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Abstract 

This paper deals with the propagation of magnetoelastic torsional waves in non-

homogeneous viscoelastic cylindrically aeolotropic material. The elastic constants 

and non-homogeneity in density of the material are in the form  and 

 respectively, where , are constants; r is radius vector; l and m are 

any integers. Frequency equation in each case has been derived and the graphs 

have been plotted showing the effect of variation of elastic constants and the 

presence of magnetic field. It is observed that the torsional elastic waves in a 

viscoelastic solid body propagating under the influence of a superimposed 

magnetic field can be different significantly from that of those propagating in the 

absence of a magnetic field. The numerical calculations have been presented 

graphically by using MATLAB. 
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1 Introduction 

A large amount of literature is available on surface wave in the monograph of 

Ewing [1]. But there is a very few problems of cylindrically aeolotropic elastic 

material have been considered so far because of the inherent difficulty in solving 

complicated simultaneous partial differential equations. Kaliski [2], Narain [3] 

and many others have investigated the magnetoelastic torsional surface waves. 

White [4] has investigated cylindrical waves in transversely isotropic media. The 

elastic cylindrical shell under radial impulse was studied by Mcivor [5]. Cinelli 

[6] has investigated dynamic vibrations and stresses in elastic cylinders and 

spheres. Pan and Heyliger [7] have given the exact solutions for magneto-electro-

elastic Laminates in cylindrical bending. The wave propagation in non-

homogeneous magneto-electro-elastic plates has been solved by Bin et al. [8]. 

Kong et al. [9] solved the problem of thermo-magneto-dynamic stresses and 

perturbation of magnetic field vector in non-homogeneous hollow cylinder. 

Recently, Kakar et al. [10], [11] and [12] studied various surface waves in elastic 

as well in viscoelastic media. 

In this study, the torsional surface waves are investigated in non-homogeneous 

viscoelastic cylindrically aeolotropic material subjected to a magnetic field. The 

problem is solved analytically by using Bessel’s functions and numerically by 

using MATLAB.  

2 Basic equations 

The problem is dealing with magnetoelasticity. Therefore the basic equations will 

be electromagnetism and elasticity. Therefore, the Maxwell equations of 

electromagnetic field in the absence of the displacement current (in system-

international unit) are [14] 

0  ,  (1a) 

0   , (1b) 

t


  


 , 

(1c) 

0 0 .
t

 


 


 
(1d) 

Where, , , 0 and
0 are electric field, magnetic field induction, permeability 

and permittivity of the vacuum. For vacuum, 0 = 74 10  and 0 = 128.85 10 in 

SI units. Also, the term Ohm's law is  

,J E  (2a) 
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Where, J  is the current density and σ is a material conductivity.  

The Lorentz force on the charge carriers is [14] 

( ) ( ).
v

J E V B E B
t

 


     


 
(2b) 

 

The homogeneous form of the electromagnetic wave equation is [14] 
2

2

0 0 2
0

t


 
    

 
, 

(3a) 

2
2

0 0 2
0

t


 
    

 
. 

(3b) 

Where,  
2 2

2

2 2 2

1 1

r r r r 

  
   

  
 

The dynamical equations of motion in cylindrical coordinate  , ,r z   are  [13], 

[18] 

Where, , , , . , ,rr r rz rr z zzs s s s s s s   are the respective stress components, , ,R ZT T T  are 

the respective body forces and , ,u v w  are the respective displacement 

components.  

The stress-strain relations are [18] 
0 0 0

11 12 13 ,rr rr zzs e e e      (5a) 

0 0 0

21 22 23 ,rr zzs e e e       (5b) 

0 0 0

31 32 33 ,zz rr zzs e e e      (5c) 

0

44 ,rz rzs e  (5d) 

0

55 ,z zs e   (5e) 

0

66 .r rs e   (5f) 

Where, ij  elastic constants ( ij = 1, 2……6).  

The elastic constants of viscoelastic medium are [21] 
2

0 / / /

2ij ij ij ij
t t

   
 

  
 

( ij = 1, 2……6).                                                                                              
   (6)   

 Where, 
/

ij and 
/ /

ij are the first and second order derivatives of .ij                                                 

2

2

1 1
( ) ,rrr rz

rr R

ss s u
s s T

r r z r t


 



  
     

   
 

 

(4a) 

 
2

2

21
,r z rs s s s v

T
r r z r t

   
 



   
    

   
 

 

(4b) 

 
2

2

1
.zrz zz rz

Z

ss s s w
T

r r z r t

 


  
    

   
 

 

(4c)  
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The strain components are [20] 

1
,

2
rr

u
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r





 

(7a) 

1 1
,

2

v u
e

r r




 
  

 
 

(7b) 

1
,

2
zz

w
e

z





 

(7c) 

1 1
,

2
z

w v
e

r r z


  
  

  
 

(7d) 

1
,

2
rz

w u
e

r z

  
  

  
 

(7e) 

1
,

2
zz

w
e

z





 

(7f) 

The rotational components are [20] 

1 1
,

2
r

w v

r z

  
   

  
 

(8a) 

1 1
,

2

u w

r z r


  
   

  
 

(8b) 

1 ( )
.z

rv u

r r 

  
   

  
 

(8c) 

Equations for the propagation of small elastic disturbances in a perfectly 

conducting viscoelastic solid will have the body force in terms of electromagnetic 

force  J    (using Eq. (4)) and are 

 
2

2

1 1
( ) ,rrr rz

rr
R

ss s u
s s J

r r z r t


 



  
      

   
 

(9a) 

 

 
2

2

21
,r z rs s s s v

J
r r z r t

   






   
     

   
 

(9b) 

 

 
2

2

1
.zrz zz rz

Z

ss s s w
J

r r z r t

 


  
     

   
 

(9c) 

 

 Let us assume the components of magnetic field intensity  are 0r    and 

z  constant. Therefore, the value of magnetic field intensity is  

  00,0, i   
                                                                                           

(10)                                                                                                                                  

Where, 0  is the initial magnetic field intensity along z-axis and i  is the 

perturbation in the magnetic field intensity.  

The relation between magnetic field intensity  and magnetic field induction is 

0                                                                                                                 (11) 
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 (For vacuum, 
0 = 74 10   SI units.)                                                                              

From Eq. (1), Eq. (2), Eq. (3) and Eq. (10), we get 

2

0

v

t t
 

    
      

    
                                                                      (12) 

The components of Eq. (12) can be written as  

2

,

0

1r
r

t  


  


 

2

,

0

1

t




 


  


 

2

0

1
.z

t  


  


 

(13a) 

  

(13b) 

 

(13c) 

 

3 Formulation of the problem 

Let us consider a semi-infinite hollow cylindrical tube of radii α and β. Let the 

elastic properties of the shell are symmetrical about z-axis, and the tube is placed 

in an axial magnetic field surrounded by vacuum. Since, we are investigating the 

torsional waves in an aeolotropic cylindrical tube therefore the displacement 

vector has only v  component. Hence, 

0,u   (14a) 

0w   (14b) 

( , ).v v r z  (14c) 

Therefore, from Eq. (14) and Eq. (7), we get, 

0,rr zz zre e e e     

1
,

2
z

v
e

z


 
  

 
 

1
.

2
r

v v
e

r r


 
  

 
 

(15a) 

 

(15b) 

 

(15c) 

 

From Eq. (14) and Eq. (8), we get, 

1
,

2
r

v

z

 
   

 
 

(16a) 

 

0,   (16b) 

 

.z

v v

r r


  


 

(16c) 

 

Using Eq. (14), Eq. (15) and Eq. (6), the Eq. (5) becomes    

0,rr zz rzs s s s     (17a) 

2
/ / /

66 66 66 2

1
( ) ( ),

2
r

v v
s

t t r r
   

  
   

  
 

(17b) 
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2
z

v
s

t t r
   

  
   
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(17c) 

 

Where, 
/

ij and 
/ /

ij are the first and second order derivatives of .ij  

For perfectly conducting medium, (i.e.    ), it can be seen that Eq. (2) 

becomes 

0 ,0,0
v

c t

   
    

                                                                                           (18) 

Eq. (1) and Eq. (18), the Eq. (13) becomes,

                                                                                                                

 

0, ,0i

v

z

 
                                                                                                 

(19) 

From the above discussion, the electric and magnetic components in the problem 

are related as 

0 ,0,0 0, ,0
v v

c t z

      
                                                                                    

(20) 

Using Eq. (19) and Eq. (1) to get the components of body force in terms of 

Gaussian system of units as: 
2

2
0, ,0

4

v

z

  
   

 
                                                                                               (21) 

Eq. (17) and Eq. (20) satisfy the Eq. (4a) and Eq. (4c), therefore, the remaining  
2 2

/ / / / / /

266 66 66 55 55 552 2

22 2 2
/ / /

66 66 66 2 2

1 1
( ) ( ) ( )( )

2 2

2 1
( ) ( )

2 4

v v v

vr t t r r z t t r

tv v H v

r t t r r z

     



  


        
                

 
        

     

(22) 

Eq. (4b) becomes 

Let 
/ / / / / /, ,l l l

ij ij ij ij ij ijC r C r C r     and 0

mr 
                                               

(23) 

Where, ij , 
/

ij ,
/ /

ij  and 0 are constants, r  is the radius vector and ,l m  are non-

homogeneities. 

From Eq. (23), we get Eq. (17) as 
2

/ / /

66 66 66 2

1
( ) ( ),

2

l

r

v v
s r

t t r r
   

  
   

    

 (24a) 

 

2
/ / /

66 66 66 2

1
( ) ( ),

2

l

r

v v
s r

t t r r
   

  
   

    

(24b) 

 

Using Eq. (23), the Eq. (22) becomes
 

2 2
/ // / //

266 66 66 55 55 552 2

0 22 2 2
/ //

66 66 66 2 2

1 1
( ) ( ) ( ) ( )

2 2

2 1
( ) ( )

2 4

l l

m

l

v v v
r r

vr t t r r z t t r
r

tv v H v
r

r t t r r z

     



  


        
                

 
        

     

  (25) 
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4 Solution of the problem 

Let ( )( ) i z tv r e    [16] be the solution of Eq. (25). Hence, Eq. (25) reduces to 
2

2 2

1 22 2

( 1) ( 1)
0

l

l l

r r r r r

  
 

   
    

                                                         
(26) 

Where, 
2 / / / 2 2

2 0 55 55 55
1 / / / 2

66 66 66

2 ( )
,

i

i

       

    

  
 

 
 

 (27a)

  

2 2
2

2 / / / 2

66 66 66

.
2 ( )

H

i



     
 

 
 

(27b)

  

Eq. (26) is in complex form, therefore we generalize its solution for 0l   and 

2l    

4.1 Solution for 0l   
For, 0l   the Eq. (26) becomes, 

2
2

2 2

1 1
( ) 0

r r r r

 


 
    

 
 

 (28) 

 

Where, 
2 2 2

1 2  
 

 (29) 

 

The solution of Eq. (28) is 
( )

1 1{ ( ) ( )} i z tv PJ Gr QX Gr e                                                                            (30) 

From Eq. (24) and Eq. (30) 

/ // 2 ( )

66 66 66 0 1 0 1

2 2
{ } { ( ) ( ) { ( ) ( )

2 2

i z t

r

P Q
s i GJ Gr J Gr GX Gr X Gr e

r r

 
       
      

 
  (31) 

5 Boundary conditions and frequency equation 

The boundary conditions that must be satisfied are  

B1. For r α , (α is the internal radius of the tube)  

0( )r r rs     
 

B2. For r  β , (β is the external radius of the tube)  

0( )r r rs        

Where r and
0( )r  are the Maxwell stresses in the body and in the vacuum, 

respectively. There will be no impact of these Maxwell stresses. Hence,  

0( ) 0r r      (32) 

On simplification, Eq. (18) and Eq. (30) gives 

( )0
1 1{ ( ) ( )} i z ti PJ Gr QX Gr e

c

 
 

     
 (33)

 

Let , ( )

0

i z te   
 Hence, Eq. (3) becomes 
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
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   
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 (34)                                                                                            
 

Where,
 

2
2 2

2c


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(35)                                                                                            

The solution of the Eq. (34) becomes 

0 0( ) ( )RJ r SX r   
 

                               
(36)                                                                                           

 

 

Where 
0J  and 

0X are Bessel functions of order zero. R and S are constants. 

From Eq. (37) and Eq. (40) 
( )

0 0{ ( ) ( )} i z tRJ r SX r e      
                                                                      (37) 

The boundary conditions B1 and B2 with the help of the Eq. (31) and (32) turn 

into: 

0 1 0 1{ ( ) 2 ( )} { ( ) 2 ( )} 0P G J G J G Q G X G X G          (38) 

0 1 0 1{ ( ) 2 ( )} { ( ) 2 ( )} 0P G J G J G Q G X Ga X G         (39) 

Eliminating P and Q from Eq. (38) and Eq. (39) 

0 1 0 1

0 1 0 1

( ) 2 ( ) ( ) 2 ( )
0

( ) 2 ( ) ( ) 2 ( )

G J G J G G X G X G

G J G J G G X Ga X G

     
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 


   
(40)

 

 

On solving Eq. (40), we get the obtained frequency equation  
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0 1 0 1

( ) 2 ( ) ( ) 2 ( )
0
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G J G J G G X G X G
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 
 

 
 

(41) 

 

On the theory of Bessel functions, if tube under consideration is very thin i.e.

     and neglecting 2 3, ........   , the frequency equation can be written 

as (Watson [16])

 3 2 1 0                                                                                                      (42) 

Where,
  2
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 
 

              

 

(43)

 

 

Putting the value of  in Eq. (42), the frequency  of the wave can be found. 

Clearly, frequency  is dependent on magnetic field.  

Put ,                                                                                                                                                 (44) 

The phase velocity 1 /c  
 can be written as 
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0 66 66 66
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c i
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(45) 

 

Where,   
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(46)

 

The term   i.e. magnetic field is negative in Eq. (45) which reduces the phase 

velocity of torsional wave. 

Case 1 

Since the pipe under consideration is made of an aeolotropic material, then 
/ // 0ij ij  

 
                                                                                                      (47)  

Hence, from Eq. (42), Eq. (44) and Eq. (47) the frequency equation becomes 
3

0 0 0       (48)
 

Using Eq. (45) and Eq. (46), the phase velocity is 
2 2
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Where,

 

2

0 66 02c           

                                                                                   

(50)

 The term   i.e. magnetic field is negative in Eq. (49) which reduces the phase 

velocity of torsional wave. This is in complete agreement with the corresponding 

classical results [15] 

 Case 2

 If the pipe under consideration is made of an isotropic material, then 
/ //

55 660,ij ij          (51) 

 

Using Eq. (49) and Eq. (50), the phase velocity is 
2 2

2 2

2 0
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1
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H
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(52) 

 

This is in complete agreement with the corresponding classical results [3] 

5.1Solution for l=2 
For, 2l   the Eq. (26) becomes, 

22
2 2
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(3 )3
( 0

r r r r
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(53) 

 

Putting 
1

( )r
r

   in Eq. (53), one get 
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(54) 

 

Where,
 

2 2
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 (55) 

 

Solution of  Eq.  (54) will be (Watson [16]) 

1 2( ) ( )RJ r SX r        (56) 

 

Putting the value of   and   in Eq. (55), we get 
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From the Eq. (24) and Eq. (56) 
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(58) 

 

With the help of Eq. (32), Eq. (56) and boundary conditions B1 and B2, we get 
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Eliminating R and S from Eq. (58) and Eq. (59)  
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On solving Eq. (60), we get 
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If η1 is the root of the above equation, then 
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Where, 1F  

 

On the theory of Bessel functions, if tube under consideration is very thin i.e.

     and neglecting 2 3, ........   , the frequency equation can be written 

as (Watson [18]) 
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Where,
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From the Eq. (62), Eq. (63) and Eq. (64), the phase velocity can be written as 

(same as above Eq. (45) and Eq. (46)) 
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(65) 

 

Case 1

 Since the pipe under consideration is made of an aeolotropic material, then 
/ / / 0ij ij    (66)                                                   

 

The frequency equation is given by 
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(69) 

 

Using Eq. (65), Eq. (66), Eq. (67) and Eq. (69), we get (calculations are done in 

the similar manner as for the Eq. (48) to Eq. (50) for 0l  case) 
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Where,  
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Case 2 

If the pipe under consideration is made of an isotropic material, then 
/ //

55 660,ij ij                                                                                            (71) 

The frequency equation (calculations are done as for the l=0 case) is
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Using Eq. (71) and Eq. (72), the phase velocity for this case is (same as above Eq. 

(45) and Eq. (46)) 
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Where,
  

02
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6 Numerical  analysis  

The effect of non-homogeneity on torsional waves in an aeolotropic material 

made of viscoelastic solids has been studied. The numerical computation of phase 

velocity has been made for homogeneous and non-homogeneous pipe. The graphs 

are plotted for the two cases (l=0 and l=2).  Different values of α/λ 

(diameter/wavelength) for homogeneous in the presence of magnetic field and non 

homogeneous case in the absence of magnetic field are calculated from Eq. (49) 

and Eq. (65) with the help of MATLAB. The variations elastic constants and 

presence of magnetic field in two curves have been obtained by choosing the 

following parameters for homogeneous and non-homogeneous aeolotropic pipe. 

Table 1.Material properties 

 l 
0    

Homogeneous 

Pipe 

0 2.333 10 

Inhomogeneous 

Pipe 

2 2.333 10 

The curves obtained in fig. 1 clearly show that the phase velocity for 

homogeneous as well as non-homogeneous case decreases inside the aeolotropic 

tube. The presence of magnetic field also reduces the speed of torsional waves in 

viscoelastic solids. These curves justify the results obtained in Eq. (50) and Eq. 

(52) mathematically given by Narain [3] and Chandrasekharaiahi [15]. We see 

that for homogeneous case when magnetic field is present and for non-

homogeneous case when magnetic field is not present the variation i.e. shape of 

the curves is same. For non-homogeneous case, the elastic constants and the 

density of the tube are varying as the square of the radius vector. 

Table 2.Material properties 

 l H (Gauss) 55 66/   

Homogeneous 

Pipe 

0 0.32 0.8 

Inhomogeneous 

Pipe 

2 0 0.8 
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Fig.1 Torsional wave dispersion curves 

7 Conclusion 

The above problem deals with the interaction of elastic and electromagnetic fields 

in a viscoelastic media. This study is useful for detections of mechanical 

explosions inside the earth. In this study an attempt has been made to investigate 

the torsional wave propagation in non-homogeneous viscoelastic cylindrically 

aeolotropic material permeated by a magnetic field. It has been observed that the 

phase velocity decreases as the magnetic field increases. 
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