DISTANCE SPECTRA AND DISTANCE ENERGY OF SOME CLUSTER GRAPHS

B. S. Durgi

Department of Mathematics, KLE Dr. M.S.Sheshgiri College of Engineering and Technology, Belgaum - 590008 India

P. R. Hampiholi

Department of Master of Computer Applications, Gogte Institute of Technology, Belgaum - 590008, India.

S. M. Mekkalike

Department of Mathematics, KLE. College of Engineering and Technology, Chikodi - 591201, India.

Abstract

The D-eigenvalues (distance eigenvalues) of a connected graph G are the eigenvalues of the distance matrix D=D(G) of G. The collection of D - eigenvalues is the D - spectrum (distance spectrum) of G. In this paper, the distance polynomial, distance spectra and distance energy of some edge deleted graphs called cluster graphs are obtained.

Mathematics Subject Classification: 05C50, 05C12

Keywords: Distance eigenvalue (of a graph), Distance spectra (of a graph), Distance energy (of a graph), Cluster graphs.

1 Introduction

Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_p\}$. The distance matrix D = D(G) of G has $d_{ii} = 0$ and $d_{ij} =$ the length of the shortest path between the vertices v_i and v_j of G. The distance polynomial of G is defined as $det|\mu I - D|$. Where I is the unit matrix of order p. The eigenvalues of D(G) are said to be the D - eigenvalues of G and form the D - spectrum of G, denoted by $Spec_D(G)$.

Since the distance matrix is symmetric, all its eigenvalues μ_i , $i=1,2,\ldots,p$, are real and can be labelled so that $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_p$. If $\mu_{i1} > \mu_{i2} > \ldots \mu_{ig}$ are the distinct D - eigenvalues, then the D - spectrum can be written as

$$Spec_D(G) = \begin{pmatrix} \mu_{i1} & \mu_{i2} & \dots & \mu_{ig} \\ m_1 & m_2 & \dots & m_g \end{pmatrix}$$

where m_j indicates the algebraic multiplicity of the eigenvalue μ_{ij} . Of course, $m_1 + m_2 + \ldots + m_g = p$.

The D - energy, $E_D(G)$ is defined as

$$E_D(G) = \sum_{i=1}^p |\mu_i| \tag{1}$$

The concept of distance energy was recently introduced [6]. This definition was motivated by the much older and nowadays extensively studied graph energy defined in a mannerfully analogous to Eq.(1.1), but in terms of the ordinary graph spectrum (eigenvalues of the adjacency matrix of a graph). For more details on distance spectra and distance energy of graphs, see [4] - [7].

Two graphs are said to be D - equienergetic graphs, if they have the same D - energy.

The spectral graph theoretic definitions in this paper follow the book [1]. All graphs considered in this paper are simple.

2 Some cluster graphs

I. Gutman and L. Pavlović [2] introduced four classes of graphs obtained from complete graph by deleting edges. For the sake of continuity, we produce these here.

Definition 2.1. [2] Let v be a vertex of the complete graph K_p , $p \geq 3$ and let e_i , i = 1, 2, ..., k, $1 \leq k \leq p-1$, be its distinct edges, all being incident to v. The graph $Ka_p(k)$ or Cl(p,k) is obtained by deleting e_i , i = 1, 2, ..., k from K_p . In addition, $Ka_p(0) \cong K_p$.

Definition 2.2. [2] Let f_i , i = 1, 2, ..., k, $1 \le k \le \lfloor p/2 \rfloor$ be independent edges of the complete graph K_p , $p \ge 3$. The graph Kb_p is obtained by deleting f_i , i = 1, 2, ..., k from K_p . The graph $Kb_p(0) \cong K_p$.

Definition 2.3. [2] Let V_k be a k- element subset of the vertex set of the complete graph K_p , $2 \le k \le p$, $p \ge 3$. The graph $Kc_p(k)$ is obtained by deleting from K_p all the edges connecting pairs of vertices from V_k . In addition, $Kc_p(0) \cong Kc_p(1) \cong K_p$.

Definition 2.4. [2] Let $3 \le k \le p$, $p \ge 3$. The graph $Kd_p(k)$ obtained by deleting from K_p , the edges belonging to a k- membered cycle.

The characteristic polynomials of the adjacency matrix of the above class of graphs are obtained in [2],[9] - [11]. In this paper, we obtain distance polynomial, distance spectra and distance energy of the following class of graphs, these class of graphs are defined in [10].

3 Main Results

Definition 3.1. Let $(K_m)_i$, i = 1, 2, ..., k, $1 \le k \le \lfloor p/m \rfloor$, $1 \le m \le p$, be independent complete subgraphs with m vertices of the complete graph K_p , $p \ge 3$. The graph $K_{c_p}(m,k)$ obtained from K_p by deleting all the edges of k independent complete subgraphs $(K_m)_i$, i = 1, 2, ..., k. In addition, $K_{c_p}(m,0) \cong K_{c_p}(0,k) \cong K_{c_p}(0,0) \cong K_p$.

In this paper, for the sake of brevity, in place of $K_{c_p}(m,k)$ we use $K_C(p,m,k)$.

Theorem 3.2. Let p, m, k be positive integers. For $p \ge 3$, $1 \le k \le \lfloor p/m \rfloor$, $1 \le m \le p$, the distance polynomial of $K_c(p, m, k)$ is,

$$det|\mu I - D| = X^{p-mk-1}(1+X)^{(m-2)k+1} \left\{ (p-\mu - m)X - (p-2X-mk)(m-1) \right\} \times \left\{ X^2 - (m-2)X - m + 1 \right\}^{k-1}$$

where $X=1+\mu$

Proof: Without loss of generality, we assume that the vertices of $(K_p)_i$, as v_1, v_2, \ldots, v_m ,

 $v_{m+1}, \ldots, v_{2m}, v_{2m+1}, \ldots p$. The distance polynomial of $K_c(p, m, k)$ is equal to $\det |\mu I - D|$. For the sake of computation, we take $\det |D - \mu I|$ instead of $\det |\mu I - D|$, and then we multiply the result by $(-1)^p$ to get the result of the Theorem 2.1.

Now, $det|D - \mu I|$ is equal to

$-\mu$ 2	$\begin{array}{c} 2 \\ -\mu \end{array}$		$\frac{2}{2}$	1 1	1 1	 _	1 1	1 1		1 1	1 1		$\frac{1}{1}$	1 1		1 1	
:	:	:		:		:		:			:	:		:	:	:	
2	2		$-\mu$	1	1	 1	1	1		1	1		1	1		1	
1	1		1	$-\mu$	2	 2	1	1		-1	1		1	1		1	
1	1		1		$-\mu$	 2	1	1		1	1		1	1		1	
1	1		1	-	$-\mu$	-	1	1		1	1		1	1		1	
	:				:	:			:			:		:	:		ł
	i		i	2	2		1			i	i		i	i			
1	_		_	_		,				_	_		-	_		1	
1	1		1	1	1	1		2		2	1		1	1		1	
1	1		1	1	1	 1	2	$-\mu$		2	1		1	1		1	(3)
																	(-)
	:	- :			:	:		:							:	•	l
																	i .
1	1		1	1	1	 1	2	2		$-\mu$	1		1	1		1	
1	1		1	1	1	 1	1	1		1			2	1		1	
1	1		1	1	1	1	1	1		1	$-\mu$		-	1		1	
																	l
					:	:								:			l
1	1		1	1	1	 -	1	1		1	_		$-\mu$	1		1	
1	1		1	1	1	 1	1	1		1	1		1	$-\mu$		1	
:	:	:				- :									:		
1	1		1	1	1	 1	1	1		1	1		1	1		$-\mu$	

We now perform the elementary transformations on the determinant (2.2) as follows:

Subtracting first column from all other columns and setting $1 + \mu = X$, we get (2.3).

$-\mu$ 2	$ \begin{array}{c} 1+X \\ -(1+X) \end{array} $		1 + X 0	X -1	X -1		X -1	X -1	X -1		X = -1	X -1		X -1	X -1		X = -1	
:	:		•	:	:		:	:	:	:	:			:	:		:	
2 1 1	0 0 0		-(1+X) 0 0	-1 $-X$ 2	-1 1 $-X$		$-1 \\ 1 \\ 1$	$ \begin{array}{c} -1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} -1 \\ 0 \\ 0 \end{array} $		$ \begin{array}{c} -1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} -1 \\ 0 \\ 0 \end{array} $		$ \begin{array}{c} -1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} -1 \\ 0 \\ 0 \end{array} $		$ \begin{array}{c} -1 \\ 0 \\ 0 \end{array} $	
:		:			:	:	:	:	:	:		:	:	:	: : 0	:	:	
1 1 1	0 0 0		0 0 0	0 0	1 0 0		-X 0 0	$0 \\ -X \\ 1$	1		0 1 1	0 0 0		0 0 0	0 0		0	
	0	:	0	0	0	:	0	1	1	:	- X	0	:	0	0	:	0	
1	0		0	0	0		0	0	0		0	-X		1	0		0	
: 1 1	0 0			: 0 0	: 0 0		: 0 0	: 0 0	: 0 0		: 0 0	: 1 0		: -X 0	: 0 -X		0	
:	0	:	0	0	0	:	0	0	0	:	0	0	:	0	0	:	v	
1	0		0	0	0		U	0	U		0	0		U	0	(4)	-X	

Multiplying the rows 2,3,...,m of (2.3) by -X and hence multiplying the determinant by $(-X)^{1-m}$ and setting $a = (-X)^{1-m}$, we get (2.4).

Adding the rows $mk + 1, mk + 2, \dots, p$ of (2.4) to the rows $1, 2, \dots, m$ and setting $t = -\mu + p - mk, s = 2X - mk$, we get (2.5).

Determinant (2.5) is in the form $\left| \begin{array}{cc} M & N \\ P & Q \end{array} \right|$. As N is a ZERO block, hence (2.5) can be written as

$$|D - \mu I| = a(-X)^{p-mk}|M|$$
 (7)

In expression (2.6), |M| is a determinant of order $mk \times mk$ is as given below.

Extracting 1 + X from each of the columns $2, 3, \ldots, m$ of (2.7), we get (2.8).

Subtracting the columns 2, 3, ..., m from the columns m + 1, m + 2, ..., mk and setting Z = 1 - m - X, we get (2.9).

Adding the rows $m+1, m+2, \ldots, mk$ to first row and setting c=t+mk-m, i.e $c=p-\mu-m$, we get (2.10).

Expression (2.10) is equal to

$$\begin{vmatrix}
c & 1 & 1 & \cdots & 1 \\
s & X & 0 & \cdots & 0 \\
s & 0 & X & \cdots & 0
\end{vmatrix}
\begin{vmatrix}
-X & 1 & 1 & \cdots & 1 \\
1 & -X & 1 & \cdots & 1 \\
1 & 1 & -X & \cdots & 1
\end{vmatrix}$$

$$\begin{vmatrix}
-X & 1 & 1 & \cdots & 1 \\
1 & -X & 1 & \cdots & 1 \\
1 & 1 & -X & \cdots & 1
\end{vmatrix}$$

$$\begin{vmatrix}
-X & 1 & 1 & \cdots & 1 \\
1 & -X & 1 & \cdots & 1 \\
1 & 1 & -X & \cdots & 1
\end{vmatrix}$$

$$\begin{vmatrix}
-X & 1 & 1 & \cdots & 1 \\
1 & 1 & -X & \cdots & 1 \\
1 & 1 & -X & \cdots & 1
\end{vmatrix}$$
(12)

Simplifying (2.11) with the values $c = p - \mu - m$, s = 2X - mk, $X = 1 + \mu$ and substituting the result in (2.6) and then multiplying the result by $(-1)^p$, we get the result of Theorem 2.1.

Corollary 3.3. For $1 \le m \le p$, k = 1, (2.1) takes the form

$$det|\mu I - D| = (\lambda + 1)^{p - m - 1} (\lambda + 2)^{m - 1} \left\{ (p - \mu - m)(\lambda + 1) - (p - 2(\lambda + 1) - m)(m - 1) \right\}$$
(13)

4 Distance spectra and distance energy of $K_c(p, m, k)$ graphs

Theorem 4.1. For $p \geq 3$, $1 \leq k \leq \lfloor p/m \rfloor$, $1 \leq m \leq p$, mk < p, the distance spectra of $K_c(p, m, k)$ contains -1 (p-mk-1 times), -2 ((m-2)k+1 times), α_1 , α_2 , α_3 (k-1 times), α_4 (k-1 times). where

$$\alpha_1 = \frac{(p+m-3)+\sqrt{(p+m-3)^2+4\{mk(m-1)-(p-1)(m-2)\}}}{2}$$

$$\alpha_2 = \frac{(p+m-3)-\sqrt{(p+m-3)^2+4\{mk(m-1)-(p-1)(m-2)\}}}{2}$$

$$\alpha_3 = \frac{m-4+\sqrt{(m-2)^2+4(m-1)}}{2}$$

$$\alpha_4 = \frac{m-4-\sqrt{(m-2)^2+4(m-1)}}{2}$$

Proof: It is easy to compute the roots of the result of Theorem 2.1. These roots are -1 (p-mk-1 times), -2 ((m-2)k+1 times), $\alpha_1, \alpha_2, \alpha_3$ and α_4 as given above and the collection of these roots forms the distance spectra of $K_c(p, m, k)$.

Theorem 4.2. For $p \geq 3$, $1 \leq k \leq \lfloor p/m \rfloor$, $1 \leq m \leq p, mk < p$, the distance energy of $K_c(p, m, k)$ is

$$E_D K_c(p, m, k) = p - mk - 1 + (m - 4)k + 1 + |\alpha_1| + |\alpha_2| + (k - 1)(|\alpha_3| + |\alpha_4|)$$

where α_i , i = 1, 2, 3, 4, are as given in Theorem 3.1.

Proof: The distance spectrum of $K_c(p, m, k)$ is

$$Spec_D(K_c(p, m, k)) = \begin{cases} -1 & -2 & \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\ p - mk - 1 & (m - 2)k + 1 & 1 & 1 & k - 1 & k - 1 \end{cases}$$

Using the definition of the distance energy given by eqn.(1) and the spectra of $K_c(p, m, k)$, we get the result.

Here we give some examples in Table 1.

TABLE 1: The distance polynomial and distance spectra of $K_c(p, m, k)$ graphs.

p, m, k	Distance polynomial of $K_c(p, m, k)$	D - spectra of $K_c(p, m, k)$
9,3,2	$(\mu+1)^2(\mu+2)^3(\mu^2-9\mu-4)(\mu^2+\mu-2)$	$(-1)^2, (-2)^4, -0.4244, 9.4244, 1$
9,3,1	$(\mu+1)^5(\mu+2)^2(\mu^2-9\mu+2)$	$(-1)^5, (-2)^2, 0.2280, 8.7720$
8,4,1	$(\mu+1)^3(\mu+2)^3(\mu^2-9\mu+2)$	$(-1)^3, (-2)^3, 0.2280, 8.7700$
6,2,2	$(\mu+1)(\mu+2)(\mu^2-5\mu-4)(\mu^2+2\mu)$	$(-1), (-2)^2, 0, 0.7016, 5.7016$

In above table μ^t denotes the distance eigenvalue μ with algebraic multiplicity t.

References

- [1] D. M. Cvetković, M. Doob and H. Sachs, *Spectra of Graphs*, Academic Press, New York, 1980.
- [2] I. Gutman and L. Pavlović, The energy of some graphs with large number of edges, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) 118 (1999), 35.
- [3] I. Gutman, The energy of a graph: Old and new results, in: A. BETTEN, A. KOHNERT, R. Laue, A. WASSERMANN(Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, (2001),196-211..
- [4] G. Indulal and I. Gutman, On the distance spectra of some graphs, Mathematical communications. 13 (2008), 123–131.
- [5] F. Buckley, F. Harary, Distance in graphs, Addison Wesley, Redwood, 1990.
- [6] P. W. Fowler, G. Caporossi, P. Hansen, Distance matrices, Wiener indices and related invariants of fullerenes, J. Phy. Che. A105 (2001), 6232–6242.
- [7] G. Indulal, I. Gutman, A. Vijaykumar, On the distance energy of graphs, MATCH commun. Math. Comput. Chem. 60 (2008), 461–472.
- [8] P. R. Hampiholi, H. B. Walikar and B. S. Durgi, *Energy of complement of stars*, J. Indones. Math. Soc. **19(1)** (2013), 15–21.
- [9] P. R. Hampiholi and B. S. Durgi, *Characteristic polynomial of some cluster graphs*, Kragujevac Journal of Mathematics, **37(2)** (2013), 369–373.
- [10] H. B. Walikar and H. S. Ramane, *Energy of some cluster graphs*, Kragujevac J. Sci. **23** (2001), 51–62.
- [11] P. R. Hampiholi and B. S. Durgi, On the spectra and energy of some cluster graphs, Int. J. Math. Sci. Engg. Appl. **7(2)** (2013), 219–228.

Received: September, 2014