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Abstract

In [5] was considered the eigenvalues and eigensubspaces of endo-
morphisms (which are induced by the selfmappings with Denjoy-Wolff
type fixed points) of algebra of convergent power series ¥, of n variables
z=(z1,...,2y,) and for the algebras 3o was determined the eigenvalues
(also, described their corresponding eigensubspaces) of endomorphisms
in the resonancing cases. In this work we continue this problem and we
determine the eigenvalues (also, describe their corresponding eigensub-
spaces ) of such endomorphisms of algfbras Y5 in the all cases.
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1 Introduction

In [2] Kamowitz considered the weighted composition operator 7" on the disc-
algebra (i.e. the algebra of continuous functions on the closed unit disc and
analytic in the interior of its) and was determined its spectrum in the case when
T is compact. In [3] we have more generally results inclusion multidimensional
cases. In [3] was considered the weighted composition operators on uniform
spaces of analytic functions, which induced by the compressly mappings on the
bounded domains D C C™ (n > 1) and was determined its spectrum. Another
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words, if D is a bounded domain and ¢ : D — D is holomorphic mapping
(where D denote closure of D), then in [3] was considered the operators of
the form 7' : X — X, f — u f o, for every f € X, where u € X is fixed
function and X is Banach-A (D) module, which is uniform subspace of space of
holomorphic functions on D equipped with uniform topology. It is well known
the mapping ¢ has a unique fixed point in D. In [3] was shown the spectrum of
operator 1" is equal to semigroup induced by eigenvalues of linear part of ¢ at
the fixed point. Since these operators are compacts, then every eigensubspace
corresponding to nonzero eigenvalue has finite dimensions. But from method of
[3] we know about dimensions of eigensubspaces, if only case when differential
of mapping ¢ at the fixed point has differently, nonzero and multiplicativly
independent eigenvalues (and in this case corresponding eigensubspace has
dimension 1). Since in this case between eigenvalues and eigensubspaces of
operator T' and eigenvalues and eigensubspaces of endomorphism of algebra
of formal (or convergent) series there are bijective mapping (see [4]), so we
begin investigate last problems. In [5] avoid the results of [3] was calculated
directly the spectrum and was discribed eigensubspaces of operator T induced
by the selfmappings with Denjoy-Wolff type fixed point in the resonancing
case, when n = 2. Without loss of generality, we may assume, as so as [5],
weighted function u is identity, and domain of ¢, which induced the weighted
endomorphism 7' contains the origin of coordinate and it is fixed point for
mapping ¢ (i.e., we will consider the operator T : f — f o ® on the algebra

222):

Investigation of spectral properties (for example, spectrum, eigenvalues,
eigensubspaces and so) of endomorphisms, also weighted endomorphisms on
different algebras (for example, on the uniform algebras, especially on the func-
tion algebras with analytic structure , etc ), usually leads to investigation these
problems on the algebras formally convergent power series (instance , in the
case algebra of analytic functions, we have the algebra of germs of functions at
the fixed points, etc). Moreover, in many cases studying some algebraic and
spectral properties of endomorphisms, or weighted endomorphisms induced by
compression mappings (for example, see [3]), or more generally, by the map-
pings which have fixed points, in some sense(for example, in the Denjoy-Wolff
sense fixed point, and so) on the function algebras with analytic structure,
again leads to studying endomorphisms of above mentioned algebras. Espe-
cially, on the uniform algebras spectrum of the compact, or quazi-compact
weighted endomorphisms described by the eigennumbers of linear part of en-
domorphism at the origin, which modules less than 1 (see [3]). So, in this
work, so as [5] we will assume that modules of eigennumbers of the linear
part of mapping (which induced the given endomorphism) on initial point of
coordinate system less than 1.

Let > . be the algebra of convergent power series of n > 1 variables
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z2=(z1,...,2,). In [5] was considered In this algebra eigenvalues of endomor-
phism generated by mapping ® which modules of all eigenvalues of its linear
part ®; at the origin less than 1, nonzero, differently and nonresonancing (if,

a1, ..., q, are eigenvalues of ®; | then a4 is called resonancing eigenvalue, if
a, = o =of" ... am, where, m; > 0, Y " m; > 2; for any resonancing
eigenvalue oy = o™ corresponding resonancing vector-monom z"e,, where, e,

M .

is basic vector and 2 = 2" ... 2" if, between eigenvalues o, ..., a, there
is resonancing conditions, then the endomorphism is called resonancing endo-
morphism, otherwise is called nonresonancig endomorphism). It is clear that
in this case by Puancare’s theorem (see [1] ) we may by diffeomorphic trans-
formation of coordinates the mapping ® reduced to its linear part ®; , which
has diagonal form. Let ®; has a form ®; = diag (a1, ...,a,). In this case in
[5] was proved next theorem:

Theorem 1.1 If modules of eigennumbers aq, ..., a, of the linear part of
mapping © which generated the endomorphism T : 3, — X, are less than 1
and nonzero,nonresonansing, differently, then eigenvalues of T have the form
Mmoo where k=(ky,... k), ki € Zo , i =1, ..., n, and corre-

sponding eigensubspaces up to diffeomorphism are generated by the functions
fr = & (consequently, all eigensubspaces are one dimensional).

In [5] further, was considered the algebra ¥, of series (formal or convergent

series) of the form
n,m
E ApmT Y
n,m

and endomorphism 7" of this space induced by formal series ®, which module of
eigenvalues of linear part of ® are less than 1, i.e. was considered the operator
of the form: T: 3y — Yo, f— fo®d (f € Xs) where eigenvalues ay, ap of
the linear part of ¥ holds: a;: 0 <|a;| <1 (i =1,2). In the resonancing
case in [5] corresponding with the resonancing monoms and for the without
resonancing monoms wase proved next theorems:

Theorem 1.2 In the resonancing case with the resonancing monoms every
eigenvalue of endomorphism T : ¥y — 3y has the form N\, = a? ( where q
is nonnegative whole number) and corresponding eigenfunction has the form
fo(x,y) = y? (or has the form f,(xz,y) = x?). Consequently, corresponding
eigensubspaces are one-dimensional.

Theorem 1.3 In the resonancing cases without resonancing monoms ev-
ery eigenvalue of endomorphism T : X9 — X9 has the form A\, = a4 (where q
is nonnegative whole number) and corresponding eigenfunctions have the forms

£ (@,5) = S g mittyt™™ (or has the form f (,4) = S0 g mighzt™ ).
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Consequently, corresponding eigensubspaces are ( [%] + 1 )- dimensional,

where m is an order of resonancing conditions and [r| denote a whole part of
r.

So, continue this problem we will consider the rest cases.

2 The case, when between eigennumbers of
the linear part of mapping there are not
resononcing conditions

Now we consider the case, when eigennumbers «q,ay of the linear part of
mapping P, which induced endomorphim 7" : 3y — ¥, f — fod (f € ¥)
are differently and between them there are not resonancing conditions. We
will find eigenvalues of endomorphism 7" and we will calculate the dimensions
of corresponding eigensubspaces. By using Poincare‘s theorem ( see [1]) we
Oél 02) where 0 < |y, |ag| < 1. Put

fxy) =2k arz*y! and we consider eigenvalues problems:

assume that, ® has the form

(Tf) (z,9) = > ars(onz) (agy) = Af = A ariz®y.

From this for any %k, > 0 we get ay, (alkagl — )\) = 0. If, for some ay,;, #
0 then A\ = a;* s, If we assume that for the another ag, 1, 7 0, where
{k1, 11} # {ko, 1o} , so we have that A = a;* a," and from this we get a*oan =
arFrash ) ie. a1 Ryl = 1. In this case we have next conditions.

a) When between eigenvalues i, sy there are not multiplicative depending
relations ( i.e., the eigenvalues a1, ay such that, for any pairs {ko, lo} # {0,0}
we have a;¥a,0 # 1 ) the next theorem is clear:

Theorem 2.1 If, between eigennumbers o, o there are not resonancing
and multiplicative conditions, then any eigenvalue of endomorphism T : Yy —
Yo, f— fo® (f€Xy)has the form Ay = ar*aot and for this eigenvalue
corresponding unique (up to multiplier) eigenfunction f (x,y) = z*y'; so we
have dimEp (A ) = dimErp (OélkOégl) =1 (if, \ is an eigenvalue for the endo-
morphism T', then by Er(\) we denote the eigensubspace which corresponding
to eigenvalue \).

b) Now we will consider the second case i.e., the case, when between eigen-
vnumbers there are multiplicative relations i.e., the eigennumbers aq, ap are
such that between these there are multiplicative depending conditions. Then
there is some {ko,lo} # {0,0}, such that a;®ay’ =1 (it is clear that in this
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case both ky and [y are not zero, because 0 < ||, |az| < 1 ). Therefore we
consider the equation

OélaOégb =1, 0< |Oé1|, |Oé2| < 1, (*)

and look for it’s integer solutions. Suppose, that the eigennumbers aq and as

have the forms a; = p1e?™, ay = pee?™2 where 0 < ¢;, ty < 1, then we
have
pips =1
at; + bty € Z,
alogpy + blogps = 0, (1)
aty + bty € 7, )

where Z is the set of whole numbers. Since we look for the integer nonzero
solutions a # 0,b # 0, so from (1) we conclude, that ;Zg% is rational number.

Thus we get the necessary condition for the solution (*):

logps/logpy € @, where @) is the set of rational numbers.

We assume that the above conditions holds, i.e., we have next representation:
mg
logpa/logpy = —=,ma, my € Z, (|mal, [mal) = 1,
1

where the bracket ( , ) denote the greatest common divisor (in fact, since
0 < p1, p2 < 1, s0 logpy,logps < 0, i.e., logpsa/logpy > 0, therefore we may
assume that, my, mo > 0). With these conditions numbers my, ms are defined
unambiguously with respect to p;, po. From (1) we get a = —blogps/logp; =
—m2b; then from (2) we have:

m m ,
—t1—2b+ tob € Z, ie., b(tz — t1_2) € Z. (2 )
mq my
Since b must be integer and nonzero, then we have the number 5 — tl% is
rational: m
2
to—ti— € Q (3)
my

This is necessary condition for the existence solutions. We assume that the
condition (3) holds and we have the next representation:

no

m
t2—t1—2:— , N9, M EZ, (|7’L2|, nl)zl, ny > 0.
1

my
It is clear by these conditions numbers n, ns are defined unambiguously (with
respect to t1, t2, p1, p2). Since, logps = T2logpy, so the equation (1) has the
form
my
alogpr + bm—logm =0 (logp: #0)
1
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ie.,
mya +mb =10 (4)

Take into account of my, msy are mutual prime numbers, so, we get common
solution for equation (4) by the next form:

a=kmy, b=—kmy, keZ

From (2') and from that ¢, — tl% = n2, b= —km,, we conclude the
number (—km, - 22) is integer. Since (ng,n1) = 1, so the number km; must be

divided by n;. Put d = (mq,n,); then we have

k kpd  k
my = pd; my = qd; (p.q) = L kmy = kpd; — = "% = P
nooqd g

and they are integers. Since (p,q) = 1, so we get k = ¢s, where s € Z . Thus,
the common solutions of the equation (*) on the ring of integer numbers we
get in the next forms:
a = sqmy
b= —sqmy
(It is clear , for these numbers a and b are hold next condition:

where s € Z, s # 0 (we look for nonzero solutions).

alogpy + blogp, = 0

aty +aty € 7

which is equivalent to equation (*)).
Thus, we give next theorem:

Theorem 2.2 [f, between eigennumbers oy, ag of the linear part of mapping
® there 1s not resonancing conditions, but they are multiplicative depending,
then every eigenvalue of the operator T : Y9 — 3o, f — fo® (f € X9)
has the form Ag.1) = ar*ay for some (k,l) € Z, x Z, and corresponding
eigensubspace consists of polynoms:

Flay) = 3 aghriemyioem
Sez
k + sqmo > 0
[ —sqmy >0

and therefore corresponding eigensubspace is finite dimensional, and:
dszT (OélkOégl> = |Z N [—/{;d/nlmQ, ld/nlml]\

(where the symbol |A|- defined power of the set A).
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Remark 2.3 In the nonrezonancing case, when eigennumberss of linear
part of mapping ® are coincides, i.e., the linear part of mapping ® has the

normal form , then it easy showed that this case is similarly to the

a
0
resonancing case with the rezonancing monoms (see Theorem 1.2) ) , and
for eigenvalues of the forms X = af ( where q is nonnegative whole number)
corresponding are monoms: f,(x,y) = y? (or f,(x,y) = x9). Thus in this

case for any nonnegative whole number q we get dimEr (a? ) = 1.

3 The case, when a linear part of inducing
mapping has a zero eigennumber

Finally we consider the case when one of the eigennumbers «; (i = 1,2) of the
linear part of mapping & is zero (it is clear, this is resonancing case). If, one of
the «; is nonzero, then without loss of generality we can reduce the mapping

d to the form & = 0 , i.e., we have Y= * ) Then for
0 0 Y 0

eigenvalue problem we get:

(Tf)(z,y) = Z ag(ax) = Z agoa®zh = A Z apzyl = Z xk(z Aagiy)
k.l k=0 k.l k=0 1=0

For any k we get:

o o

k I !

ag o0 = E Aaggy' = Aago + E Ak 1y
=0 =1

1.e.

ak70(—ak + )\) + Z )\ak,lyl =0

=1

and form this we have: am(—ak + A) = 0 for any k and Aax; = 0 for any £,
and any [ > 1.

So, we have two cases:

¢1) The case when there is exists nonzero eigenfunction.

If for some ko we have a,, # 0, then A = a* #£ 0 and ag; = 0 for any k, and
for any [ > 1. Therefore, we get f (z,y) = Y oo, cx®®, and easy be showed,
that indeedly cg, # 0, and ¢ = 0, for any k # ky. Consequently, eigenvalues
of operator T have the forms \; = o* and according eigenfunctions consists of
the monoms z* (or y* ), i.e. dimEr () = 1.

c2) The case when there is not nonzero eigenfunction.



240 Aydin I. Shahbazov and Dashqin A. Seyidov

If for any k : ayo = 0, then we get, either A = 0 and f (z,y) = > 2, ay’ (ie.,
the eigenvalue is zero and corresponding egensubspace is infinite dimensional
eigensubspace), or A\ # 0 and ay; = 0 for any k and any [ > 1, but then we
have f = 0, i.e., there are not eigenfunctions.

Theorem 3.1 If, one of eigennumbers of the linear part of inducing map-
ping is zero, then,every nonzero eigenvalue of the operatorT : Yo — Yo, f —
fod (f € Xy) has the form N\, = of for some k € Z, and corresponding
eigenfunctions consists of the monoms z* (or y* ), i.e., dimEr (a*) = 1.

Remark 3.2 The case when both eigenvalues of linear part of mapping ®
are equal to zero (i.e. ay = oy = 0 then ® (x,y) = 0(|x|*+|y|*)), it is clear,
that there is not exists eigenunction (except, the case X =1 and f = const).
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