Derivation algebras of 3-Lie algebras G_i

BAI Ruipu

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn

GAO Yansha

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

LIN Lixin

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

Abstract

The structure of derivation algebras and inner derivation algebras of 3-Lie algebras G_i (in Theorem 3.2) which are constructed by one dimensional extension of the complete Lie algebras L_i (in Lemma 2.2) is studied, $1 \le i \le 3$. It is proved that for complete Lie algebras L_i , we have $Der(G_i) \ne ad(G_i)$, and $\dim Der(G_i) = \dim ad(G_i) + 3$ for i = 1, 2, 3.

2010 Mathematics Subject Classification: 17B05 17D30 **Keywords:** complete Lie algebra, 3-Lie algebra, derivation, inner derivation.

1 Introduction

We know that 3-Lie algebras [1] have wide applications in mathematics and mathematical physics [2-3]. In the paper [4], authors constructed 3-Lie algebras by Lie algebras, which is a class of 3-Lie algebras $G = L \oplus Fx_0$ extended by Lie algebras L over a field F. It is proved that if subspace L of a Lie algebra L is an ideal of the 3-Lie algebra L if and only if L is an ideal of the Lie algebra L, and for an ideal L of the Lie algebra L, the subspace L is an ideal of the 3-Lie algebra L, and the relationship between inner derivations of Lie algebra L and the inner derivations of the 3-Lie algebra L

is provided. In this paper, we continue to study the structure of the 3-Lie algebra G. We pay our main attention to the structure of derivation algebras. We discuss inner derivation algebras and derivation algebras of 3-Lie algebra G_i , i = 1, 2, 3 which are realized by three complete Lie algebras L_i , i = 1, 2, 3.

2 Derivation algebras of 3-Lie algebra G_i

In this section we discussion the derivation algebras of the 3-Lie algebras G_i which are constructed by the Lie algebras L_1 , L_2 and L_3 , respectively. First we introduce some basic notions.

An n-Lie algebra $(n \geq 2)$ is a vector space A over a field F with an n-ary skew-symmetric multilinear multiplication $[, \dots,]$ satisfying the following identities, for all $x_1, \dots, x_n, y_2, \dots, y_n \in A$,

$$[[x_1, \dots, x_n], y_2, \dots, y_n] = \sum_{i=1}^n [x_1, \dots, [x_i, y_2, \dots, y_n], \dots, x_n].$$

If a Lie algebra L has trivial center and satisfies that all the derivations are inner derivations, then L is called a *complete Lie algebra*.

Lemma 2.1^[4] Let (L, [,]) be a Lie algebra over a field F, x_0 be not contained in L. Set $G = L + Fx_0$. Define the linear multiplication $[,,]: G \wedge G \wedge G \rightarrow G$ by $[x, y, x_0] = [x, y], [x, y, z] = 0, \forall x, y, z \in L$. Then (G, [,,]) is a 3-Lie algebra.

Lemma 2,2 The following Lie algebras are complete Lie algebras:

 $L_1: L \text{ is a Lie algebra with a basis } \{e_1, e_2\} \text{ and the multiplication is } [e_1, e_2] = e_1.$

 $L_2: L$ is a Lie algebra with a basis $\{e_1, \dots, e_8\}$ and the multiplication is

$$[e_3, e_4] = e_5, [e_3, e_5] = e_6, [e_3, e_6] = e_7, [e_4, e_8] = e_7, [e_1, e_3] = e_3,$$

$$[e_1, e_5] = e_5, [e_1, e_6] = 2e_6, [e_1, e_7] = 3e_7, [e_1, e_8] = 3e_8, [e_2, e_4] = e_4, [e_2, e_5] = e_5, [e_2, e_6] = e_6, [e_2, e_7] = e_7.$$

 $L_3: L$ is a Lie algebra with a basis $\{e_1, \dots, e_7\}$ and the multiplication is

$$[e_1, e_3] = e_3, [e_1, e_5] = 2e_5, [e_1, e_6] = e_6, [e_1, e_7] = 2e_7, [e_2, e_4] = e_4,$$

 $[e_2, e_6] = e_6, [e_2, e_7] = e_7, [e_3, e_4] = e_6, [e_3, e_6] = e_7, [e_4, e_5] = e_7.$

Proof The result follows from the direct computation.

Let V be an m-dimensional vector space over a field F with a basis $\{v_1, \dots, v_m\}$,

$$D: V \to V$$
 be a linear map, suppose $D(v_i) = \sum_{j=1}^m a_{ij}v_j$, $1 \le i \le m$, then the

matrix of D in the basis $\{v_1, \dots, v_m\}$ is $A = (a_{ij})_{i,j=1}^n = \sum_{i,j=1}^n a_{ij} E_{ij}$, where E_{ij} are $(n \times n)$ matrix units, $1 \le i, j \le n$.

Theorem 2.3 Let L_i , i = 1, 2, 3 be Lie algebras in Lemma 2.2. The derivation algebras of Lie algebras L_i , $1 \le i \le 3$, are as follows:

$$L_1: Der(L_1) = ad(L_1) = FE_{11} + FE_{21}.$$

$$L_2: Der(L_2) = ad(L_2) = F(E_{33} + E_{55} + 2E_{66} + 3E_{77} + 3E_{88}) + F(E_{44} + E_{55} + E_{66} + E_{77}) + F(E_{13} - E_{45} - E_{56} - E_{67}) + F(E_{24} + E_{35} - E_{87}) + F(E_{15} + E_{25} + E_{36})$$

```
+F(E_{16} + \frac{1}{2}E_{26} + \frac{1}{2}E_{37}) + F(E_{17} + \frac{1}{3}E_{27}) + F(E_{18} + \frac{1}{3}E_{47}).
L_3: Der(L_3) = ad(L_3) = F(E_{33} + 2E_{55} + E_{66} + 2E_{77}) + F(E_{44} + E_{66} + E_{77})
+F(E_{13} - E_{46} - E_{67}) + F(E_{15} + \frac{1}{2}E_{47}) + F(E_{16} + E_{26} + E_{37} + FE_{17} + FE_{27} + F(E_{24} + E_{36} - E_{57}) + FE_{83} + FE_{84} + FE_{85} + FE_{86} + FE_{87}.
```

Proof The result follows from Lemma 2.2 and a direct computation.

Theorem 2.4 Let L_i , i = 1, 2, 3 be Lie algebras in Lemma 2.2, x_0 be not contained in L_i . Then the multiplication of 3-Lie algebras $G_i = L_i + F_{X_0}$, are as following: $G_1 : [e_1, e_2, x_0] = e_1$.

$$G_2: [e_3,e_4,x_0] = e_5, \ [e_3,e_5,x_0] = e_6, \ [e_3,e_6,x_0] = e_7, \ [e_4,e_8,x_0] = e_7, \\ [e_1,e_3,x_0] = e_3, \ [e_1,e_5,x_0] = e_5, \ [e_1,e_6,x_0] = 2e_6, \ [e_1,e_7,x_0] = 3e_7, \\ [e_1,e_8,x_0] = 3e_8, \ [e_2,e_4,x_0] = e_4, \ [e_2,e_5,x_0] = e_5, \ [e_2,e_6,x_0] = e_6, \\ [e_2,e_7,x_0] = e_7, \ [e_i,e_j,e_k] = 0, \ 1 \le i,j,k \le 8. \\ G_3: \ [e_1,e_3,x_0] = e_3, \ [e_1,e_5,x_0] = 2e_5, \ [e_1,e_6,x_0] = e_6, \ [e_1,e_7,x_0] = 2e_7, \\ [e_2,e_4,x_0] = e_4, \ [e_2,e_6,x_0] = e_6, \ [e_2,e_7,x_0] = e_7, \ [e_3,e_4,x_0] = e_6, \\ [e_3,e_6,x_0] = e_7, \ [e_4,e_5,x_0] = e_7, \ [e_i,e_j,e_k] = 0, \ 1 \le i,j,k \le 7. \\ Where \ \{e_1,e_2,x_0\}, \ \{e_1,\cdots,e_8,x_0\} \ and \ \{e_1,\cdots,e_7,x_0\} \ is \ the \ basis \ of \ the \ 3-Lie \ algebra \ G_1,G_2,G_3, \ respectively.$$

Proof The result follows from Lemma 2.1 and Lemma 2.2, directly.

Theorem 2.5 Let G_i be 3-Lie algebras in Theorem 2.4, i = 1, 2, 3. Then Derivation algebras and inner derivation algebras as follows

$$G_1: ad(G_1) = ad(L_1) + FE_{31}, Der(G_1) = ad(G_1) + F(E_{22} - E_{33}) + FE_{23} + FE_{32}.$$

 $G_2: ad(G_2) = ad(L_2) + FE_{93} + FE_{94} + FE_{95} + FE_{96} + FE_{97} + FE_{98},$
 $Der(G_2) = ad(G_2) + F(E_{11} + E_{22} - E_{55} - 2E_{66} - 3E_{77} - 2E_{88} - E_{99}) + FE_{91} + FE_{92}.$

$$G_3: ad(G_3) = ad(L_3) + FE_{83} + FE_{84} + FE_{85} + FE_{86} + FE_{87},$$

$$Der(G_3) = ad(G_3) + F(E_{11} + E_{22} - E_{55} - E_{66} - 2E_{77} - E_{88}) + FE_{81} + FE_{82}.$$

Proof Let d and D be an inner derivation and derivation of the 3-Lie algebra G_i , respectively. First we discuss the case G_1 . Suppose the matrix of d and D in the basis $\{e_1, e_2, x_0\}$ is $\sum_{i,j=1}^{3} a_{ij}E_{ij}$, where $a_{ij} \in F, 1 \leq i, j \leq 3$. By Lemma 2.2 and the direct computation, the inner derivation $d = a_{11}E_{11} + a_{21}E_{21} + a_{31}E_{31}$, and the derivation $D = a_{11}E_{11} + a_{21}E_{21} + a_{31}E_{31} + a_{22}(E_{22} - E_{33} + a_{23}E_{23} + a_{32}E_{32})$.

For the 3-Lie algebra G_2 , suppose the matrix form of inner derivation d and derivation D in the bases $\{e_1, \cdots, e_8, x_0\}$ is $\sum_{i,j=1}^9 a_{ij} E_{ij}$, where $a_{ij} \in F, 1 \le i, j \le 9$. For derivation D, by the definition of derivations and Lemma 3.2, $a_{12} = a_{14} = a_{16} = a_{19} = a_{21} = a_{23} = a_{26} = a_{28} = a_{29} = a_{31} = a_{32} = a_{34} = a_{37} = a_{38} = a_{39} = a_{41} = a_{42} = a_{43} = a_{46} = a_{48} = a_{49} = a_{51} = a_{52} = a_{53} = a_{54} = a_{57} = a_{58} = a_{59} = a_{61} = a_{62} = a_{63} = a_{64} = a_{65} = a_{68} = a_{69} = a_{71} = a_{72} = a_{73} = a_{74} = a_{75} = a_{76} = a_{78} = a_{79} = a_{81} = a_{82} = a_{83} = a_{84} = a_{85} = a_{86} = a_{89} = 0, a_{17} = 3a_{27}, a_{18} = 3a_{47}, a_{13} = -a_{45} = -a_{56} = -a_{67}, a_{15} = a_{25} = a_{36},$

 $a_{24} = a_{35} = -a_{87}, a_{11} = a_{22} = -a_{99}, a_{55} = a_{33} + a_{44} - a_{11}, a_{66} = 2a_{33} + a_{44} - 2a_{11}, a_{77} = 3a_{33} + a_{44} - 3a_{11}, a_{88} = 3a_{33} - 2a_{11}.$ Therefore,

 $D = a_{11}E_{11} + a_{13}E_{13} + a_{15}E_{15} + a_{16}E_{16} + a_{17}E_{17} + a_{18}E_{18} + a_{11}E_{22} + a_{24}E_{24} + a_{15}E_{25} + \frac{1}{2}a_{16}E_{26} + \frac{1}{3}a_{17}E_{27} + a_{33}E_{33} + a_{24}E_{35} + a_{15}E_{36} + \frac{1}{2}a_{16}E_{37} + a_{44}E_{44} - a_{13}E_{45} + \frac{1}{3}a_{18}E_{47} + (a_{33} + a_{44} - a_{11})E_{55} - a_{13}E_{16} + (2a_{33} + a_{44} - 2a_{11})E_{66} - a_{13}E_{67} + (3a_{33} + a_{44} - 3a_{11})E_{77} - a_{24}E_{87} + (3a_{33} - 2a_{11})E_{88} + \sum_{i=1}^{8} a_{9i}E_{9j} - a_{11}E_{99}.$

Similarly the inner derivation d has the form

 $d = a_{13}E_{13} + a_{15}E_{15} + a_{16}E_{16} + a_{17}E_{17} + a_{18}E_{18} + a_{24}E_{24} + a_{15}E_{25} + \frac{1}{2}a_{16}E_{26} + \frac{1}{3}a_{17}E_{27} + a_{33}E_{33} + a_{24}E_{35} + a_{15}E_{36} + \frac{1}{2}a_{16}E_{37} \ a_{44}E_{44} - a_{13}E_{45} + \frac{1}{3}a_{18}E_{47} + (a_{33} + a_{44})E_{55} - a_{13}E_{56} + (2a_{33} + a_{44})E_{66} - a_{13}E_{67} + (3a_{33} + a_{44})E_{77} - a_{24}E_{87} + 3a_{33}E_{88} + a_{93}E_{93} + a_{94}E_{94} + a_{95}E_{95} + a_{96}E_{96} + a_{97}E_{97} + a_{98}E_{98}.$

For the case G_3 , by the completely similar discussion we have $d = a_{13}E_{13} + a_{15}E_{15} + a_{16}E_{16} + a_{17}E_{17} + a_{24}E_{24} + a_{16}E_{26} + \frac{1}{2}a_{17}E_{27} + a_{33}E_{33} + a_{24}E_{36} + a_{16}E_{37} + a_{44}E_{44} - a_{13}E_{46} + \frac{1}{2}a_{15}E_{47} + 2a_{33}E_{54} - a_{24}E_{56} (a_{33} + a_{44})E_{66} - a_{13}E_{67} + (2a_{33} + a_{44})E_{77} + a_{83}E_{83} + a_{84}E_{84} + a_{85}E_{85} + a_{86}E_{86} + a_{87}E_{87}.$ $D = a_{11}E_{11} + a_{13}E_{13} + a_{15}E_{15} + a_{16}E_{16} + a_{17}E_{17} + a_{11}E_{22} + a_{24}E_{24} + a_{16}E_{26} + \frac{1}{2}a_{17}E_{26} + a_{33}E_{33} + a_{24}E_{36} + a_{16}E_{37} + a_{44}E_{44} - a_{13}E_{46} + \frac{1}{2}a_{15}E_{47} - a_{24}E_{57} + (2a_{33} - a_{11})E_{55} + (a_{33} + a_{44} - a_{11})E_{66} - a_{13}E_{67} + (2a_{33} + a_{44} - 2a_{11})E_{77} + \sum_{i=1}^{7}a_{8j}E_{8j} - a_{11}E_{88}.$ Thanks to Theorem 3.1, the result follows.

Theorem 2.6 Let G_i be 3-Lie algebras in Theorem 2.4, i = 1, 2, 3. Then $Der(G_i) \neq ad(G_i)$, and $\dim Der(G_i) = \dim ad(G_i) + 3$, i = 1, 2, 3.

Proof The result follows from Theorem 2.5, directly.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

- [1] V. FILIPPOV, n-Lie algebras, Sib. Mat. Zh., 1985, 26 (6), 126-140.
- [2] G. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes Phys. Rev. 2008, D77065008
- [3] A. Pozhidaev, Simple quotient algebras and subalgebras of Jacobian algebras, Sib. Math. J., 1998, 39(3), 512-517.
- [4] R. Bai, Y. Gao, W. Guo, A class of 3-Lie algebras realized by Lie algebras, Mathematica Aeterna, 2015, preprint.

Received: April, 2015