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Abstract

Using the multiplier method and the abstract setting from [7], we
derive different stability results for an isotropic thermoelastic system
with combined nonlinear internal and boundary feedbacks.
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1 Introduction

Let © be a non empty bounded open subset of R",n > 1, with a boundary I

of class C2. We denote by v = (v, -+,
along I'. For a fixed 2y € R™ we define the function m(z) = x — zo; x € R"

and the following partition of the boundary I':

Iy ={zel:mx)- vix) <0},

Iy ={x el :m(x) v(z) >0}

V) the unit outward normal vector



330 E.M.BA and A. SENE

In this paper we consider the system of isotropic thermoelasticity:

(W — pAu— N+ p)Vdivu +aVo+ f(u') = 0in Q:=Q x RT,
0 — AO + pdiva’ = 0in Q,
0 = OonI xRT,
u = OonI; xRT,
pou 4+ (A + p)divur +am -vu+m-vg(u') = 0on 'y x R,
u(-,0) = ug, u'(-,0) =uy 6(-,0) =6y in Q,

(3)
where u = u(z,t) = (ui(x,t), - ,u,(x,t)) denotes the displacement vector
field,

0 = 0(x,t) the temperature.
The function a is non negative and belongs to C1(T'y); the functions

f(f w) = (fi(u),..., fu(u)) and g(u) = (g1(u), ..., gn(u)) are continuous and sat-
isfy

f(0) = 9(0) =0 (4)
(f(x) = f(y)- (x —y) 2 0, Yo,y € R", ()
(9(z) —9(y)) - (x—y) =0, Vo,y e R (6)

The coupling parameters a and (8 are supposed to be positive.

Theses assumptions guarantee that the system (3) is dissipative since its energy
defined by

1 1
E(t):5/9{\u/|2+u|Vu\2+(>\+u)|divu|2+%|9|2}dx+§/F am-v|ul2dl (7)

is nonincreasing

The stabilization of different variant of the system (3) has been studied in
the literature, notably in [2, 4, 5, 6, 8, 10, 11] (see also [3] in the anisotropic
case). In [4], Liu considered the case f = 0 in the linear feedback, i.e., g(z) = =
on I'y # () and give exponential decay of energy. Still in the case f = 0 Liu and
Zuazua [5] have established exponential, polynomial and logarithmic decay for
some nonlinearities g.
The aims of this work is to generalize these results to the case f # 0. For this
purpose, in the linear case we establish integral inequalities as in [4] leading to

the exponential decay and in the nonlinear case, we use the theorical results
established in [7].

2 Main Results

In the remainder of our paper we suppose that

I % 0 or CL(QE) > 0,Vx € I's. (8)
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Furthermore, in order to avoid regularity problems related to the change of
boundary conditions we assume that

I NTy=0. 9)

We finally suppose that there exist positive constants C' > 0 and ¢ > 0,0’ > 0
such that

ClL+ |z|+2] iftn>3
< , ;
U@N_{ L] in2s (10)

Cll+ |z|72] ifn >3,
sl <{ I i zy (1)

We define the following Hilbert spaces:

H () = {ue H(Q);u=0 on I'},
Dr, = {(u,v,0) € (H*(Q) N Hy, ()" x (Hr, ()" x (H*(Q) N H;(Q)) :
uo,u+ (A + p)divur +am - vu+m-vo =0 on [y},
W= (Hp,(Q)" x (L*(Q)",
H = W x L*Q).

The space W is equipped with the natural norm:
| (w, ) |3 = /[|v\2 + p|Vul? + (X + p)|div ul’]dz + / am - v|u|*dl.
Q I}

In the sequel, we denote by < -,- > the duality pairing between (H} (€2))" and
[(HP, (€2))"] or between Hy(2) and H~'(£2), and by (-, -) the inner product in
(Hr, ()"

Theorem 2.1 Let I'y and I'y be given by (1)-(2) and satisfying (8) and (9).
Assume that the functions f and g satisfy (4), (5), (6), (10) and (11). Then
for initial data (ug,u1,6p) € H, the system (3) has a unique (weak) solution
(u, @) satisfying

(u,u',0) € C([0,00); H). (12)

The main result of our paper is the next theorem

Theorem 2.2 Let I'yand 'y given by (1), (2) and satisfying (8) and (9).
Assume that the functions f and g satisfy (10), (11) and the inequalities

g(x) -2 > my|z|* Vo € R" 2] > 1, (13)
|2* + [g(2)]* < G(g(z) - @) Yo € R™ || < 1, (14)
j2* + [ f(2)* < G(f(2) - 2) Yo € R" [2] < 1, (15)
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where mgy s a positive constant and G a concave function defined on Ry such
that G(0)=0. Then there exist positive constants T, ri,r9 and a time Ty > 0
(depending on 7, E(0), |Ia|,|Q2|) such that the energy of any solution of (3)
satisfies

!p—l (Tlt)

r1Tt

E(t) < rG( ), Vit > T, (16)

where ¥ 1is given by

U(t) = /t %ds, with @(s) = TRlG_l(%) and Ry = min(|Tsl, |Q|]). (17)

Explicit decays are presented in Section 4.
Remark 2.1 The previous theorem still hold if f = 0 and ¢ satisfies the

previous hypotheses ( case of boundary feedback only) or conversely if I'y = ()
and f satisfies the previous hypotheses ( case of internal feedback).

3 Well-posedness of the problem

In this Section we prove Theorem 2.1 by reducing system (3) to a first order

evolution equation. Let us define the operators
A (HE(Q)" — [(HE ()" and Ay : Hj(2) — H™'(Q) by

< Auyv > = /[uVu - Vo + (A + p)div udiv vldz, Vu,v € (HP, ()",
0

< Apu,v > = /Vu-Vvd:B,Vu,UEH&(Q).
Q

We further introduce the nonlinear operator By from (H} ()" to [(HE, (22))"]
by

< Byu,v>= [ m-vg(u)-vdl + / f(u) - vdx,Vu,v € (Hp ()"
0

1)

Lemma 3.1 If the functions fonctions f et g satisfy (10) and (11), then the
operator By is well defined.

The proof of this lemma is similar to the one of lemma 3.1 of [5] (see also
section 6 of [7]).
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To obtain the abstract formulation of (3), we multiply the first identity of
the system (3) by v € (H} ()" and we integrate by parts on €, this yields

0 = /[u” — pAu— (A + p)Vdivu + aVo + f(u')] - vdx
Q

= /u”-vda:—,u @-vdf—()\jtu)/v-udivudf‘
Q r Ov r

+ /[(,LLVUVU + (A + p)div udiv v]dx + /
Q Q

= / u” - vdx + / a.m - vu.vdl + /m -vg(u').vdl
Q r r

+ /[(,uVqu + (A + p)div udivo]dz + / aVe - vdr + / f) - vdx
Q Q

Q
= < Jv>+ < Au,v >+ < Byu',v >+ < aVb,v > .

(aVe - v)dx+/ﬂf(u').vd:c

This leads to the identity
u”’ + Au+ Bou' +aVi = 0.

In a similar manner, if we multiply the second identity of system (3) by
v e (H ()" and if we integrate by parts on €2, we obtain

0 + Agf + Bdiv (u') = 0.

Setting
D = (u,u’,0)
and
Ad = (—u', Au+ Bou/ + aV@, AQH + ﬁle (u')), (18)
the system (3) reduce to
P+ AP =0
' 19
{ B(0) = (uo, ur, o). (19)

Lemma 3.2 Under the hypothese (4), (5), (6), (8), (10) and (11), the oper-
ator A defined on H by (18) with domain

D(A) = {(u,v,0) € H:v e (HE)", AutBov € (L*())", 0 € H*(Q)NHy(Q)}
is mazimal monotone. Morever, D(A) is dense in H.

The proof of this lemma is similar to the one of lemma 3.2 of [5]. The
theory of nonlinear semi-groups ( see [12] for example) leads to Theorem 2.1.
Thus the energy of the solution of (3) is given by

E(t) = E(u,0,1) = %II(U(t),U’(t),G’(t))II%-
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4 Proof of Theorem 2.2

Deriving (7) in time and integrating by parts in space, we readily see that

E’(t)Z—%/QIW(Lt)Ide— m-Vg(U'(t))-U'(t)—/Qf(U'(t))-U'(t)dw,

I

and consequently

E(T) - B(S) = —% /S /Q IV [2dxdt (20)
- / m - vg(u'(t)) - o' (t)dxdt
S I'a
— / / f(' (1) -/ ()dDde, V0 < S < T < oo.
S Q

The hypotheses (4), (5) and (6) lead to the decay of the energy.
Under additional hypotheses on f and g, we will now obtain different types
of decay. For that purpose introduce the constant

n

Ry = max(Z(:ck—:cok)z)l/Q,

z€Q
Ry = min(|Tf; ),
2 2
K(a) = maX|M+(2—n)|.
xel's ILL

Further let v and Ay be the smallest positive constantes such that for all
u € (Hy, ()"

/ (u[2dT < +2 (/{u\wu (>\+u)|divu|2}dx+/
I'y Q

I

am~V|u|2dF), (21)
and
el <3 ([ v+ O wldiahas+ [ amvjupar) (22)
Q I

respectively.

To prove Theorem 2.2, we are reduced to check the sufficient conditions of
Theorem 5.3 of [7]. In our case it remains to show that the linear system
associated with (3) is exponentially stable. This system takes the form
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(u" — pAu— (N + p)Vdive + aVeo + o = 0 in Q,
0 — A0 + pfdivu’ = 0 in Q,
0 0 on T,
U 0 on I'y, (23)
uo,u + (A + p)divury + am - vu +m - vu’ = 0 on I'y,
u(.,0) = ug, u(.,0) =uy 0(.,0) =6y in Q.

\

We start with technical lemma

Lemma 4.1 For alleg > 0 and T > 0, there exists a positive constant C(gg)
such that for all (u,u’,8) solution of (23)

T
/ am - v|u|?d2 < C(g0)E(0) + 50/ E(t)dt.
Sor 0
Proof: We proceed as in [1]. For ¢ > 0, consider the solution z = z(t) of

(24)

z=u onl.

{ —puAz — (A +p)Vdive =0 in Q,

this solution is characterized by z = w + u where w € (Hg(€2))" is the unique
solution of

/ (uVwVo+ (A + p)divwdive)dedt = — / (LVuVv+ (A + p)divudiv v)dedt,
0 0

Vv € (Hy(Q)".
this identity means that

/(uVqud:vdH(A—l—,u)div udiv 2)dzdt = /(M|Vz|2d:)sdt—|—()\+u)|div z|%)dxdt > 0.
0 0

(25)
Morever by Korn’s inequality we have

/|z|2dx§00/|u|2d2 (26)
0 r

/\z’|2dx < 00/ /|dE < C{)/m-y\u’\2d2 (27)
Q I I

where Cp, C{, are positive constants.
For 0 < T < oo, we set

and

QTIQ X [O,T],
ET =I"x [O,TL EIT = Fl X [O,TL ZQT = ET\ElT-
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Multiplying the first identity of (23) by z and integrating on Q)7 we obtain

/ 2(u" — pAu — (X + p)Vdivu + oVl + ' )dzdt = 0.

T

Applying Green’s formula and taking into account the boundary conditions in
(23) and (24), we get

/ (zu” + pVuVz + (A + p)divudiv z + a2V + u'z)dzdt+
Qr

+/ am - v|ul?dY + m - vuu'dX = 0.
Yor

Sor

Integrating by parts in ¢ and using (25), we obtain

/ am - vlu?dY < — m~yuu'd2+/ 2 dxdt
ZQT Z2T

T

— a/ zVHd:L’dt—/ u’zdmdt—/zu'\g.
T T Q

Fix an arbitrary g9 > 0. Using several times (20)( with f(z) = g(z) = ),
(26), (27) and Young’s inequality, we can estimate the different integrals of
the right-hand side of the above inequality as follows:

1
— m-vuu'dy < g m - vl|u|*d2 + — m - v|u'[2d%
Yor

T
1
< 280R072/ E(t)dt+ 4—E(0),
0 €o

1
—/ Zu'dedt < 50/ |u'|*dxdt + — |2/ |Pdxdt
Qr T 4go Qr

T C/
< 50/ E(t)dt+4—0E(O),
0 €0

2
—/ aVl.zdxdt < @ |V9|2dxdt+50/ |2|?d%
Qr 4eg Qr Qr
af s [T
< —E(0)+2€(]C(]”)/ / E(t)dt,
480 0
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1
/ u'zdrdt < 80/ |z|%dxdt + — [ |u/]PdE
Qr T 4eo Qr

T
1
< 8000’}/2/ E(t)dt+ 4—E(O),
0 €o

/ 2| < 4(1 + Coy?)E(0).
Q

Using these different estimates, we arrive at the requested estimate

Proof of Theorem 2.2: Let us introduce the following constant

aq = af(n-— 1)2 + 4aﬁR(2),

2V2 P2/, 1)\2 2
N = A§+g+7AOR°(n D +4&.
7

&1 uer
Fix € > 0 such that
O<ex
“S1FN
and define the constant
2R?
ko= 1+—204
7 4e
—1)? R?
4e €

337

Multiplying the first identity of (23) by M; = ka%—k(n—l)ui and integrating
by parts on Qr (the convention of repeated indices is adopted), we obtain

/ w) Mdxdt

T

Ou,

05 o — mka\uﬂszﬂLn/ |\uf|2dwdt
k S -

+ (n— D) (u},w))g — (n— 1)/ |uf|*dxdt

T

(u(t), 2y

ou; -1
- 2(u§(t),mk—u + (L ug)|d — my |2 dS —I—/
axk 2 Sor

Qr

|uf|2dadt.
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/ Au; M;dxdt
Qr
. O e 25— [ [ VuaPas + (n - 2) / Vil *dadt

Yor v 8xk X 5
+ (n— 1)/ auiui —(n— 1)/ |Vul*dxdt

s, OV T
ou;  Ou; u;

_ i 3 Z _ 12 E -1 .

Yot v mkal'kd Sr mkyk|VUZ| Bt (n ) 3 ov i

- / |Vul|*dzdt.
Qr

0 (divu) M;dxdt = 2/ divumk%de
Er

0r 0T oxy,
— myvg|div u2dX + (n — 2) / |div u|*dxdt
ZT T
+ (n— 1)/ div ww;v; — (n — 1)/ |div u?
ET T

. auz . 2

= 2 div umy, —uv;d> — my vy |div u|*dX.
Sr al’k S

+ (n—l)/ divuu,-z/i—/ |div u|*dxdt.
X Qr

Using these different identities, we obtain

T
2/ E(t)dt = / [[uf]? = p|Vug)* — (A + p)|divul?Jm - vdS
0 T

Ou, : Ou,
+ 2/ZT [ ;j + (>\+u)dlvuyi]mkagk
8ui .
+ (n— 1)/ [—— + (A + p)div uy;u;d>
Sr 8V
, ou; n—1 o0 ou; n—1
—_ 2(u iy M &rk + TUZ)O — 2« 0 8:):, (mk 8:):k + Tuz)dxdt

Ou,
+ g/ 92dxdt+/ am-u|u|2—2/ wimy, Y —(n—l)/ uudadt
B Qr X Qr Oy Qr

Taking into account the boundary conditions (23)( implying in particular
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ou;  Ou; )
= vy sur Yqr), we arrive at

or,  Ov

where we have set

L= [ ome ol 25 4 0 pldivallas,
Sip ov
Lo= [ sl al VP — (4 pldiv s,
Sor
’ 0uz
I3y == =2 m - v|au; + ump=—d%,
Sor 8LL’k
Iy = —(n—-1) m - vlau; + wilud% +/ am - v|u;*dY,
ZQT Z2T
ou; n—1
Is = —2(u;, mk@xk + Tuz)g —(n—1) /QT wuidxdt,
I 2 Vo(m Ou; + n_1 Ydadt + O‘/ |02 dadt
= —ZU U; - xat,
6 Qr kaSL’k 2 ﬁ Qr
ou;
I; = =2 ! .
7 /TUkaal'k

It the remains to estimate each term I;:
I, < 0since m-v <0 on X; and also

I, < m - v(|u']* — p|Vul|?)dS.

Sor

Young’s inequality and definition of Ry imply

R2
I, < 228 m - va*ul + r m - v|Vu,;
/”L EZT 2 EQT
R2
+ =2 m-y|u;~|2+ﬁ m - v|Vug)?.
/’l’ EQT 2 EQT

Thus we have

R? 2R?
Iy <22 m - va*uidy + =2 m - v|uf|2dS +
/"L Yot /“'L Yor Sor

| 2

339

m - v|Vu,|*d2.
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Similarly

—1)2
“a m - v|uf|*d + (n—1) £ m - vlu;|*d%
4e Sor &1 Yor

+ (2- n)/ am - v|u;|*d¥
Yor

Iy

IN

< & m-u\u;\2d2+(2—n)/ am - v|u|*d%
48 EQT Z2T
C1)2e~2)2R2 [T
N s 0/ E(t)dt.
Cl 0

The inequalities

2 2 2
2 [ wim - Vudal < o)1 + V)] < 220,
Q 2 n2
/ n—1 / n
(0 =1) [ wdel < "Nl + sl w0 7] < (0= DIEC)
n—1
2 [ <o -vageo,

and the definition of k; lead to
Is < k1 E(0).

By Young’s inequality, the definition of Ry, and of )y, and taking into
account (20) (with f(z) = g(z) = x), we have successively

200 — 1)2 2 P2
I < %/ |v9\2+a/ \u\2+O‘TR°/ ik

; 2 \9\2dxdt+a/ Vul?,

BQT T

af(n—1)*> aBR3 a 9 , 2 [T
[ " + + Ay /QT B|V9| + ey + F]/0 E(t)dt

IN

IA

, 2 ("
ko E(0) + [eA; + N]/o E(t)dt.

ou; 4R?
I; = —2/ wimy, =P |u'|2+—0€/ w|Vul?.
Qr Oy de Qr pe Qr

1

All together we have

T
2/ E@)ydt < Iy+ ki( m-y|u’|2d2+/ |u'|*dxdt)
0

Qr

Sor

T
4 kB(0) + eN / E(t)dt,
0
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where we have set

2 2.2
Jy:/ 25097 L (9~ nyajm - vjul2ds.
Sor M

The definition of K (a) leads to

Iy < K(a)/ am - v|ul*dX.

Sor

Applying Lemma 4.1 with g = %, there exist a positive constant C'(¢) such
that

Iy < C(£)E(0) + ¢ / ' E(t)dt.

Finally, setting

O — ]{72 + C(é) . ]{71
"T2—e(1+N) P 2—¢(1+N)

we conclude that

T
/ E(t) < CLE(0) + Co m - v |PdSdt + / |/ |*dxdt).  (28)
0

Qr

Yor

This estimate remains valid for weak solutions by a density argument.

We then conclude by Theorem 5.3 of [7].

To complete the proof, we now define as in formalism of [7] the operators A;
and Zy associed to (23) as follows: A; is defined on

V= (Hp,)" x (Hyp,)" x H;(Q)

by
A1® = (—v, Au+ oV, fdiv o).

Taking into account the feedbacks in (23) and identity (11) of [7], we set
U = (L*(T))" x (L*())" x L*(Q)
and we define the application
Iy :V—U
(u,v,0) — (Vry, v, 0)

and Zy from V to)’ by

< Iy (u,v,0), (u*,v*,0%) >= (Iy(u,v,0), Iy(u*,v*,0%))

= [ m-vvvidl+ / v.otdr + % /Q Vo -V dz.

I'y Q
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5 examples

1. If we assume that f = 0 and g satisfy (5), (11), (13), (14) as well as

z-g(x) > colzPT, V|z| <1, (29)
|g(2)| < Colz]®, Vx| <1, (30)

where ¢, Cy are positive constants, a € (0,1] and p > « then making the
choice

pt1

G(:)s):x% and ¢ = -1

we obtain decays similar to the ones from Theorem 2.3 to [5]. Indeed, if p =
a =1, then ¥71(t) = e~ and we conclude and exponential decay. Conservely,
if p+1>2a, then U~1(t) = #723 and we obtain a decay of order T

2. In a similar manner as in examples 5.6 et 5.8 of [7] good choices of f and g
allow to obtain logarithmic, double logarithmic decay etc..
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