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Abstract

The structure of derivation algebras and inner derivation algebras
of 3-Lie algebras G; (in Theorem 3.2) which are constructed by one
dimensional extension of the complete Lie algebras L; (in Lemma 2.2)
is studied, 1 < i < 3. It is proved that for complete Lie algebras L;,
we have Der(G;) # ad(G;), and dim Der(G;) = dimad(G;) + 3 for
i=1,2,3.
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1 Introduction

We know that 3-Lie algebras [1] have wide applications in mathematics and
mathematical physics [2-3]. In the paper [4], authors constructed 3-Lie algebras
by Lie algebras, which is a class of 3-Lie algebras G = L & Fxy extended by
Lie algebras L over a field F. It is proved that if subspace I of a Lie algebra L
is an ideal of the 3-Lie algebra G if and only if [ is an ideal of the Lie algebra
L, and for an ideal I of the Lie algebra L, the subspace J = I + Fxg may
not be an ideal of the 3-Lie algebra G, and the relationship between inner
derivations of Lie algebra L and the inner derivations of the 3-Lie algebra G
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is provided. In this paper, we continue to study the structure of the 3-Lie
algebra GG. We pay our main attention to the structure of derivation algebras.
We discuss inner derivation algebras and derivation algebras of 3-Lie algebra
G;, i = 1,2,3 which are realized by three complete Lie algebras L;, i = 1,2, 3.

2 Derivation algebras of 3-Lie algebra G;

In this section we discussion the derivation algebras of the 3-Lie algebras G;
which are constructed by the Lie algebras L, Ly and Ls, respectively. First
we introduce some basic notions.

An n-Lie algebra (n > 2) is a vector space A over a field F' with an n-

ary skew-symmetric multilinear multiplication [,-- -, ] satisfying the following
identities, for all zq,---,z,, Y2, -+, yn € A,
[[xlv"'vxn]ay%”'?yn] = Z[xh”'v[xi7y27"'7yn]7“'7xn]'

If a Lie algebra L has trivilal center and satisfies that all the derivations are
inner derivations, then L is called a complete Lie algebra.

Lemma 2.1 Let (L,[,]) be a Lie algebra over a field F, x5 be not
contained in L. Set G = L+Fzy. Define the linear multiplication [,,] :
GANGAG — G by [z,y,x0] = [2,9], [x,y,2] =0,Vx,y,z € L. Then (G,],,]) is
a 3-Lie algebra.

Lemma 2,2 The following Lie algebras are complete Lie algebras:

Ly : L is a Lie algebra with a basis {e1, s} and the multiplication is [eq, e2] = e;.
Ly : L is a Lie algebra with a basis {e1,---,es} and the multiplication is

e, e4] = €5, [e3,e5] = €6, [e3,e6] = €7, [es, e5] = €7, [e1, €3] = e3,

[61,65] = €5, [61,66] = 266, [61, 67] = 367, [61, 68] = 368, [62,64] = €4,

[62,65] = €5, [62,66] = €g, [62, 67] = e7.

Ls : L is a Lie algebra with a basis {e1,---,er} and the multiplication is

[61,63] = €3, [61,65] = 265, [61, 66] = €g, [61, 67] = 267, [62, 64] = €4,

[ea, €6] = €6, [e2,€7] = €7, [es,eq] = eq, [e3, e6] = €7, [e4, €5] = €.

Proof The result follows from the direct computation.

Let V be an m-dimensional vector space over a field F' with a basis {vy, -+, v},

D :V — V be a linear map, suppose D(v;) = ¥ a;;v;, 1 < i < m, then the
j=1

n
matrix of D in the basis {vy, -, v} is A = (ai5)}j21 = X ai;Eij, where Ej;
’ =1

are (n X m) matrix units, 1 <i,j <n.
Theorem 2.3 Let L;, 1 = 1,2,3 be Lie algebras in Lemma 2.2. The
derivation algebras of Lie algebras L;, 1 < i < 3, are as follows:
Ll : D6’I"(L1) = ad(Ll) = FEll + FE21.
L2 : D6’I"(L2) = ad(Lg) = F(E33+E55+2E66 —|—3E77—|—3E88)+F(E44+E55+E66
+Er7)+ F(E3— Eys — Esg — Egr) +F (Eoy+ Ess — Es7) + F(Ey5+ Eos + Esg)
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+F (B + %E% + %E37) + F(Evr + %Ew) +F(Ehs + %EM)-

L3 : D6’I"(L3) = ad(Lg) = F(E33 + 2E55 + E66 + 2E77) + F(E44 + E66 + E77)
+F(Ehg — Eys — Eor) +F(E5 + %EM) + F(E6 + Eos + Es7 + FE7 + FEy
+F (Boy + Esg — Es7) + FEg3 + FEgy + FEgs + FEgs + FEg.

Proof The result follows from Lemma 2.2 and a direct computation.

Theorem 2.4 Let L;, » = 1,2,3 be Lie algebras in Lemma 2.2, xy be not
contained in L;. Then the multiplication of 3-Lie algebras G; = L;+Fxq, are
as following: Gy : [e1, ez, o] = €;.

G2 : [63, 64,2[‘0] = €5, [63, €5, .CL’()] = €g, [63, €6, .CL’()] = €y, [64, 68,I0] = €y,

[61, €3, .CL’()] = €3, [61, €5, .CL’()] = €5, [61, €6, .CL’()] = 266, [61, €7, .CL’()] = 367,
[61, €s, .CL’()] = 368, [62, 64,2[‘0] = €4, [62, 65,2[‘0] = €5, [62, €6, .CL’()] = €g,
lea, e7, ko] = e7, [es, ej,ex] =0, 1 <, 5,k <8.

G3 : [61, 63,2[‘0] = €3, [61, €5, .CL’()] = 265, [61, 66,I0] = €g, [61, 67,2[‘0] = 267,
le2, €4, 0] = ey, [e2, €6, To] = €6, [€2, €7, T0] = €7, [e3, €4, 0] = e,

[63,66,1’0] = €r, [64, 65,5(70] = €, [62‘76]', €k] = O, 1< ’i,j, k <T.

Where {e1, 2,20}, {€1,- -+, es, o} and {e1, -+, e7,x0} is the basis of the 3-Lie

algebra G1, G5, Gs, respectively.

Proof The result follows from Lemma 2.1 and Lemma 2.2, directly.
Theorem 2.5 Let G; be 3-Lie algebras in Theorem 2.4, 1 = 1,2,3. Then

Derivation algebras and inner derivation algebras as follows

Gl : ad(Gl) = CLd(Ll)—I—FEgl, D(ET’(Gl) = ad(G1)+F(E22—E33)+FE23—|—FE32.

G2 : ad(Gg) = ad(Lg) + FE93 + FE94 + FE95 + FE96 + FE97 + FEgg,
De’f’(Gg) = ad(Gg) + F(Ell + E22 — E55 — 2E66 — 3E77 — 2E88 — Egg)

+FE91 + FEgg.

Gg : ad(Gg) = ad(Lg) + FE83 + FE84 + FE85 + FE86 + FE87,

De’f’(Gg) = ad(Gg) ‘I‘F(Ell —|—E22 — E55 — E66 — 2E77 — Egg) —I—FEgl —|—FE82.
Proof Let d and D be an inner derivation and derivation of the 3-Lie
algebra G;, respectively. First we discuss the case GG;. Suppose the matrix

3
of d and D in the basis {e1,es, 20} is > a;;E;;, where a;; € F,1 < 1,7 < 3.
1

ij=
By Lemma 2.2 and the direct computation, the inner derivation d = ayy F11 +
a21E21 + a31E31, and the derivation D = allEll + 0,21E21 + a31E31 + a22(E22 -
Es3 + ag3Fa3 + as Es).

For the 3-Lie algebra (G5, suppose the matrix form of inner derivation d

9
and derivation D in the bases {ey,---,es, 2o} is > a;;E;;, where a;; € F,1 <
ij=1

1,7 < 9. For derivation D, by the definition of derivations and Lemma 3.2,

12 = 414 = Q16 = A19 = G21 = A23 = G2 = A28 = (29 = (A3] = (32 = A34 = (37
= Q38 = (39 = Q41 = O42 = (43 = (46 = A48 = Q49 = (51 = G52 = G353 = 454 =
Q57 = A58 = As9 = (g1 = Ag2 = A3 = G4 = Ag5 = Aeg = Ggg = A71 = Q72 =
a73 = A74 = Q75 = A76 = A7 = A79 = (g1 = Ag2 = (g3 = Ugq = Ags = Ugs =

agg = 0, ar7 = 3agr, a1z = 3ay7, a13 = —a45 = —A56 = —Ag7, Q15 = A25 = U3,
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(g4 = A35 = —agy, A11 = A2 = —agy, Uss = U33+A4s—011, Ge6 = 2033+ A44—20a171,
ar7 = 3&33 + Q44 — 3(1,11, agg = 3&33 — 2(1,11. Therefore,

D = a1 By + aizEi3 + a5 Es + aieEig + a7 By + aigEhg +a11 Eog + agy Eay
+ay5Eos + %CLIGE% + %@17E27+033E33 + agq B35 + a15 B3 + %CLIGEZS? +aga by
—a13E5 + sa18Eyr +(ass + au — a11)Ess — a13Fie +(2as3 + au — 2a11) Egs

8
—a13Es74 (3as3+a4a—3a11) Err —a24 Esr+(3as3—2a11) Ess + '21 ag; Fgj—ai1 Egg.
]:

Similarly the inner derivation d has the form
d = a13F13 + a15E15 + aig Ere + arr By + a1gEig + aga oy + a15 Eos + %alﬁE%
—|—%a17E27 +ag3 B33 +azy B35 +ais Ese+ %CLlGES? ag By —a3Eys+ %018E47+ (ass+
a44) Ess — a13Es6 +(2a33 + aa) Bes — a13B67 + (3as3 + aus) Brr — s Egy + 3ass Egg
+ag3 Bz + aga Loy +ags Eos + age Eog + agr Eor + agg Fos.

For the case Gj3, by the completely similar discussion we have
d = ai3F3 + aisEis + a16E16 + a7 Bir+ By + a6 B + %017E27 +aszz b33
+agy Fze + a16 37+ aga gy — a3 46+ %a15E47+ 2a33F54 — 24 Fs6 (a33 4 aas) Ees
—a13 7 + (2a33 + a4a) Err + ag3Ess + aga Fgy + ass Egs + age Ese + as7 Egr.
D = a1 By + aisEi3 + aisEys + a6 6 + arr By +a11Bog + agaFay + aieEas
+30a17E96 + a33E33 + a24Fs6 + a16F37 +auuEy — a3Es6 + 3a15E47 — a24Fsy
+(27a33 — a11)Ess +(azs + au — an1)EBes — a13L67 +(2a33 + asa — 2a11) Err
+ '21 agjFgj — a1 Egs. Thanks to Theorem 3.1, the result follows.

’ Theorem 2.6 Let G; be 3-Lie algebras in Theorem 2.4, 1 = 1,2,3. Then

Der(G;) # ad(G;), and dim Der(G;) = dimad(G;) + 3,1 =1,2, 3.

Proof The result follows from Theorem 2.5, directly.
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