
G.J. E.D.T., Vol. 2(5):9-14 (September-October, 2013) ISSN: 2319 – 7293

9

Enhancing File Security by Integrating Steganography Technique in Linux
Kernel

R.Jegadeesan
 1
, Dr.N.Sankar Ram

2
, M.S.Tharani

3

Ph.D Research Scholar 1, Supervisor2, P.G.Scholar 3

Anna University-Chennai (India) 1, Anna University. Chennai (India) 2,

S.R.M University, Chennai (India) 3

ramjaganjagan@gmail.com 1, n_sankarram@yahoo.com2,tharani_vig@yahoo.com3

ABSTRACT
In today’s world securing file data is very important. The

proposed Secure File System (SFS) provides file data

security using steganographic techniques in a transparent

and convenient way. The proposed SFS pushes information

hiding services into the Linux kernel space, mounting it

between the Virtual File System layer and underlying file

system. After SFS is integrated with the Linux operating

system (OS), it enables OS to provide File Data Security as

its inherent functionality. SFS requires that the user creates

a directory and name it with the prefix 'secrt' to store the

encrypted file data, such as secrtdir. Any directory on the

system with the prefix 'secrt' will basically tells the system

that the newly created directory will contain secret data. All

files destined to be saved on this directory will be

transparently hidden in non-suspicious information on the

fly without any user intervention. For hiding we use a

steganographic technique in which SFS is fully compatible

with all underlying storage file systems. This paper

illustrates the design of SFS for Linux which extends the

operating system to provide file data security as its inherent

functionality.

Categories and Subject Descriptors

D.4.3 [operating systems]: File Systems Management-File

organization,

Access methods, Security and Protection

General Terms

Algorithms, Performance, Design, Reliability, Security,

Keywords

Steganography, File data security, Fie system

1. INTRODUCTION

Dr.Abdul Kalam Told to Bill Gates

 “In November 2002, Microsoft Chairman Bill Gates met

with India's President APJ Abdul Kalam. At this meeting,

Kalam advocated for open-source software codes

[GNU/Linux]. Among other things, Kalam worries that

most people in developing countries such as India can't

afford commercial systems and software. “[1] [2]

With this insight from Dr.A.P.J.Abdul Kalam, this project

is going to make an additional facility to Linux platform

which is the official operating system of Tamilnadu [SuSe

Linux], Kerala, Gujarat, Indian Military and ISRO. In

today’s world, file security is an important factor where

each and every record of government or other high-level

organizations are stored in the computer database. This

information has to be secured properly. In order to protect

this highly sensitive information from hackers, terrorist, and

other unofficial intruders, it is necessary to build a file

security system that cannot be attacked by them. [3]

In computer systems information is stored traditionally in

the form of files. File is considered as a basic entity for

keeping the information. In UNIX like systems, the concept

of file is so important that almost all input/output devices

are considered as a file. Therefore the problem of securing

data or information on computer systems can be defined as

the problem of securing file data. It is a well accepted fact

that securing file data is very important, in modern

computing environment.

There are various approaches available to ensure file data

security, such as encryption tools like 'aescrypt' in Linux or

integrated encryption application software or disk

encrypter. But each one has its own inherent disadvantages,

rendering them being less frequently used. These

approaches are generally cumbersome and inconvenient to

the users. Therefore, there is a need for a

mechanism/system which can ensure reliable and efficient

file data security in a transparent and convenient manner.

[4]

So, we propose our system with highly reliable file security

options that is integrated with secured Linux kernel, using

steganography with Biometric finger print recognition (can

be extended to any biometric recognition such ad Iris,

Voice, Face, etc.) as stego key.

2. RELATED WORK

There have been different approaches used, to solve the file

data security problem. Most of the solutions provided

works in user space. The simple and naive approach used

by many people to secure their file data is to use common

utilities like 'crypt' or 'aescrypt'. These utilities take the

filename and the password as inputs and produce the

encrypted file. This type of utility is good for limited use

only, as it is very cumbersome and manual. Second

approach is integrating encryption engine in application

software itself, where each program that is to manipulate

G.J. E.D.T., Vol. 2(5):9-14 (September-October, 2013) ISSN: 2319 – 7293

10

sensitive data has built-in cryptographic facilities. But the

disadvantage here is that all application should use the same

encryption engine and any change in one will require

changes in all. The third approach is to use commercially

available disk controllers with embedded encryption

hardware that can be used to encipher entire disks or

individual file blocks with a specified block. It suffers from

the fact that key needs to be shared among users, whose

data reside on the disk because entire disk is protected as a

single entity. It is good for single user system but for multi-

user system the key protecting the data needs to be shared

between different users.

So we have seen that each one of the approaches described

above; has its own inherent disadvantages, rendering them

less frequently used. These approaches are generally

cumbersome and inconvenient to the users. Therefore, there

is a need for a mechanism/system which can ensure reliable

and efficient file data security in a transparent and

convenient manner. We focused on this issue and proposed

SFS that solves the file data security problem. We

considered various places where this mechanism/system can

be placed to fulfill its requirement in the best possible way.

The considered places include user space, device layer

level, and kernel space. We are of the opinion that the file

data security should be provided as a functionality of

operating system, therefore we have decided to push the

encryption services into the Linux kernel space mounted

beneath the virtual file system.

2.1 Cryptographic File System (CFS)

 Cryptographic File System was developed by Matt Blaze,

to provide a transparent UNIX file system interface to

directory hierarchies that are automatically encrypted with

user supplied keys. CFS is implemented as a user level NFS

server. User needs to create an encrypted directory and

assign its key required for cryptographic transformations,

when the directory is created for the first time. In order to

use an encrypted directory, CFS daemon requires the user

to attach the encrypted directory to a special directory

'/crypt'. This attach basically creates a mapping between the

encrypted directory and mount point (directory) in the

'/crypt'. This way the actual encrypted data resides in the

encrypted directory and the mapping provides a window to

access these encrypted file in clear text form to the

authenticated user. CFS uses Data Encryption Standard

(DES) to encrypt file data. The CFS prototype is

implemented entirely at user level, communicating with the

UNIX kernel via the NFS interface. Its main disadvantage

is that it runs in user mode, thus requires many context

switches and data copies from user space to kernel space.

[5]

2.2 Transparent Cryptographic File System (TCFS)

TCFS works as a layer under the VFS (Virtual File system)

layer, making it completely transparent to the applications.

The security is guaranteed by means of the DES algorithm.

TCFS is implemented as a NFS distributed file system. The

TCFS daemon handles the RPC generated by the kernel.

RPC relative to read, write etc have been extended to

perform security operations. Each time a new file handler is

created, the extended attribute 'secure' is tested. If the file is

secure, then all successive read and write operation will be

filtered through the encryption/decryption layer. In TCFS

for file encryption, each user is associated with a file system

key and all files of a user are encrypted using this key. This

key is encrypted with user's login password and is stored in

a database in '/etc/tcfspwdb'. This dependability of user key

on login password is one of the major disadvantages of

TCFS. Also we are of the opinion that storing encryption

key on the same disk containing data reduces security. [6]

3. PROPOSED SECURE FILE SYSTEM
3.1 Design Goals

We have designed Secure File System (SFS) with the aim

that file data security should be provided as one of the

primary functionality of the kernel. We have extended the

kernel to provide file data security using steganographic

techniques as one of its functionality. The hiding /

retrieving of file data are performed transparently, making it

convenient for the users.

The proposed SFS is designed with the following

primary objectives:

 Security: Confidentiality of data is ensured by use

of strong steganographic technique. The files are

hidden on the fly and then saved to the disk or sent

on the network.

 Strong Access Control: We have also used Stego-

key as fingerprint, to control the access of the file.

This approach enhances the security of file by

avoiding unwarranted access.

 Transparent Performance: The secret message

containing files should behave no different from

some other files.

 Convenience: The system should be convenient to

users.

3.2 Design of the Proposed System

The proposed Secure File System is designed to provide the

above mentioned goals. Figure 1 shows the normal flow of

control in standard file system. VFS shown in figure 1 has

namely two main functions. [7]

Figure 1: Control flow in standard file system

First, to handle the file system related system calls like

open, close, read, write etc. Secondly it provides a uniform

interface to

G.J. E.D.T., Vol. 2(5):9-14 (September-October, 2013) ISSN: 2319 – 7293

11

Figure 2: Secure File System

actual file systems like ext2, ext3, FAT, etc, by acting as a

switch. In our design, we have taken the control flow from

VFS layer based on some condition and rerouted it to

proposed SFS.The condition that is checked is the location

where the file is destined to be saved. If the location is the

directory starting with prefix word 'secrt' (e.g., secrtdir)

then we take the control flow to SFS layer. Figure 2 shows

SFS layer is mounted beneath the VFS and interacts closely

with it. VFS and proposed SFS functions in kernel space,

therefore a user cannot access them directly. The above

condition will be checked and executed by kernel.

Mounting SFS beneath VFS is the idle place because then

we can efficiently use the kernel infrastructure and deviate

only where it is required. In this way, it achieves one major

advantage that, it provides uniform interface to all the

application and the underlying file system. This means SFS

transparently handles the data without being bothered of,

from which application the data is coming. Therefore SFS

is compatible and works with all the applications. The user

can use the steganographic strength provided by SFS with

any and every application.

3.3 Architecture of Secure File System:

Figure 2 shows the architecture of Secure File System in

detail. SFS mainly has four components

 Fingerprint recognition

 Steg Engine

 File Extractor

3.3.1 Fingerprint recognition:

Fingerprint recognition or fingerprint authentication refers

to the automated method of verifying a match between two

human fingerprints. Fingerprints are one of many forms of

biometrics used to identify an individual and verify their

identity.

Pattern based algorithms compare the basic fingerprint

patterns (arch, whorl, and loop) between a previously stored

template and a candidate fingerprint. This requires that the

images be aligned in the same orientation. To do this, the

algorithm finds a central point in the fingerprint image and

centers on that. In a pattern-based algorithm, the template

contains the type, size, and orientation of patterns within the

aligned fingerprint image. The candidate fingerprint image

is graphically compared with the template to determine the

degree to which they match. [8]

If the Fingerprint Recognition is successful, the reader

sends the acceptance to the Steg-Engine to start hiding

process. In the opposite side, during the extraction of the

file, once again the fingerprint of the user is verified with

the stored fingerprint associated to the owner of that file.

3.3.2 Steg Engine

Hiding A File:

When an existing file in the file system has to be hidden

steg-Engine asks for the filename and the password. The

filename is encrypted with the password and a signature is

formed. Our ‘inode’ structure will look as shown. It may

modify it later for more security

Struct steg_hidden_file

{

 Char signature[EXT2_NAME_LEN];

 Struct ext2_inode inode;

}

Application

program

Virtual file

system

Underlying

file system

Secure File System

 Plain text

Fingerprint

recognition

Fingerprint

Reader

Steg Engine

Cover File which contains Plain text

G.J. E.D.T., Vol. 2(5):9-14 (September-October, 2013) ISSN: 2319 – 7293

12

 The whole structure will be encrypted and stored. The

procedure for hiding will be as follows and the figure

illustrate the whole concept.

A random block number will be generated from the

filename and password. An example for such a generation

would be to take the add and subtract alternate squares of

characters from the filename and password and then

multiply these values. Then it is divided by the total number

of blocks and the remainder is taken as the random block

where the steg-inode will be placed. But if this block is

already allocated then the next block will be taken and this

will go on until an unused block is found.

Figure 3: Steg- Engine which hides data

Then random blocks are generated for each block that is

needed by the file and stored in the appropriate indexes of

the inode upto triple indirection. The bitmap will be set for

each of the used blocks. But no other changes to the

filesystem are made. The superblocks and the group

descriptors and the inodes remain as it was before. The

number of free blocks will not be altered anywhere. Note

that apart from setting the bitmaps, no change in any of the

inodes, directories, group descriptors etc are made.

At the end of all this the original file is destructively deleted

if it resides in an ext2/3 partition.

3.3.3 File Extractor

The process of File Extractor is to unhide the file to view.

This is explained as follows. The user will be asked to enter

the filename and the password and the random block will be

generated using the above method. Now each block from

this random block is checked to see whether it is allocated

or not. Once it encounters an allocated block it decrypts the

signature i.e. by taking just the first 256 bytes ad it is

compared with the original filename. If they mach then that

is the correct inode. Then the remaining blocks of the file

are got by decrypting the inode.

Figure 4. Unhiding of data

 Figure 4 shows the File Extractor process. There will also

be 2 modes of unhiding the file.

Permanent Unhiding:-In this mode the hidden file will be

mounted as a non hidden file in the file system ie. A normal

file. This means that it is no longer hidden unless the hiding

process is repeated again.

Temporary Unhiding:-In this mode the hidden file will be

temporarily made visible for a period of time after which it

will return back to its original hidden state without leaving

any trace. It will not be mounted anywhere on the hard disk

but only in main memory (may be only a part of the file).

This means that the file can be made visible before

unhiding only if you have the filename and password.

4 SFS OPERATION
In this section we will describe the sequence of events

which takes place while the file is being created or written

to the disk and also while the file is being modified or read

from the disk.

4.1 File Creation

For working with confidential data or files the user needs to

enter the secure session by Fingerprint recognition. Then he

needs to create a directory with prefix 'secrt' e.g. secrtdir,

which will house all the files containing confidential data.

After these preliminary requirements are met, the user is

free to use any application to create his file. For example,

the user may use KWrite utility to create a text file. When

the user is finished with the file, he needs to save the file in

his newly created directory (secrtdir) which will be housing

all such files. This is an important step because SFS will get

activated for all the files saved in directory starting with

word 'secrt'. The save command issued from the application

activates the system call sys_write to write the application

data on the disk. It is known that all file system related

system calls are handled by VFS, so the control reaches to

the VFS. Here the location where file is being saved will be

checked, and if the name of the directory is prefixed with

'secrt' is true then the control flow will be transferred to the

SFS layer. As shown in the figure 2, Steg Engine will hide

the file data. Generated cover file is saved on the disk.

4.2 File Access

For accessing confidential data or files the user needs to

enter the secure session by Fingerprint recognition. Now

user can open the file with some application, for example

KWrite for opening or accessing the text file. The file data

will be displayed to the user in plain form if he was given

authorization by the owner at the time of file creation else,

the file contents will not be displayed (i.e., access denied to

unauthorized user). This is done with the help of File

Extractor as explained before.

5 IMPLEMENTATION:
SFS layer interacts closely with the virtual file system

(VFS) layer. VFS handles all system calls related to file

system.

Whenever any file system related system call comes to

VFS, we check the location of file being saved. If the file

saved, is in a directory which is prefixed by the word 'secrt'

(meaning data to be encrypted) the data of the file will be

G.J. E.D.T., Vol. 2(5):9-14 (September-October, 2013) ISSN: 2319 – 7293

13

passed through the SFS layer. We transfer the control from

VFS to our SFS. The algorithm for which is shown below:

vfs_write

{

if (datatobeEncrypted == TRUE)

{

sfs_write

{

call getFingerprint(); /* Get Fingerprint

as stego key */

call stegEngine(); /* Hides the data */

}

}

file->f_op->write(); /* write function of underlying file

system */

}

The sfs_write function calls the function getFingerprint

function to get the fingerprint of the user to use it as stego-

key. Then Steg-Engine hides the data as explained before.

Similarly, while reading/accessing the file data from the

disk the following operations are performed:

vfs_read

{

file->f_op->read(); /* read

function of underlying file system */

if (datatobeDecrypted == TRUE)

{

sfs_read

{

call fileheaderextractor(); /* Extract the

file by reverse process of steganographic algorithm

*/

call getFingerprint(); /* Retrieve

KEY from user*/

call stegengine(); /* Extract the

file data */

}

}

}

 The vfs_read function read the attributes of the file. If it is

a secret data identified by its directory, then the control is

forwarded to the sfs-read function. The file Extractor then

extracts the hidden data using Fingerprint of user as stego-

key.

6 CONCLUSION
Our main contribution is in designing and building a Secure

File System that was developed with the express goal of

enhancing file data security in Linux kernel. The main

objective is to provide data security with user convenience.

This has been done by implementing SFS in kernel

space and enabling steganographic strength on the files on

the fly and in a transparent way. We have seen that

implementing SFS in kernel enables the operating system to

provide file data security as one of its inherent

functionality. SFS is very convenient to user as it performs

the hiding and extraction transparently and even all system

administration tasks like backup, etc are having the same

common interface. The scheme guarantees an end to end

protection leading to a secure computing environment. We

achieved high security by including support for biometric

security, designing a strong access control mechanism using

fingerprint based access and session entry for accessing

confidential data. We achieved high performance by

designing SFS to run in kernel.

7 ACKNOWLEDGMENTS
Our thanks to our college faculty for successful finishing of

this paper.

8 REFERENCES
[1] Article: Take on Gates, Kalam tells Indian techies

available at <http://osdir.com/ml/fsf.india.fsf-friends/2003-

05/msg00081.html> last access: 15.09.2009

[2] Article: Take on Gates, Kalam tells Indian techies

available at

<http://timesofindia.indiatimes.com/cms.dll/html/unco

mp/articleshow?msid=47797903> last access :

15.09.2009

[3] Article : ELCOT’s Success Story of Suse

Linux Migration Available at

<http://goinggnu.wordpress.com/2007/12/26/elcots-

success-story-of-suse-linux-migration/>

[4] Aescrypt for linux

<http://www.aescrypt.com/linux_aes_crypt.html > last

access: 15.09.2009

[5] Matt Blaze AT&T Bell Laboratories. “A

Cryptographic File System for Unix” First ACM

Conference on Communications and Computing

Security, Fairfax, VA, November 3-5, 1993.

[6] Ermelindo Mauriello “TCFS: Transparent yptographic

File System” Available at < http://www.tcfs.unisa.it/ >

Last access: 15.09.2009

[7] Braam. Linux Virtual File System available at

<http://www.coda.cs.cmu.edu/doc/talks/linuxvfs/sld00

7.htm Last access: 15.09.2009

[8] Fingerprint recognition Available at <

www.biometrics.gov/Documents/FingerprintRec.pdf>

Last access: 15.09.2009

[9] Varun Suresh , Shibin.K , Anoop.S , Vivek.K.P.

Magikfs – The Steganographic Filesystem On Linux

Available at < http://magikfs.sourceforge.net/>

Last access: 15.09.2009

http://osdir.com/ml/fsf.india.fsf-friends/2003-05/msg00081.html
http://osdir.com/ml/fsf.india.fsf-friends/2003-05/msg00081.html

G.J. E.D.T., Vol. 2(5):9-14 (September-October, 2013) ISSN: 2319 – 7293

14

Dr.N. Sankar Ram is the

Professor,Computer Science and

Engineering, working in a self

financing Engineering college

affiliated to Anna University,Chennai..

He completed his under graduation

and post graduation from Madurai

Kamaraj University and Doctorate

from Anna University Chennai.

His research areas of expertise are Software Architecture and

Computer Networks. He has 16 years of teaching experience and

he has published many research papers in International/National

journals and conferences. He is a approved supervisor under Anna

University of Technology, Chennai and guiding Ph.D and M.E

research scholars in his area. Being a Principal Investigator got a

funded project to a tune of Rs. 9 Lakhs from AICTE under RPS

scheme in the year 2011.

R.Jegadeesan has registered Ph.D

(I&CE) Research in the Anna

University Chennai.India on wireles

networks and computer Networks 2011

onwards and he has received the

B.E.and M.E in computer science and

Engineering in Anna University

Chennai. India.

 During his undergraduate and post graduate studies, he

spent time at Anna University Chennai India,From 2000 to

2007, he has contributed at many Universities for visiting

faculty for his research area like Wireless networks, Computer

Networks, wireless sensor networks. He is currently working

with the proposal work in Anna University Chennai. India.

He is fellow of IEEE Member for last two years and

Computer society of india (CSI)last three years and and

RedHAT Linux Instructor and related memberships. in

addition that he has Published many National and international

level Conferences and Journals, Seminars, and Workshops.

THARANI SUNDARAM has

registered UG and PG

Chennai.India on wireless

sensor networks and computer

Networks 2010 and 2014

onwards in computer science

and Engineering in Anna

University Chennai. And SRM

Chennai India.

