\right)$ are satisfied, then the problem $(P)$ has at least one solution which belongs to $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$.

The proof follows by considering a method of penalization and approximation to approach the solutions of the problem. Next, a priori estimates are obtained on the solutions and we give some consequences of these estimates. Finally, we passe to the limit.

## 3 Penalization and approximation

This sections is devoted to prove some basic estimates for a sequence of approximated problems. We denote by $c$ a positive constant which may only depend on the parameters of our problem, its value my vary from line to line.

We define also the following Carathéodory function on $\Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$ as follows:

$$
h_{n}(x, s, \zeta)=g_{n}(x, s) \frac{|\zeta|^{2}}{1+\frac{1}{n}|\zeta|^{2}}
$$

where

$$
g_{n}(x, s)=\left\{\begin{array}{ccc}
0 & \text { if } & s \leq 0 \\
n^{2} s^{2} T_{n} g(x, s) & \text { if } & 0<s<\frac{1}{n} \\
T_{n} g(x, s) & \text { if } & \frac{1}{n} \leq s
\end{array} .\right.
$$

For any $n \in \mathbb{N}$ we consider

$$
A_{n}(x, s)=a_{n}(x, s) \frac{|s|^{r-1}}{1+\frac{1}{n}|s|^{r-1}}
$$

where

$$
a_{n}(x, s)=\gamma(x) T_{n}(s)
$$

We define now the function $\Lambda_{n}$ by

$$
\Lambda_{n}(x, s, \zeta)=h_{n}(x, s, \zeta)+A_{n}(x, s)
$$

This function is bounded. Indeed, $g_{n}(x, s), \gamma(x)$ and $\frac{|\zeta|^{2}}{1+\frac{1}{n}|\zeta|^{2}}$ are bounded.
Then we have the following approximating problems

$$
\begin{equation*}
-\Delta u+\Lambda_{n}(x, u, \nabla u)=f(x) \text { in } \Omega \tag{5}
\end{equation*}
$$

We recall that $f \in L^{m}(\Omega)$ with $m>N / 2$. We consider the following operator

$$
\mathbb{L}_{n}: H_{0}^{1}(\Omega) \rightarrow L^{m}(\Omega),
$$

defined by

$$
\mathbb{L}_{n}(u)=-A_{n}(x, u)-h_{n}(x, u, \nabla u)+f(x) .
$$

Denoting by $u_{k}$ a sequence of function in $H_{0}^{1}(\Omega)$ such that $u_{k} \rightarrow u$ in $H_{0}^{1}(\Omega)$ and denoting

$$
G_{n, k}=\left|\left[h_{n}\left(x, u_{k}, \nabla u_{k}\right)-h_{n}(x, u, \nabla u)\right]\right|^{m}
$$

and

$$
A_{n, k}=\left|\left[A_{n}\left(x, u_{k}\right)-A_{n}(x, u)\right]\right|^{m}
$$

As an application of the dominated convergence theorem, we infer, from the convergence of $u_{k}$ to $u$ and $\nabla u_{k}$ to $\nabla u$ a.e. $x \in \Omega$ and from the boundedness of the operators $g_{n}(x, s)$ and $a_{n}(x, s)$ that

$$
\lim _{k \rightarrow \infty} \int_{\Omega} G_{n, k}=0
$$

and

$$
\lim _{k \rightarrow \infty} \int_{\Omega} A_{n, k}=0
$$

Then,

$$
\mathbb{L}_{n} u_{k} \rightarrow \mathbb{L}_{n} u \text { in } L^{m}(\Omega), \text { as } k \text { tends to infinity. }
$$

Therefor, $\mathbb{L}_{n}$ is continuous.
We consider now the inverse of the Laplacian operator

$$
(-\Delta)^{-1}: L^{m}(\Omega) \rightarrow H_{0}^{1}(\Omega)
$$

Then, the solutions of (5) are the fixed points of the composition operator

$$
\Gamma_{n} \equiv(-\Delta)^{-1} \circ \mathbb{L}_{n} .
$$

Since $m>N / 2$, we deduce that the operator $(-\Delta)^{-1}$ is compact and hence the composition of it with the continuous operator $\mathbb{L}_{n}$ i.e. that $\Gamma_{n}$ is also compact.

Let us now observe that,

$$
\begin{gathered}
\left\|\mathbb{L}_{n} u\right\|_{m} \leq\left\|h_{n}(x, u, \nabla u)\right\|_{m}+\left\|A_{n}(x, u)\right\|_{m}+\|f\|_{m} \\
\leq\|f\|_{m}+2 n^{2}|\Omega|^{1 / m}
\end{gathered}
$$

By the continuity of $(-\Delta)^{-1}$, this implies that there exists a positive constante $R$ which depond on $n$ such that

$$
\left\|\Gamma_{n} u\right\|_{H_{0}^{1}(\Omega)} \leq R(n) .
$$

So that, The operator $\Gamma_{n}$ maps the ball in $H_{0}^{1}(\Omega)$ centered at zero and with radius $R(n)$ into it self. Finally from the Schauder fixed point theorem there exists a fixed point $u_{n} \in H_{0}^{1}(\Omega)$ of $\Gamma_{n}$. That means that a solution of the approximating problems.

Let us consider the folowing notation

$$
\gamma=2^{*}\left[\frac{1}{\left(2^{*}\right)^{\prime}}-\frac{1}{m}\right],
$$

where $2^{*}=\frac{2 N}{N-2}$.

$$
\begin{equation*}
\eta=\lambda^{-2^{*}} 2^{2^{*} \frac{\gamma}{\gamma-1}} \lambda^{-2^{*}}(1-\beta)^{-2^{*}}| | f \|_{m}^{2^{*}}|\Omega|^{\gamma-1} \tag{6}
\end{equation*}
$$

where $\lambda$ is the Sobolev constants defined by

$$
\lambda=\inf _{w \in H_{0}^{1}(\Omega)-\{0\}} \frac{\|w\|^{2}}{\|w\|_{2^{*}}^{2}} .
$$

Let us note that, there exist $\kappa>1$ such that

$$
\begin{equation*}
\left.\left.s g_{n}(x, s) \leq \kappa, \forall s \in\right] 0, \eta\right], \text { a.e } x \in \Omega \tag{7}
\end{equation*}
$$

and from 3 that

$$
\begin{equation*}
s g_{n}(x, s)+\beta \geq 0 \text {, a.e } x \in \Omega, \text { for all } s \in \mathbb{R} \tag{8}
\end{equation*}
$$

## for every $n$.

We prove now that $u_{n}$ is bounded in $H_{0}^{1}(\Omega) \cap L^{r}(\Omega)$. From the approximated problem on has

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2}+\int_{\Omega} \Lambda_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n} \leq \int_{\Omega} f u_{n}
$$

It follows

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2}+\int_{\Omega} h_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n}+\int_{\Omega} A_{n}\left(x, u_{n}\right) u_{n} \leq \int_{\Omega} f u_{n} .
$$

Then

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{n}\right|^{2}+\int_{\Omega} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} u_{n} \\
& +\int_{\Omega} a_{n}\left(x, u_{n}\right) \frac{\left|u_{n}\right|^{r-1}}{1+\frac{1}{n}\left|u_{n}\right|^{r-1}} u_{n} \leq \int_{\Omega} f u_{n}
\end{aligned}
$$

That is equivalent to

$$
\begin{gathered}
(1-\beta) \int_{\Omega}\left|\nabla u_{n}\right|^{2}+\int_{\Omega}\left[g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} u_{n}+\beta\left|\nabla u_{n}\right|^{2}\right] \\
+\int_{\Omega} a_{n}\left(x, u_{n}\right) \frac{\left|u_{n}\right|^{r-1}}{1+\frac{1}{n}\left|u_{n}\right|^{r-1}} u_{n} \leq \int_{\Omega} f u_{n}
\end{gathered}
$$

From (8) on has

$$
u_{n} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}}+\beta \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \geq 0, \text { a.e } x \in \Omega
$$

By consequence

$$
u_{n} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}}+\beta\left|\nabla u_{n}\right|^{2} \geq 0
$$

Therefor

$$
\int_{\Omega}\left|u_{n}\right|^{r}+\left\|\nabla u_{n}\right\|^{2} \leq c\|f\|_{m}\left\|u_{n}\right\|_{m^{\prime}}
$$

where $m \prime$ is the conjugate exponent of $m\left(m \prime=\frac{m}{m-1}\right)$. Since $m \prime \leq 2^{*}$ indeed $m>N / 2$. Then, by Sobolev embedding theorem the sequence $u_{n}$ is bounded in $H_{0}^{1}(\Omega) \cap L^{r}(\Omega)$.

Let us now consider the truncating function $G_{k}(s)=s-T_{k}(s)$ and from the approximating problem we obtain

$$
\int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}+\int_{\Omega} \Lambda_{n}\left(x, u_{n}, \nabla u_{n}\right) u_{n} G_{k}\left(u_{n}\right) \leq \int_{\Omega} f G_{k}\left(u_{n}\right) .
$$

Then, on has

$$
\begin{aligned}
\int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}+\int_{\Omega} h_{n}\left(x, u_{n}, \nabla u_{n}\right) G_{k}\left(u_{n}\right)+\int_{\Omega} A_{n}\left(x, u_{n}\right) G_{k}\left(u_{n}\right) & \\
& \leq \int_{\Omega} f G_{k}\left(u_{n}\right)
\end{aligned}
$$

It follows

$$
\begin{aligned}
& (1-\beta) \int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}+\int_{\Omega}\left[h_{n}\left(x, u_{n}, \nabla u_{n}\right) G_{k}\left(u_{n}\right)+\beta\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}\right] \\
& \leq \int_{\Omega} f G_{k}\left(u_{n}\right)
\end{aligned}
$$

which implies that

$$
\begin{gathered}
(1-\beta) \int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}+\int_{\Omega}\left[g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} G_{k}\left(u_{n}\right)+\beta\left|\nabla G_{k}\left(u_{n}\right)\right|^{2}\right] \\
\leq \int_{\Omega} f G_{k}\left(u_{n}\right)
\end{gathered}
$$

Then, on obtain

$$
\int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{2} \leq c \int_{\Omega} f G_{k}\left(u_{n}\right)
$$

From this inequality, it follows by Stampacchia's $L^{\infty}$-regularity that

$$
\left\|u_{n}\right\|_{\infty} \leq \eta
$$

where $\eta=2^{2^{*} \frac{\gamma}{\gamma-1}} \lambda^{-2^{*}}(1-\beta)^{-2^{*}}| | f| |_{m}^{2^{*}}|\Omega|^{\gamma-1}$.
Since the solution $u_{n}$ is bounded independently on $n$ in $H_{0}^{1}(\Omega)$. Then, up to a subsequence, that we denote again by $u_{n}$, there exist $u \in H_{0}^{1}(\Omega)$, such that $u_{n}$ converge to $u$ weakly in $H_{0}^{1}(\Omega)$.

From Rellich-Kondrachov's theorem we have the almost every where convergence in $\Omega$. That is

$$
\begin{gather*}
u_{n} \rightarrow u \text { weakly in } H_{0}^{1}(\Omega), \\
u_{n} \rightarrow u \text { almost every where in } \Omega \tag{9}
\end{gather*}
$$

and

$$
a_{n}\left(x, u_{n}\right) \rightarrow a(x, u) \text { almost every where in } \Omega \text {. }
$$

Taking into account the equi-integrability of $u_{n}$ in $L^{r}(\Omega)$, it follows that of $a_{n}\left(x, u_{n}\right)\left|u_{n}\right|^{r-1}$ in $L^{1}(\Omega)$.

Hence, we have

$$
\begin{equation*}
a_{n}\left(x, u_{n}\right)\left|u_{n}\right|^{r-1} \rightarrow a(x, u)|u|^{r-1} \text { in } L^{1}(\Omega) . \tag{10}
\end{equation*}
$$

Since on has up to a subsequence $u_{n}$, that

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { almost every where in } \Omega \tag{11}
\end{equation*}
$$

and $\nabla u_{n}$ is equi-integrable in $L^{2}(\Omega)$, then on has

$$
\nabla u_{n} \rightarrow \nabla u \text { in } L^{2}(\Omega)
$$

We conclude that

$$
\Delta u_{n} \rightarrow \Delta u \text { in } L^{1}(\Omega)
$$

From the precedent section there exists a solution $u_{n}$ of the following problem

$$
\begin{aligned}
-\Delta u_{n}+\Lambda_{n}\left(x, u_{n}, \nabla u_{n}\right) & =f \text { in } \Omega, \\
u_{n} & =0 \text { on } \partial \Omega,
\end{aligned}
$$

in the sense that $u_{n}$ belongs to $H_{0}^{1}(\Omega), \Lambda_{n}\left(x, u_{n}, \nabla u_{n}\right)$ belongs to $L^{1}(\Omega)$ and

$$
\int_{\Omega} \nabla u_{n} \cdot \nabla \varphi+\int_{\Omega} \Lambda_{n}\left(x, u_{n}, \nabla u_{n}\right) \varphi=\int_{\Omega} f \varphi
$$

holds for every $\varphi$ in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$.

Then, it follows that

$$
\int_{\Omega} \nabla u_{n} . \nabla\left(\phi\left(u_{n}-u\right) \psi\right)+\int_{\Omega} \Lambda_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(u_{n}-u\right) \psi=\int_{\Omega} f \phi\left(u_{n}-u\right) \psi
$$

where $\psi$ is a positive function in $C_{0}^{\infty}(\Omega)$ and

$$
\phi(r)=r e^{\alpha r^{2}}, \quad \alpha \text { a positive constant. }
$$

Which implies that

$$
\begin{aligned}
\int_{\Omega} \nabla u_{n} \nabla\left(u_{n}-u\right) \phi^{\prime}\left(u_{n}-u\right) \psi+\int_{\Omega} \nabla u_{n} \nabla & \psi \phi\left(u_{n}-u\right) \\
& +\int_{\Omega} h_{n}\left(x, u_{n}, \nabla u_{n}\right) \varphi \leq \int_{\Omega} f \varphi
\end{aligned}
$$

It follows

$$
\begin{aligned}
\int_{\Omega} \nabla u_{n} \nabla\left(u_{n}-u\right) \phi^{\prime}\left(u_{n}-u\right) \psi+\int_{\Omega} \nabla u_{n} \nabla \psi \phi\left(u_{n}-u\right) & \\
& +I_{n} \leq \int_{\Omega} f \phi\left(u_{n}-u\right) \psi,
\end{aligned}
$$

where

$$
I_{n}=\int_{\Omega} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \phi\left(u_{n}-u\right) \psi .
$$

By consequence

$$
\begin{aligned}
\int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{2} \phi^{\prime}\left(u_{n}-u\right) \psi & +\int_{\Omega} \nabla u \nabla\left(u_{n}-u\right) \phi^{\prime}\left(u_{n}-u\right) \psi \\
& +\int_{\Omega} \nabla u_{n} \nabla \psi \phi\left(u_{n}-u\right)+\leq \int_{\Omega} f \phi\left(u_{n}-u\right) \psi .
\end{aligned}
$$

Since we have

$$
I_{n} \geq-c\left|\nabla u_{n}\right|^{2}\left|\phi\left(u_{n}-u\right)\right| \psi, \text { a.e. } x \in \Omega
$$

then

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{2} \phi^{\prime}\left(u_{n}-u\right) \psi-c\left|\nabla u_{n}\right|^{2} \mid \phi\left(u_{n}-u\right) \psi \\
\leq & -\int_{\Omega} \nabla u \nabla\left(u_{n}-u\right) \phi^{\prime}\left(u_{n}-u\right) \psi-\int_{\Omega} \nabla u_{n} \nabla \psi \phi\left(u_{n}-u\right)+\int_{\Omega} f \phi\left(u_{n}-u\right) \psi .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{2} \phi\left(u_{n}-u\right) \psi & =\int_{\Omega}\left|\nabla u_{n}\right|^{2}\left|\phi\left(u_{n}-u\right)\right| \psi \\
& +\int_{\Omega}|\nabla u|^{2}\left|\phi\left(u_{n}-u\right)\right| \psi-2 \int_{\Omega} \nabla u_{n} \nabla u\left|\phi\left(u_{n}-u\right)\right| \psi
\end{aligned}
$$

Let us note that

$$
\phi^{\prime}(r)-c|\phi(r)|=e^{\alpha r^{2}}\left(1+2 \alpha r^{2}-c|r|\right),
$$

and taking a count to the fact that for large value of $\alpha$ we have

$$
\begin{equation*}
e^{\alpha r^{2}}\left(1+2 \alpha r^{2}-c|r|\right) \geq \frac{1}{2}, \forall s \in \mathbb{R} \tag{12}
\end{equation*}
$$

On deduce that

$$
\begin{array}{r}
\frac{1}{2} \int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{2} \psi \leq-c \int_{\Omega}|\nabla u|^{2}\left|\phi\left(u_{n}-u\right)\right| \psi+2 c \int_{\Omega} \nabla u_{n} \nabla u\left|\phi\left(u_{n}-u\right)\right| \psi \\
-\int_{\Omega} \nabla u \nabla\left(u_{n}-u\right) \phi^{\prime}\left(u_{n}-u\right) \psi-\int_{\Omega} \nabla u_{n} \nabla \psi \phi\left(u_{n}-u\right) \\
+\int_{\Omega} f \phi\left(u_{n}-u\right) \psi
\end{array}
$$

From the dominated convergence theorem, we obtain

$$
\int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{2} \psi \rightarrow 0, \quad \text { for } n \text { tending to }+\infty, \quad \text { for all } \psi \in C_{0}^{\infty}(\Omega)
$$

We cane deduce now, up to a subsequence, that there exist $\vartheta \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
\left|\nabla u_{n}(x)\right| \leq \vartheta(x), \text { a.e. } x \in \Omega \tag{13}
\end{equation*}
$$

and

$$
\nabla u_{n}(x) \rightarrow \nabla u(x), \text { a.e. } x \in \Omega
$$

Since (7) and (8) are satisfied, then fore some $c>0$ we have

$$
\left|g_{n}\left(x, u_{n}\right)\right| \leq c \text { a.e. } x \in \Omega .
$$

By the ue of (13) on has

$$
\left|g_{n}\left(x, u_{n}\right)\right| \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \leq c \vartheta^{2} \text { a.e. } x \in \Omega \text {. }
$$

Passing now to the limit, we obtain

$$
g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \rightarrow g(x, u)|\nabla u|^{2} \quad \text { a.e. } x \in \Omega \text {. }
$$

Using the dominated convergence theorem, it yields that

$$
\int_{\Omega} g_{n}\left(x, u_{n}\right) \frac{\left|\nabla u_{n}\right|^{2}}{1+\frac{1}{n}\left|\nabla u_{n}\right|^{2}} \phi \rightarrow \int_{\Omega} g(x, u)|\nabla u|^{2} \phi
$$

## References

[1] B. Abdellaoui , A. Dallaglio, I. Peral, Some remarks on elliptic problems with critical growth in the gradient, J. Differential equations 222 (2006) 21-62.
[2] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (2) (1994) 519-543.
[3] PH. Bénilan, L. Boccardo, TH. Gallouët, R. Gariepy, M. Pierre, J.L. Vázquez, An $L^{1}$ theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 241-273.
[4] A. Bensoussan , L. Boccardo, F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988) 347-364.
[5] A. Ben-Artzi, P. Souplet, F.B. Weissler, The local theory for the viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pure. Appl. 9 (2002), 343-378.
[6] L. Boccardo, A. Dallaglio , L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena 46 (1998) 51-81.
[7] L. Boccardo, T. Gallouet, Strongly nonlinear elliptic equations having natural growth terms and $L^{1}$ data, Nonlinear Anal. 19 (1992) 573-579.
[8] L. Boccardo, F. Murat, J.-P. Puel, $L^{\infty}$ estimates for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. 2 (1992) 326-333.
[9] K. Cho, H.J. Choe, Non-linear degenerate elliptic partial differential equations with critical growth conditions on the gradient, Proc. Am. Math. Soc. 123 (12) (1995) 3789-3796.
[10] A. El Hachimi, J.-P. Gossez, A note on nonresonance condition for a quasilinear elliptic problem. Nonlinear Analysis, Theory Methods and Applications, Vol 22, No 2 (1994), pp. 229-236.
[11] A. El Hachimi, Jaouad Igbida, Bounded weak solutions to nonlinear elliptic equations, Elec. J. Qual. Theo. Diff. Eqns., 2009, No. 10, 1-16.
[12] A. El Hachimi, Jaouad Igbida, Nonlinear parabolic equations with critical growth and superlinear reaction terms, IJMS, Vol 2, No S08 (2008) 62-72.
[13] A. El Hachimi, M. R. Sidi Ammi, Thermistor problem: a nonlocal parabolic problem, ejde, 11 (2004), pp. 117-128.
[14] V. Ferone, F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. Theory Methods Appl. 42 (7) (2000) 1309-1326.
[15] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag (1983).
[16] N. Grenon, C. Trombetti, Existence results for a class of nonlinear elliptic problems with p-growth in the gradient, Nonlinear Anal. 52 (3) (2003) 931-942.
[17] M. Kardar, G. Parisi, Y.C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986) 889-892.
[18] J.L. Kazdan, R.J. Kramer, Invariant criteria for existence of solutions to second-order quasi-linear elliptic equations, Comm. Pure Appl. Math. 31 (5) (1978) 619-645.
[19] O.A. Ladyzhenskaja, N.N. Ural'ceva, Linear and quasi-linear elliptic equations, Academic Press, New York - London, 1968.
[20] J. Leray, J. L. Lions, Quelques résultats de Vis̃ik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty et Browder, Bull. Soc. Math. France, 93 (1965), 97-107.
[21] J. L.Lions, Quelques méthodes de résolution des problèmes aux limites non linéaire, Dunod et Gautier-Villars, (1969).
[22] P.L. Lions, Generalized solutions of Hamilton-Jacobi Equations, Pitman Research Notes in Mathematics, vol. 62, 1982.
[23] C. Maderna, C.D. Pagani, S. Salsa, Quasilinear elliptic equations with quadratic growth in the gradient, J. Differential Equations 97 (1) (1992) 54-70.
[24] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures, vol. 16, Les Presses de l'Université de Montréal, Montréal, 1966.
[25] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Grenoble 15 (1965) 189-258.

Received: August, 2014

