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Abstract

In the paper, for given Fredholm operators A ∈ L(Y, Z) and
B ∈ L(X,Y ), an explicit construction for reflexive generalized inverses
of A and B such that their product in reverse order is a reflexive gen-
eralized inverse of AB, is provided. In this approach, based on results
of the theory of determinant systems, the correspondence between con-
sidered Fredholm operators and their determinant systems is applied.
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1 Introduction

Determinants for operators acting on infinite dimensional linear spaces pro-
vide important tools for solving linear equations. As in the finite dimensional
case, by means of determinants, we are able to exhibit explicit solutions of
the equations induced by the considered operators. Formulas for the solutions
are generalizations of the Cramer’s rule. Given a determinant system for a
Fredholm operator A, we solve the equation Ax = y0, where y0 belongs to
the range of A. By employing terms of the determinant system, we obtain
a reflexive generalized inverse G of A and therefore we arrive at the solution
x = Gy0 + x̃, x̃ being any element of the null space of A.
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In the fifties of the twentieth century there were created two independent
theories of determinants in Banach spaces. The first one was proposed by
A.F. Ruston [29] and developed by A. Grothendieck [18]. The second one, the
theory of determinant systems to which we refer, was created by T. Leżański
[20], modified by R. Sikorski [4, 34, 35, 36] and completed by A. Buraczewski
[2, 3, 5]. Our primary concern in this paper is the problem of the relationship
between reflexive generalized inverses of the product AB of two Fredholm
operators on linear spaces and the product of reflexive generalized inverses of
B and A. We combine results of the theory of determinant systems with the
results of the theory of generalized inverses.

Let A ∈ L(X, Y ), X, Y being linear spaces, and consider the following
equations:

(1)AGA = A, (2)GAG = G, (3) (AG)∗ = AG, (4) (GA)∗ = GA , (1)

where C∗ stands for the adjoint of C. Any G ∈ L(Y,X) satisfying some of the
above equations is said to be a generalized inverse of A. Given ∅ 6= η ⊆ {1, 2, 3, 4},
Aη denotes the set of all operators G which satisfy (i) of (1) for all i ∈ η. Any
G ∈ Aη is called an η-inverse of A. The unique {1, 2, 3, 4}-inverse of A is said
to be the Moore-Penrose inverse of A and is denoted by A† [24, 26]. Theory
and computations of generalized inverses of linear operators are important sub-
jects in many branches of applied science, such as matrix analysis, statistics,
engineering and numerical linear algebra [1, 6, 7, 17, 28]. So far, thousands of
papers on various aspects of generalized inverses and their applications have
appeared. We mentioned here only a small part of the still growing bibliogra-
phy on generalized inverses.

Analogues of the reverse order law (AB)−1 = B−1A−1 for invertible opera-
tors have been examined intensively for various types of generalized inverses.
First T. N. E. Greville [16] proved that for matrices A ∈ Cn×m and B ∈ Cm×n,

(AB)† = B†A† (2)

if and only if R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗) . Since then, many
equivalent conditions for (2) have been discovered. Most books and articles
have been concerned with the matrix case [1, 14, 21, 23, 27, 28, 31, 32, 33,
38, 42]. In a lot of papers results related to generalized inverses of matrices
were extended to generalized inverses of linear operators in infinite dimen-
sional linear spaces. In this case, usually additional topological structures, like
Banach or Hilbert spaces, were assumed [15, 25]. Different classes of general-
ized inverses, such as {1, 2, 3}–inverses, {1, 2, 4}–inverses, {1, 3}–inverses and
{1, 4}–inverses on the sets of both matrices and bounded linear operators, were
also considered in [12, 22]. In [19] results from [41], derived for matrices, were
extended to {1, 2}-inverses of operators acting between arbitrary linear spaces.
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In the matrix case the reverse order law for {1, 2}-inverses of the product of
two matrices was studied in [14], where the authors obtained some results us-
ing the product singular value decomposition of two matrices. The authors
of [13] improved the results from [14] for the case of regular bounded linear
operators on Hilbert spaces.

In the literature, generalized inverses belonging to A{1, 2}, studied in this
paper, are called {1, 2}–inverses of A [1] or algebraic generalized inverses of
A [25]. Other sources refer to {1, 2}–inverses as reflexive generalized inverses
[13, 40] or quasi-inverses [4, 37, 39]. We address the problem of when the
product of reflexive generalized inverses of two Fredholm operators A and
B, in reverse order, is again a reflexive generalized inverse of the product
AB. We rely on a description of a reflexive generalized inverse of a Fredholm
operator using terms of a determinant system for this operator [5, 8, 10]. In
the derivation of the main result some ideas, developed in [3] for Fredholm
endomorphisms, are used. We also utilize the result from [19] and give a
direct, constructive solution to the problem mentioned above. The method
proposed in the paper yields purely algebraic conditions and it can be applied
in more general settings than that of matrices.

2 Preliminaries

We begin by recalling the main notions and facts concerning the theory of
determinant systems needed for our purpose. The notation is adopted from
papers [2, 4, 8, 9, 10, 11, 36].

A pair (Ξ,X), where Ξ,X are linear spaces over the same real or complex
field F , is said to be a pair of conjugate linear spaces, if there exists a bilinear
functional I : Ξ ×X → F , whose value at a point (ξ, x) ∈ Ξ ×X is denoted
by ξx and which fulfills the conditions:
(a1) ξx = 0 for every x ∈ X implies ξ = 0;
(a2) ξx = 0 for every ξ ∈ Ξ implies x = 0.
The functional I is called the scalar product on Ξ ×X.

In what follows, (Ξ,X), (Ω, Y ) and (Λ,Z) denote pairs of conjugate linear
spaces (over F ) with scalar products I, J and K on Ξ ×X, Ω × Y and Λ× Z,
respectively. A bilinear functional A : Ω ×X → F , ωAx being its value at
(ω, x), simultaneously interpreted as a linear operator ξ = ωA acting from Ω
into Ξ and as a linear operator y = Ax acting from X into Y , defined by the
relationship ωAx = (ωA)x = ω(Ax), is said to be a (Ξ, Y )-operator on Ω ×X.
Let op(Ω → Ξ,X → Y ) denote the linear space of all (Ξ, Y )-operators on
Ω ×X. Clearly, any A ∈ op(Ω → Ξ,X → Y ), interpreted as A : Ω → Ξ, is
the adjoint of A : X → Y . We introduce the following notation for ranges and
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null spaces of the operators:

R(A) = {Ax : x ∈ X}, N(A) = {x ∈ X : Ax = 0},

R(A) = {ωA : ω ∈ Ω}, N (A) = {ω ∈ Ω : ωA = 0}.

For fixed nonzero elements y0 ∈ Y, ξ0 ∈ Ξ, the symbol y0 · ξ0 stands for the
operator defined by the formula

ω(y0 · ξ0)x = (ωy0)(ξ0x) for (ω, x) ∈ Ω ×X .

Any finite sum of these operators is called a finitely dimensional operator on
Ω ×X. An operator A ∈ op(Ω → Ξ,X → Y ) such that dimN(A) = n <∞,
dimN (A) = m <∞, R(A) = N (A)⊥ and R(A) = N(A)⊥ is said to be a Fred-
holm operator on Ω ×X of order r(A) = min{n,m} and index d(A) = n−m.

If D is a (µ + m)–linear functional on Ξµ × Y m, then D

(
ξ1, . . . , ξµ
y1, . . . , ym

)
denotes its value at a point (ξ1, . . . , ξµ, y1, . . . , ym) ∈ Ξµ × Y m. D is called
bi-skew symmetric if it is skew symmetric both in variables ξ1, . . . , ξµ and
y1, . . . , ym. The set of all bi-skew symmetric functionals on Ξµ × Y m is de-
noted by bssµ,m(Ξ, Y ). D is said to be an (Ω,X)– functional on Ξµ × Y m if
it satisfies the conditions:
(b1) for arbitrary fixed elements ξ1, . . . , ξi−1, ξi+1, . . . , ξµ ∈ Ξ and y1, . . . , ym ∈ Y
there exists an element xi ∈ X such that

ξxi = D

(
ξ1, . . . , ξi−1, ξ, ξi+1, . . . , ξµ
y1, . . . , ym

)
for every ξ ∈ Ξ and i = 1, . . . µ;
(b2) for arbitrary fixed elements ξ1, . . . , ξµ ∈ Ξ and y1, . . . , yj−1, yj+1, . . . , ym ∈ Y
there exists an element ωj ∈ Ω such that

ωjy = D

(
ξ1, . . . , ξµ
y1, . . . , yj−1, y, yj+1, . . . , ym

)
for every y ∈ Y and j = 1, . . .m. We use Lµ,m(Ξ, Y ) to denote the set of all
(Ω,X)– functionals on Ξµ × Y m .

A sequence (Dn)n∈N0
is called a determinant system forA ∈ op(Ω → Ξ,X → Y ),

if
(c1) Dn ∈ bssµn,mn(Ξ, Y ), where µn,mn ∈ N0, µn = µ0 + n, mn = m0 + n and

min{µ0,m0} = 0;
(c2) Dn ∈ Lµn,mn(Ξ, Y );
(c3) there exists r ∈ N0 such that Dr 6= 0;
(c4) the following identities hold for n ∈ N0:
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Dn+1

(
ξ0, . . . , ξµn

Ax, y1, . . . , ymn

)
=

µn∑
i=0

(−1)iξixDn

(
ξ0, . . . , ξi−1, ξi+1, . . . , ξµn

y1, . . . , ymn

)
,

Dn+1

(
ωA, ξ1, . . . , ξµn

y0, . . . , ymn

)
=

mn∑
j=0

(−1)jωyj Dn

(
ξ1, . . . , ξµn

y0, . . . , yj−1, yj+1, . . . , ymn

)
,

where x ∈ X,ω ∈ Ω, ξi ∈ Ξ, yj ∈ Y , i = 0, 1, . . . , µn, j = 0, 1, . . . ,mn. The
least r ∈ N0 such that Dr does not vanish identically is said to be the order of
(Dn)n∈N0

and is denoted by r
(
(Dn)n∈N0

)
. The integer d

(
(Dn)n∈N0

)
= µ0 −m0

is called the index of (Dn)n∈N0
.

It is well known [2, 36], that A has a determinant system if and only
if A is Fredholm. Moreover, r

(
(Dn)n∈N0

)
= r(A) and d

(
(Dn)n∈N0

)
= d(A) ,

(Dn)n∈N0
being any determinant system for A.

3 Main Results

In this section we describe reflexive generalized inverses of products of
Fredholm operators acting between arbitrary linear spaces. As a tool of the
description we use terms of determinant systems for the respective operators.

Throughout the paper, A1 ∈ op(Ω → Ξ,X → Y ), A2 ∈ op(Λ→ Ω, Y → Z)
always denote Fredholm operators of orders r(A1) = r′ = min{n′,m′}, r(A2) =
r′′ = min{n′′,m′′} and indices d(A1) = d′ = n′ −m′, d(A2) = d′′ = n′′ −m′′,
respectively. By definitions of A1, A2, there exist subspaces Y ′ ⊂ Y , Ω′′ ⊂ Ω
such that dimY ′ = m′, dimΩ′′ = n′′ and the following direct sum decomposi-
tions hold:

Y = R(A1)⊕ Y ′ , Ω = R(A2)⊕Ω′′ . (3)

We begin with the following auxiliary result.

Lemma 3.1. Suppose that:
(a) B1 ∈ op(Ξ → Ω, Y → X) and B2 ∈ op(Ω → Λ,Z → Y ) are reflexive

generalized inverses of A1 and A2 , respectively;
(b) (x′1, . . . , x

′
n′), (ω′1, . . . , ω

′
m′), (y′′1 , . . . , y

′′
n′′) and (λ′′1, . . . , λ

′′
m′′) are bases

of N(A1), N (A1), N(A2) and N (A2), respectively;
(c) (y′′1 , . . . , y

′′
ñ′′) and (ω′1, . . . , ω

′
m̃′) are bases of Y1 = N(A2) ∩R(A1) and

Ω1 = N (A1) ∩R(A2) , g respectively.
Then

N(A2A1) = span(x′1, . . . , x
′
n′ , B1y

′′
1 , . . . , B1y

′′
ñ′′) (4)

and

N (A2A1) = span(λ′′1, . . . , λ
′′
m′′ , ω′1B2, . . . , ω

′
m̃′B2) , (5)

(x′1, . . . , x
′
n′ , B1y

′′
1 , . . . , B1y

′′
ñ′′) , (λ′′1, . . . , λ

′′
m′′ , ω′1B2, . . . , ω

′
m̃′B2) being linearly

independent.
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Proof. In view of the relationship between Fredholm operators and their reflex-
ive generalized inverses [2], there exist elements y′1, . . . , y

′
m′ ∈ Y , ξ′1, . . . , ξ

′
n′ ∈ Ξ,

ω′′1 , . . . , ω
′′
n′′ ∈ Ω, z′′1 , . . . , z

′′
m′′ ∈ Z such that ξ′ix

′
j = δij (i, j = 1, . . . , n′), ω′iy

′
j = δij

(i, j = 1, . . . ,m′), ω′′i y
′′
j = δij (i, j = 1, . . . , n′′), λ′′i z

′′
j = δij (i, j = 1, . . . ,m′′) and

the following identities are satisfied:

B1A1 = I −
n′∑
i=1

x′i · ξ′i, A1B1 = J −
m′∑
i=1

y′i · ω′i, (6)

B2A2 = J −
n′′∑
i=1

y′′i · ω′′i , A2B2 = K −
m′′∑
i=1

z′′i · λ′′i . (7)

It is obvious that A2A1x
′
i = A2(A1x

′
i) = 0 for i = 1, . . . , n′. Since y′′j ∈ N (A1)

⊥

for any j = 1, . . . , ñ′′, we obtain

A2A1(B1y
′′
j ) = A2

(
J −

m′∑
i=1

y′i · ω′i

)
y′′j = A2y

′′
j −

m′∑
i=1

A2y
′
i · ω′iy′′j = 0 .

Thus, elements
x′1, . . . , x

′
n′ , B1y

′′
1 , . . . , B1y

′′
ñ′′ (8)

are solutions of the equation A2A1x = 0. Let
n′∑
i=1

αix
′
i +

ñ′′∑
i=1

βiB1y
′′
i = 0. There-

fore, by
n′∑
i=1

αiA1x
′
i +

ñ′′∑
i=1

βiA1B1y
′′
i = 0, we get

ñ′′∑
i=1

βiA1B1y
′′
i = 0. Taking the

value of
ñ′′∑
i=1

βiA1B1y
′′
i at ω′′j (j = 1, . . . , ñ′′) and bearing in mind (6), we find

ñ′′∑
i=1

βiω
′′
jA1B1y

′′
i =

ñ′′∑
i=1

βi

(
ω′′j y

′′
i −

m′∑
k=1

ω′′j y
′
k · ω′ky′′i

)
=

ñ′′∑
i=1

βiδji = 0 ,

which implies βj = 0 for j = 1, . . . , ñ′′. Furthermore, it follows from the lin-
ear independence of x′1, . . . , x

′
n′ , that αi = 0 (i = 1, . . . , n′). Consequently,

the elements (8) are linearly independent. Given x ∈ N(A2A1), we obtain

B1B2A2A1x = 0. Next, by (7), we get B1A1x−
n′′∑
i=1

B1y
′′
i · ω′′i A1x = 0. Taking

into account (6), we arrive at x =
n′∑
i=1

ξ′ix · x′i +
n′′∑
i=1

B1y
′′
i · ω′′i A1x. Remembering

that y′′i 6∈ R(A1) for i = ñ′′ + 1, . . . , n′′, we find B1y
′′
i = 0 and conclude that

each solution of A2A1x = 0 is a linear combination of elements (8). This proves
(4).
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For any i = 1, . . . ,m′′ we have λ′′iA2A1 = (λ′′iA2)A1 = 0. Since ω′j ∈ N(A2)
⊥

for j = 1, . . . , m̃′, in view of (7), we obtain

ω′jB2A2A1 = ω′jA1 −
n′′∑
i=1

ω′jy
′′
i · ω′′i A1 = 0

and deduce that the elements

λ′′1, . . . , λ
′′
m′′ , ω′1B2, . . . , ω

′
m̃′B2 (9)

are solutions of the equation λA2A1 = 0. Assume
m′′∑
i=1

αiλ
′′
i +

m̃′∑
i=1

βiω
′
iB2 = 0.

Then the identity
m′′∑
i=1

αiλ
′′
iA2 +

m̃′∑
i=1

βiω
′
iB2A2 = 0 yields

m̃′∑
i=1

βiω
′
iB2A2 = 0. By

(7),

m̃′∑
i=1

βiω
′
iB2A2y

′
j =

m̃′∑
i=1

βi

(
ω′iy
′
j −

n′′∑
k=1

ω′iy
′′
k · ω′′ky′j

)
=

m̃′∑
i=1

βiδij = 0.

Consequently, βj = 0 (j = 1, . . . , m̃′). Moreover, it follows from the linear
independence of λ′′1, . . . , λ

′′
m′′ that αi = 0 (i = 1, . . . ,m′′), which imply that (9)

are also linearly independent. Given λ ∈ N (A2A1), we have λA2A1B1B2 = 0.

Thus, by (6), λA2B2 −
m′∑
i=1

λA2y
′
i · ω′iB2 = 0. Bearing in mind (7), we get

λ =
m′′∑
i=1

λz′′i · λ′′i−
m′∑
i=1

λA2y
′
i · ω′iB2. Since ω′i 6∈ R(A2) for any i = m̃′ + 1, . . . ,m′,

we obtain ω′iB2 = 0. Therefore, each solution of the homogeneous equation
λA2A1 = 0 is a linear combination of elements (9). This shows that (5) is
valid.

The next theorem yields a sufficient condition for the product B1B2 of re-
flexive generalized inverses B1, B2 of Fredholm operators A1, A2 , respectively,
to be a reflexive generalized inverse of the product A2A1.

By (3.1), d(A2A1) = n′ + ñ′′ − (m′′ + m̃′). Moreover, bearing in mind the
classical index theorem [30], d(A2A1) = d′ + d′′ = n′ −m′ + n′′ −m′′. Thus,
n′′ − ñ′′ = m′ − m̃′. Denote t = n′′ − ñ′′.

N(A2) = Y1 ⊕ Y2 , N (A1) = Ω1 ⊕Ω2 , (10)

where Y2 = N(A2) ∩ Y ′ , Ω2 = N (A1) ∩Ω′′ and dimY2 = dimΩ2 = t. Assume
Y2 = span(y1, . . . , yt) , Ω2 = span(ω1, . . . , ωt) and ωiyj = δij (i, j = 1, . . . , t) .
Combining (3) with (10), we deduce that

Y ′ = Y2 ⊕ Y3 , Ω′′ = Ω2 ⊕Ω3 ,
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Y3 ⊂ Y , Ω3 ⊂ Ω being subspaces of dimensions m′ − t and n′′ − t, respectively.
Under the above given assumptions, we state the main result of the paper.

Theorem 3.2. Let (D
(1)
n )n∈N0, (D

(2)
n )n∈N0 be determinant systems for op-

erators A1 and A2, respectively. Assume that
(a) ξ′1, . . . , ξ

′
n′ ∈ Ξ, y′1, . . . , y

′
m′−t ∈ Y3 are such that

δ′ = D
(1)
r′

(
ξ′1, . . . , ξ′n′

y′1, . . . , y′m′−t, y1, . . . , yt

)
6= 0 ;

(b) z′′1 , . . . , z
′′
m′′ ∈ Z, ω′′1 , . . . , ω

′′
n′′−t ∈ Ω3 are such that

δ′′ = D
(2)
r′′

(
ω′′1 , . . . , ω′′n′′−t, ω1, . . . , ωt
z′′1 , . . . , z′′m′′

)
6= 0 ;

(c) B1 ∈ op(Ξ → Ω, Y → X) is a reflexive generalized inverse of A1

defined by the formula

ξB1y =
1

δ′
D

(1)
r′+1

(
ξ, ξ′1, . . . , ξ′n′

y, y′1, . . . , y′m′−t, y1, . . . , yt

)
for (ξ, y) ∈ Ξ × Y ;

(11)
(d) B2 ∈ op(Ω → Λ,Z → Y ) is a reflexive generalized inverse of A2 de-

fined by the formula

ωB2z =
1

δ′′
D

(2)
r′′+1

(
ω, ω′′1 , . . . , ω′′n′′−t, ω1, . . . , ωt
z, z′′1 , . . . , z′′m′′

)
for (ω, z) ∈ Ω×Z .

(12)
Then B1B2 ∈ op(Ξ → Λ,Z → X) is a reflexive generalized inverse of the op-
erator A2A1 ∈ op(Λ→ Ξ,X → Z) .

Proof. It follows from (11) that

A1B1 = J −
m′−t∑
i=1

y′i · ω′i −
t∑
i=1

yi · ω′m′−t+i . (13)

Similarly, by (12)

B2A2 = J −
n′′−t∑
i=1

y′′i · ω′′i −
t∑
i=1

y′′n′′−t+i · ωi . (14)

By combining (13) with (14), we give rise to the identity

A2A1B1B2 = A2B2 −
m′−t∑
i=1

A2y
′
i · ω′iB2 −

t∑
i=1

A2yi · ω′m′−t+iB2 . (15)
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In view of A2yi = 0 (i = 1, . . . , t), we transform the right-hand side of (15) into
the form

K −
m′′∑
i=1

z′′i · λ′′i −
m′−t∑
i=1

A2y
′
i · ω′iB2 . (16)

Consequently, taking into account Lemma 3.1, we obtain

A2A1B1B2A2A1 = A2A1 −
m′′∑
i=1

z′′i · λ′′iA2A1 −
m′−t∑
i=1

A2y
′
i · ω′iB2A2A1 = A2A1 .

(17)
Now, by (17), it suffices to show that B1B2 is {2}–inverse of A2A1 . It

follows from (15) that

B1B2A2A1B1B2 = B1B2 −
m′′∑
i=1

B1B2z
′′
i · λ′′i −

m′−t∑
i=1

B1B2A2y
′
i · ω′iB2 . (18)

Since A2A1B1B2 is expressed by (16), the identities B2z
′′
i = 0 (i = 1, . . . ,m′′)

yield the following form of the right-hand side of (18):

B1B2 −
m′−t∑
i=1

B1B2A2y
′
i · ω′iB2 . (19)

Next, bearing in mind (14), we present (19) in the form:

B1B2 −
m′−t∑
i=1

n′′−t∑
j=1

(ω′′i y
′
j)B1y

′′
j · ω′iB2 −

m′−t∑
i=1

t∑
j=1

(ωjy
′
i)B1y

′′
n′′−t+j · ωiB2 .

Hence, the orthogonality of ω′′i , y
′
j (i = 1, . . . , n′′ − t, j = 1, . . . ,m′ − t) com-

bined with (18) leads to

B1B2A2A1B1B2 = B1B2 −
m′−t∑
i=1

t∑
j=1

(ωjy
′
i)B1y

′′
n′′−t+j · ωiB2 .

Since yn′′−t+i ∈ Y2 (i = 1, . . . , t), in view of (11), we find B1y
′′
n′′−t+i = 0 . Con-

sequently, B1B2A2A1B1B2 = B1B2, which completes the proof.

As a corollary to Theorem 3.2, we directly obtain the following result con-
cerning the reverse order law for reflexive generalized inverses of Fredholm
operators.

Corollary 3.3. If A1 ∈ op(Ω → Ξ,X → Y ) and A2 ∈ op(Λ→ Ω, Y → Z)
are Fredholm operators, then there exist B1 ∈ A1{1, 2} and B2 ∈ A2{1, 2} such
that B1B2 ∈ (A2A1){1, 2}.
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[13] D. S. Cvetković-Ilić and J. Nikolov, Reverse order laws for reflexive gen-
eralized inverses, Linear Multilinear Algebra 63 6 (2015), 1167–1175.



Reflexive Generalized Inverses of Products of Fredholm Operators 905

[14] A. R. De Pierro and M. Wei, Reverse order law for reflexive generalized
inverses of products of matrices, Linear Algebra Appl. 277 (1998), 299–
311.
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law for {1, 2, 3} and {1, 2, 4}-inverses of bounded operators, Math. Comp.
82 (2013), 1597–1607.

[23] S. K. Mitra and P. Bhimasankaram, Generalized inverses of partitioned
matrices and recalculation of least squares estimates for data or model
changes, Sankhya A 33 (1971), 395–410.

[24] E. H. Moore, On the reciprocal of the general algebraic matrix, Bull.
Amer. Math. Soc. 26 (1920), 394–395 (Abstract).

[25] M. Z. Nashed, Inner, outer, and generalized inverses in Banach and Hilbert
spaces, Numer. Funct. Anal. Optim. 9 (1987), 261–325.

[26] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos.
Soc. 51 (1955), 406–413.

[27] C. R. Rao, Generalized inverse for matrices and its applications in math-
ematical statistics, Research Papers in Statistics (Festschrift J. Neyman),
Wiley, London (1966), 263–279.
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