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Abstract

In this paper we shall establish some deformation properties of G-
AN R spaces generated by the notion of G-AN R divisors. This concept
in the theory of retracts was established by D. M. Hyman in [8].
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1 Introduction

The property of a space B such that if it is closed embedded into a ANR
space X then the space X/B obtained of collapsing B to a point, is a ANFE,
is established in [8], and it is is said that B is a ANR divisor. D. M. Hyman
gave several characterizations of these spaces in his paper and in [9].

We shall give the equivariant analogous of these results, when the acting
group is a compact.

2 Preliminary Notes

Here and in what follows GG will always denote a Hausdorff compact group. By
a GG-space we mean a topological space where G acts continuously. The basic
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ideas of G-spaces can be found in [5], [6], [10]. A subset B of a G-space is
said invariant or G-subset if GB = B. The subset G(z) = {gz € X|g € G} is
called the orbit of x. These subsets make a partition of X and we obtain a new
space called the orbit space, such is denoted like X/G. By amap f: X — Y
of a space X into a space Y, we mean a continuous function from X to Y. If
X and Y are G-spaces, then a map f : X — Y is a equivariant map or G-map
satisfying f(gz) = gf(x); that is, f commute with the action. If f(gx) = f(z),
then f is said invariant map.

Let X be a metrizable G-space. A metric d over X is said invariant if each
transition is a d-isometry and d is compatible with the topology of X.

The equivariant definitions of A(N)E and A(N)R are similar those classic
definitions, and the reader can see, for instance, [1], [2], [3]. We consider the
class of spaces G-M of all metrizable G-spaces. Since G is compact, by [10]
each space belongs to G-M has an invariant metric.

A couple (X, A) is a G-pair if X is a G-space and A is an invariant closed
subset of X.

A G-space Y is called a G-ANE (for the class G-M) (notation: Y € G-
ANE), if for any G-pair (X, A) with X € G-M and any G-map f : A — Y,
there exist an invariant neighborhood U of A in X and a G-map ¢ : U — Y
such that |4 = f. The map 1 is called a G-extension of f over U. If in
addition we can always take U = X, then we say that Y is a G-AE (notation:
Y € G-AE).

Let A be an invariant closed subset of X. Then A is called equivariant
neighborhood retract of X if there exists a G-map r : U — A with U an
invariant neighborhood of A in X, such that r|4 = ids where idy is the
identity map on A. The G-map r is called a G-retraction of U onto A. If
U = X then A is called G-retract or equivariant retract of X.

Let Y be a G-space. Then Y is called a G-ANR (notation: Y € G-ANR)
provided Y € G-M, and for any G-space X from G-M, where Y is embedded
as invariant closed subset, Y is a equivariant neighborhood retract of X. If
in addition Y is G-retract of X, then we say that Y is a G-AR (notation:
Y € G-AR).

Let X, Y be G-spaces and {h; : X — Y|t € I} be a G-maps family
with indexing set the unit interval I = [0,1]. The family {h|t € I} is called
a G-homotopy from hg to hy, if the function H : X x I — Y defined by
H(z,t) = hy(x) for every x € X and t € I, is a G-map. Here I has the trivial
action and X x I the diagonal action. The G-map H is called G-homotopy
too. Frequently, we use the notation h;, t € I, to represent the G-homotopy
{hi|t € I} from hg to h;.

Let fo, fi : X — Y be two G-maps. They are said G-homotopic if there
exists a G-homotopy f;, t € I from fy to fi;. In addition, the relation being
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G-homotopic is an equivalence relation and we have a category of G-spaces

and G-homotopy classes of mappings. We write fj < f1if fo and f; are
G-homotopic.

Let A, B be any two invariant subsets of G-space X. B is said to be G-
deformable into A over X if the identity G-map id : B — B is G-homotopic
in X to a G-map of B into A. That is, we require a G-homotopy f;, t € I,
called a G-deformation, such that fo(b) = b for each b € B, and f;(B) C A. If
we have B = X, we omit “over X 7 and say simply that X is G-deformable
into A.

An G-map f: X — Y G-homotopic to a constant G-map is called nullho-
motopic G-map. Call a G-space G-contractible if ¢d : Y — Y is nullhomotopic
G-map.

An invariant subset A of a G-space X is a strong neighborhood G-deformation
retract of X if there exist an invariant neighborhood U of A in X and a G-
homotopy f;, t € I from fy into fi, such that f; is the inclusion U — X, f; is
a G-retraction of U onto A, and fi(a) =a foralla € Aand t € .

Let f: X — Y a G-map. We say that a G-map h : Y — X is a right
G-homotopy inverse of f if the composition fh is G-homotopic to the identity
in Y. Analogously, we define a left G-homotopy inverse of f. The G-map f :
X — Y is called a G-homotopy equivalence if there exist a G-map h : Y — X
such that both fh < idy and hf < 1dx. We shall say that a G-space X is
G-homotopically dominated by a G-space Y, if there exist a G-map f : X — Y
such that f have a left G-homotopy inverse.

We shall say that two G-spaces X and Y have the same G-homotopy type if
we can find two G-maps f : X — Y and h : Y — X such that the compositions
fh and hf are G-homotopic to the appropiate identity.

Let (Y, B) be a G-pair. We shall say that B is a strong neighborhood
G-deformation retract of Y if there exists an invariant neighborhood W of B
and a G-homotopy h; : W — Y, t € I, where I have the trivial action of G,

such that hg is the inclusion of B in Y, and h; is a G-retraction of W over B
and h(b,t) =b for all b € B and for all ¢ € I.

We notice that in general a metrizable G-ANFE space Y need not be a
G-AN R, because it may not belong to the class G-M. But if Y € G-M and
Y € G-ANE, then it is easy to see that, Y € G-ANR. We constantly refer to
the following result, whose proof can be found in ([3], Theorem 14).

Theorem 2.1 Let X a metric G-space. Then, X is a G-ANE if and only if
it 1s G-ANR.

It is well known the following result which is frequently used in this docu-
ment.
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Theorem 2.2 Let W be an invariant open subset of a G-space Y. If Y € G-
ANE, then W is a G-ANE.

Other result used in this work corresponds to the equivariant theorem of
K. Borsuk about of the homotopy extension property and AN R’s spaces (see
[[1], Theorem 5)). Firs we define the G-homotopy extension property.

Definition 2.3 A G-pair (X, A) is said that has the G-homotopy extension
property (abbreviated G-HEP) respect to a G-space Y is given G-maps f :
X =Y and H: AxI —Y such that H(a,0) = f(a) for all a € A, then there
exists a G-map H* : X x I — 'Y satisfying H*(a,t) = f(a) foralla€ A, t €1
and H*(x,0) = f(z) for allz € X.

Theorem 2.4 Let (X, A) be a metric G-pair. Then (X, A) has the G-HEP
respect to every G-ANR.

Finally, we use the following application of the equivariant generalization of
the Borsuk-Whitehead-Hanner theorem (see [4], Corollary 3.12). In the theory
of retracts the readers can see [7] and [8].

Theorem 2.5 Let (X, A) be a G-pair whit X € G-M NG-ANE and A € G-
ANE. Then X/A € G-ANE.

3 G-ANR divisors

We will need the following results to introduce the definition of G-AN R divisor.

Theorem 3.1 Let Y be a metric G-space, X be a G-space and f: B — X a
G-map, where B is an invariant closed subset of Y. If X, Y € G-ANFE then,
YUy X € G-ANE if and only if p(X) is a strong neighborhood G-deformation
retract of Y Uy X.

Proof. See ([4], Lemma 3.9). O

By G-ANR(B) we shall denote the class of G-AN R containing to B as an
invariant closed subspace.

Theorem 3.2 Let B be a G-space, let X € G-ANR and let f: B — X be
a G-map. If there exists a G-space Yy € G-ANR(B) such that Yy Uy X € G-
ANE, then for every Y € G-ANR(B) we have Y Uy X is a G-ANE.
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Proof. Let p: Y UX — Y Uy X be the canonical projection. To prove that
Y Ur X is a G-ANE, it suffices, by theorem 3.1, to show that p(X) is a strong
neighborhood G-deformation retract of ¥ Uy X.

Since Y € G-ANR, by theorem 2.1, Y € G-ANE. Then, the inclusion
i : B — Y have a G-extension ¢ : U — Y over an invariant neighborhood U of
Bin Y. Since Y € G-ANR, by theorem 2.1, Y € G-ANE. Let q: Yo U X —
Yy Uy X be the natural projection; then, we have that ¢(U U X) is open in
Yo Uy X and, like U, is a G-ANE. By the theorem 3.1, there exists a strong
neighborhood G-deformation retraction h : W x I — ¢(U U X)), where W is
an invariant neighborhood of ¢(X) in ¢(U L X) and, accordingly, is open in
Yo Uy X. Since ¢ 1(W) NYj is invariant open set in Yy and, by theorem 2.1,
Xy € G-ANE; by the theorem 2.2, we have that ¢~ }(W)NY, € G-ANE. Thus,
the inclusion j : B — ¢~ (W) N'Y; have a G-extension ¢ : V — ¢~ 1 (W) N Yy,
where V' is an invariant neighborhood of B in Y. Also, V € G-ANE, by the
theorem 2.2. It follows that there exists an invariant neighborhood D of A in
U and a G-deformation s : D x I — V satisfying s(b,t) =bforallbe B, t € I
and s; = ¢y

Let UV: UUX — Y UX be a G-map, defined by

(z) = o(x), if v€Y,
x, if veX,

Define a G-map k : p(DUX) x [ - Y Us X by

psas(p|Y)71(2), if z€p(D) and 0 <t <1/2,
k(z,t) = q p¥q ' har1qb(plY) ' (2), ifz€p(D) and 1/2 <t <1,
z, if zep(X)and 0<t<1.

Then k is a strong neighborhood G-deformation retraction and concludes
the proof. [J

Corollary 3.3 Let B be a metric G-space. If there exists a G-space Yy € G-
ANR(B) such that Yo/B € G-ANE, then for every Y € G-ANR(B) we have
Y/B is a G-ANE.

When B is compact, then Y/B is metrizable [7]; applying this fact to
corollary 3.3, we have

Theorem 3.4 Let B be a compact metrizable G-space. If there exists a G-
space Yo € G-ANR(B) such that Yo/B € G-ANR, then for every G-space
Y € G-ANR(B), we have that Y/B is an G-ANR.
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Definition 3.5 A G-space B is called a G-AN R divisor if it is metrizable and
Y/B is a G-ANE for every G-space Y € G-ANR(B).

Remark 3.6 By the theorem 2.5, we note that a compact metrizable G-AN R
G-space it will also be a G-ANR divisor.

4 (G-deformation neighborhood basis

Definition 4.1 A G-space X is a strongly locally G-contractible at a point
x € X if there is an invariant neighborhood V' of x in X and a G-contraction
ki, of V into X such that k,(z) = x, for allt € I.

By theorem 3.1 and previous definition, we obtain:

Lemma 4.2 Let B be an invariant closed subset of a G-space Y € G-ANR.
Then Y/B € G-ANE if and only if Y/B is strongly locally G-contractible at
a point p(B), where p: Y — Y/B is the canonical projection.

Now, we shall introduce the notion of a G-deformation neighborhood basis
with the purpose to establish condition for Y/B to be a strongly locally G-
contractible at a point p(B).

Definition 4.3 Let (Y, B) be a G-pair. A sequence {Up,, hy}n>1, is called a
G-deformation neighborhood basis for B in'Y if it satisfies

(B1) Each U, is an invariant neighborhood of B in Y.
(B2) Upy1 CU,, for alln € N.

(B3) For each invariant neighborhood V' of B in'Y, there exists n € N such
that U, C V.

(B4) LetUy =Y. Then, foralln > 1, hy, : U, xI — U,_; is a G-deformation
such that o B
ho(Uy, x {1}) C Upiq

(B5) If m > n, then h,(U,, x I) C U,_;.

Lemma 4.4 Let (Y, B) be a G-pair. If B has a G-deformation neighborhood
basis in'Y', then Y/B is strongly locally G-contractible at a point p(B), where
p:Y — Y/B is the canonical projection.
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Proof. Let {U,, hy}n>1 a G-deformation neighborhood basis for B. For each
n and for all s € I, let h;, : U, — Y a G-map given by h;(z) = h,(z,s). Now
we define the G-map h : Uy x [0,00) — Y by

h1<x7t)7 Zf k:()?
h(z,t) = t—k 171 1, pl ‘
by iohgohy_yo..ohyohi(x), if k>1

where k is a non-negative integer such that ¢ € [k, k + 1].

Since the range of h) is contained in the domain of hf_,, for all n and s,
composition is well defined.

We verify that is well-defined. Let (z,t) € U; x [0,00), where t = k, and k
is a non-negative integer. Then ¢ € [k — 1, k] N [k, k + 1]. Thus,

h(z,t) = hyohy_,o..0hyohi(x)
and other hand
h(z,t) = hj.yohpoh;_jo..ohyohi(zx)=h), oh(zt).
But, h,, is a G-deformation for each n. Then,
h(x,t) = h)_ 4 o h(z,t) = hyy1(h(z,t),0) = h(z,t).

So h is well-defined.
Also, h is continuous, since is continuous in each closed subset U, x [k, k+1].
In addition, is easily to see that is equivariant since is composition of G-maps.
Moreover, h has the following properties:

(1) For all n > 1, h(U, x [0,00)) C Up, g (here [n/2] denotes the greatest
integer less than or equal to n/2).

(2) For all ¢ € [1,00), we have h(U; x {t}) C Uy.
(3) h(B x [0,00)) C B.
We verify the previous properties are satisfy.

(1) Let (z,t) € U, x [0,00) and k a non negative integer such that t €
|k, k+1].
(i) If k > [n/2], by (B2) we must consider that € U;. Then by (B4)
and the definition of h; we have

h(z,t) € Uy C U[n/g}.

(ii) If k < [n/2] is trivial to check that n — k — 1 > [n/2]. Since x € U,
and n — k > k + 1, we apply (B5) in the definition of h, and we obtain
h(z,t) € Up,q, so the proof of (1) is finished.
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(2) In this case, let k > 1, where k <t < k + 1. Then [t] = k and by (B4),
hi11 is a deformation into Uy. We conclude applying the definition of h.

(3) By (B1) and (B2) follows that B = N>,U,. So, applying part (1) of
this lemma, we obtain the desired.

We consider a homeomorphism f of [0,1) onto [0, 00). Define a function

J:p(Uy) x I —-Y/B,

J(z,t) = p(h(p~'(x), f(t))), ifz € p(U) and t <1,
| p(B), if v € p(Uy) and t =1.

It is clear that J is equivariant. Now, to see that is well-defined, it is necessary
to check only in p(B). Let by, by € B and t € [0,1). Then, accordance
with (3), h(p~ (p(br), £(2)) € B. Thus, p(h(p~ (p(br)), (1)) = J(p(br). £) =
J(p(b2),t) and J is well-defined.

Moreover, J(p(B) x I) = p(B).

In order that J to be continuous it is sufficient to show that J is continuous
at the points of p(Uy) x {1} and p(B) x I.

It is easy to see that each U, is a satured set by p. Then, for each n € N,
p(Uy,) is a neighborhood of p(B). Moreover, by (B3), {p(U,)|n > 1} is a
neighborhood basis of p(B) in Y/B. From here will prove the continuity of .J.

Let (wp,1) € p(Uy) x {1}. Let V be a neighborhood of J(w,1) = p(B).
Then there exists a non-negative integer m such that p(B) € p(U,,) C V. We
consider f~!(m,o00) U {1}, which has the form (r, 1], for some r € [0,1). Let
W = p(Uy) x (r,1]. Thus, W is a neighborhood of (wg,1). We affirm that
J(W) C V. In fact, let (w,t) € W. The case t = 1 is trivial. If ¢ € [0,1) then
J(w,t) = p(h(p~H(w), f(t))); since t € f~1(m, o0) it follows that f(t) € (m, co)
and by (2), h(p~(w), f(£)) € Un. So J(w,t) = p(h(p~(w), f(£))) € p(Up) C
V.

At the same way, let (p(B),t) € p(B) x I and V' a neighborhood of p(B)
in Y/B. Then, there exists a neighborhood p(U,,) of p(B) in Y/B contained
in V. We choose a non-negative integer k such that [k/2] > m. If we consider
the neighborhood W = p(Uy) x I of (p(B),t) and apply (1), then we have

JW) C p(Upyg) C p(Un) C V. We conclude that J is continuous.

Finally, only is necessary to check that J is a contraction from a neighbor-
hood of p(B) into Y/B. If follows of the definition of .J that J|pw,)x{1y = p(B)
and for each z € p(Uy), J(2,0) = p(h(p~'(2),0)) = pp~(2) = z.

This complete the proof. [

From the lemmas 4.2 and 4.4, we obtain:
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Theorem 4.5 Let B be an invariant closed subset of a G-space Y € G-ANR.
If B has a G-deformation neighborhood basis in'Y then Y/B € G-ANE.

From corollary 3.3 and theorem 4.5, it follows

Corollary 4.6 Let B be an invariant closed subset of a G-space Y € G-ANR.
If B has a G-deformation neighborhood basis in'Y then B is a G-AN R divisor.

5 Absolute neighborhood G-contractibility

Definition 5.1 Let (Y, B) be a G-pair. B is said to be neighborhood G-
contractible in Y if B is G-contractible in every invariant neighborhood U
of BinY.

Observation 5.2 A neighborhood G-contractible G-space is G-contractible.

Definition 5.3 A metric G-space B is said to be absolutely neighborhood G-
contractible if B is neighborhood G-contractible in every Y € G-ANR(DB).

The next theorem characterizes the property of a metric G-space to be
absolutely neighborhood G-contractible, through some weaker conditions.

Theorem 5.4 Let B be a metric G-space. Then are equivalents,

(a) There exists a Y € G-AN R(B) such that B is neighborhood G-contractible
nY.

(b) For eachY € G-ANR(B), we have that B is G-contractible in Y.

(c) B is absolutely neighborhood G-contractible.

Proof. Then we show that (a) implies (b). Let Z € G-ANR(B). Then the
identity G-map ¢ : B — B extends to a G-map ¢ : U — Z, where U is an
invariant neighborhood of B in Y. By (a) B is G-contractible in U under an
invariant homotopy h;. Hence the homotopy ¢h; equivariantly contract B into

Z.

Now, we show that (b) implies (c¢). Let U be an invariant neighborhood
of B in Y. Then, by theorem 2.1 and theorem 2.2, U is a G-ANR(B) and
by (b) B is G-contractible into U. Therefore, B is absolutely neighborhood
G-contractible.

Finally, the prove that (c) implies (a) is trivial. O
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In this section we will show that every absolutely neighborhood G-contractible
compactum is a G-AN R divisor. Before this fact it is necessary some previous
theorems, the first of which is a characterization of absolute neighborhood G-
contractibility. Then mention a corollary of an important result such that will
represent a useful tool, the Equivariant Extension Homotopy Theorem 2.4.

Since any constant G-map on A can be extended a X, for the theorem 2.4
it follows that

Corollary 5.5 Let (X, A) be a metric G-pair and f a nullhomotopic G-map
from A into G-space Y € G-ANR. Then f has a G-extension F : X — Y.

Theorem 5.6 Let B be a metric G-space. Then, B is absolutely neighborhood
G-contractible if and only if for every G-space Y € G-AN R(B), there exists an
invariant neighborhood V' of B in'Y such that for every metric G-pair (X, A),
each G-map f: A —V has an equivariant extension F : X — Y.

Proof. First, suppose that B is absolutely neighborhood G-contractible and
let Y € G-ANR(B). Let k; an equivariant contraction of B over Y to a point
bo. Now we define a G-map h: (Y x {0}) U(BxI)U (Y x {1}) =Y by

v, ifyeY and t =0,
h(y,t) =< k(y), ify€ Band tel,
bo, if yeY and t=1.

Since Y is a G-ANR(B), h has an equivariant extension H : W — Y,
where W is an invariant open neighborhood of (Y x {0})U(B x I)U (Y x {1})
in Y x I. Let V an invariant neighborhood of B in Y such that V x I c W.
Hence H |y, ; equivariantly contract V over Y to a point by. Let f: A — V be
any G-map and J = H o (f xid), where id is the identity G-map on I. Clearly,
J is a G-homotopy of A x I in Y and it follows that f is G-nullhomotopic over

Y, and by corollary 5.5 equivariantly extends on Y.

Conversely, let Y € G-ANR(B) and V' an invariant neighborhood of B
such that satisfies the property stated in the hypothesis. Then the G-map
f:(Vx{0})u(V x{1}) = V defined by f(v,0) = v, f(v,1) = by has an
equivariant extension F' : V x I — Y. Hence V is G-contractible over Y; in
particular, B is contractible over Y and applying theorem 5.4 (b), we complete

the proof. [J

Lemma 5.7 Let B be a compact absolutely neighborhood G-contractible metric
G-space and Y € G-ANR(B). Then B has a G-deformation neighborhood
basis.
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Proof. By the previous theorem there exists an invariant neighborhood U
of B in Y such that any G-map from an invariant closed subset of a metric
G-space into U; has an equivariant extension over Y. We may choose Uy such
that d(z, B) < 1 for all € Uy, where d is some metric on Y. Accordance with
theorem 2.1 and theorem 2.2, we apply successively the theorem 5.6 obtaining
a sequence of invariant neighborhoods {U, },~1 of B such that

(1) Un C U,_1;

(2) every G-map from an invariant closed subset of a metric G-space into
U, has an equivariant extension over U,_;;

(3) for all x € U,, we have that d(z, B) < 1/n.

By (1) and (3) it follows that the sequence {U,},>1 satisfies (B1)-(B3).
Now, we verify (B4) and (B5). First, we choose a point by € B. For each
positive integer n, define a G-map

fo (U \Uns1) UUnta = Upo
by

X Zf.T c Un+2.

£ (x) = {bo, if v € (Ua\Uns1),

From (2), f, extends to an G-map F}, : U, — U,;;. Define a G-map by
In (UnJrl x {0}) U (Un+2 x I)U (Un+1 x {1}) — UTL+1
by
x, if v € Upyq and t =0,
Jn(z,t) =< ifx €Upyo and 0 <t <1,
F.(z) ifr €U, and t=1.

At he same way, by (2), j, extends to a G-map J,, : Up1 x I — U,.
To finish, we define a G-map

Ep: (Up x {0ONU Uy x HU (U, x {1}) = U,
as follows
x, ifr €U, and t =0,
kn(z,t) = Q Ju(x,t) ifx €Upyr and 0 <t <1,
F.(z) ifreU,and t=1

Again by (2), k, has an equivariant extension h,, : U, x I — U,_1 if n > 1;
while k; extends to an equivariant map hy : Uy x I — Y. It is easily to
see that the sequence {h,|n > 1} satisfies (B4)-(B5). So {(Un,hn)}n>1 is a
GG-deformation neighborhood basis of B in Y. [J

Applying corollary 4.6 and lemma 5.7 we obtain the main result of this
section.
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Theorem 5.8 Let B be a compact metric G-space. If B is absolutely neigh-
borhood G-contractible then B is a G-ANR divisor.

6 Homotopy characterization of absolute neigh-
borhood G-contractibility

In this section we shall prove that the canonical projection p : ¥ — Y/B,
where Y € G-ANR(B), is a G-homotopy equivalence when B is compact and
absolutely neighborhood G-contractible. Case when B is G-contractible the
same conclusion remains valid too.

Theorem 6.1 Let B be a compact metric G-space. Then are equivalent

(a) B is absolutely neighborhood G-contractible.

(b) For every Y € G-ANR(B), the canonical projectionp:Y — Y/B is a
G-homotopy equivalence.

(c) For every Y € G-ANR(B), p has a left G-homotopy inverse.

Proof. (a) = (b). Let Y € G-ANR(B) where B is absolutely neighborhood G-
contractible. By theorem 5.8, Y/B € G-ANE. Hence, there exits an invariant
neighborhood U of p(B) in Y/B and a G-contraction j;, from U to p(B) in
Y/ B, defined by

jO - i?jl - Cv.jt = T7t € (071)

where ¢ is the inclusion of U into Y/B, ¢ is the constant G-map c(u) = p(B)
for every win U, and r : U — Y/ B is a G-map such that extends the inclusion
of p(B) into Y/B to U.

Thus, j:(p(B)) = p(B) for all t € I. Applying theorem 2.4, we obtain a
G-homotopy J; : Y/B — Y/B such that extends j;. Besides Jj is the identity
over Y/B.

Since J; extends simetrically j;, we have
J1(U) = p(B). (1)

Due to that p~*(U) is open in Y, p~1(U) is a G-ANR by theorem 2.2,
and therefore p~'(U) € G-ANR(B). Since B is absolutely neighborhood G-
contractible by theorem 5.6, there exists an invariant neighborhood V of B in
p~1(U) such that the every metric G-pair (X, A), each G-map f : A — V has
an equivariant extension F : X — p~!(U). Let k; be a G-contraction of B to
a point by into V. Define the G-map

f-(Vx{ohuBxHu(Vx{1}) =V
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by
v, ifyeV and t=0,
fy,t) =< ki(y), ifye Band 0<t<1,
bo, ifyeV and t=1.

Since the image of f is contained of V, by theorem 5.6, f equivariantly can
be extended to a G-map F : V x I — p~'(U). By theorem 2.4, we obtain
a G-homotopy K; : Y — Y such that K,(y) = F(y,t) for all y € V and
0 <t <1, and such that K is the identity over Y. It is clear that K; extends
k;; consequently,

K1(B) = by (2)

and
K,(B) cp (V). (3)

Let 7 and j be identity G-maps of Y and Y/ B, respectively. Let o = Kip~! :
Y/B — Y. By (2), ¢ is well-defined and due to that p is an identification,
@ is continuous and clearly equivariant. We shall show that ¢ is an inverse
G-homotopy of p.

In agreement (1) y (3), we can to see that JipK;p~! is a well-defined G-
homotopy between G-maps JipKop~! and JipKp~! over Y/B. Then we can
write

: G e _ G
j=Jo~Jy = JipKop~' ~ JipKipt = Jipp~pp:Y/B—Y/B
At the same way
i= Ky R K =Kip 'p=pp:Y =Y

Then we conclude that p is a G-homotopic equivalence with G-homotopy in-
verse (.

(b) = (c) It is trivial.

(¢) = (a) Let Y € G-ANR(B) and let ¢ : Y/B — Y be a left G-homotopy
inverse of p. Then gp < idy, where idy is the identity on Y. However gp(B) is
a single point. Hence B is a G-contractible into Y and by theorem 5.4 (b), B
is absolutely neighborhood G-contractible. [

The following theorem generalizes the equivalence of statements (b) and
(c) of theorem 5.4.

Theorem 6.2 Let B be a metric G-space. Thus, B is absolutely neighborhood
G-contractible if and only if every G-map of B into a G-space Y € G-ANR is
G-nullhomotopic.
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Proof. Let f: B —Y a G-map. Let X € G-ANR(B). Since Y € G-ANR, f
has an equivariant neighborhood extension F': U — Y. Since B is absolutely
neighborhood G-contractible, applying theorem 5.4 | we have that the inclusion
1 : B — U is G-nullhhomotopic. Thus f = F o is G-nullhomotopic.

Conversely, let U be an invariant neighborhood of B in Y € G-ANR(B).
Hence U is a G-ANR(B) and by hypothesis, the inclusion ¢ : B — U is
G-nullhomotopic and therefore, B is absolutely neighborhood G-contractible.
O

From the previous theorem immediately follows

Corollary 6.3 Let B be a metric G-space. If B is G-homotopically dominated
by an absolutely neighborhood G-contractible G-space A, then B is absolutely
neighborhood G-contractible.

Proof. Let f: B — A be a G-map such that there exists a G-map h: A — B

satisfying hfgz'dB, where idp is the identity of B. Let [ : B — Y an arbitrary
G-map, where Y € G-ANR. We shall prove that [ is G-nullhomotopic, and
by previous theorem the proof will be completed. Let k =1loh : A — Y then
by (b) of theorem 5.4, there exists a G-homotopy k; : A — Y such that kg = k
and k; is a constant G-map. Now, define L, : B — Y by L; = k; o f. Then,
we have

Lo=koof=kof=1lohof~I

On the other hand L; = ky o f is a constant map and L < L. Hence [l is
nullhomotopic. [

Remark 6.4 Corollary say us that the absolute neighborhood G-contractibility
s an invariant of the G-homotopy type between metric G-spaces. From here,
every invariant retract of an absolutely neighborhood G-contractible G-space,
18 100.

Theorem 6.5 Let B be a metric G-space. If B is G-homotopically dominated
by a G-ANR divisor A then B is a G-ANR divisor.

Proof. Let X € G-ANR(A), Y € G-ANR(B), and p: X — X/A, ¢: Y —
Y/B the canonical projections. Let f : B — A be a G-map such that there
exists a G-map h : A — B satisfying hf £ tdg, where idpg is the identity of
B. Denote by «; the G-homotopy between hf and idg. Since Y is a G-ANR
then there exists an equivariant extension map ¢ : N — Y of h where N is an
invariant neighborhood of A in X. Since N is an invariant open in X, then
by theorem 2.2, N is a G-ANR and consequently N/A is a G-ANE due to
that A is a G-ANR divisor. By lemma 4.2 and the fact of N/A is an invariant
neighborhood of p(A), there exists a strong G-contraction h; : W — N/A
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such that hi(p(A)) = p(A) and W is an invariant neighborhood of p(A) in
X/A. Since p~!}(W) is an invariant open in X, p~'(WW) is a G-ANR. Thus,
there exists a G-extension @ : U — p~Y(W) of f, where U is an invariant
neighborhood of B in Y.

Define a G-map A : (U x {0}) U(B x I)U (U x {1}) = Y by

u, ifuelU and t =0,
Au, t) = < ag(u), ifue Band 0<t<1,
po(u), ifueclU and t=1.

Since Y € G-ANR, we can extend A to a G-map J : E — Y, where F is an
invariant neighborhood of (U x {0})U(B x I)U (U x{1}) in U x I. Let V be
an invariant neighborhood of B in U such that V' x I C E and J(V xI) C U.
Hence the restriction J|y«; define a G-homotopy j; : V' — U such that jj is
the identity G-map on V', j; = ¢ o 9|y and j;(B) C B for all t. Finally, we
define a G-map k: q¢(V) x I — Y/B by

— N

Y

IA A

t
t

IA A

() = g~ (), if € q(V) and 0
qep thaeapbg(z), ifx € q(V) and

It is easy to check that k strongly G-deforms ¢(V') in ¢(B) and the proof
is complete. [

Remark 6.6 The previous theorem state that the property of to be a G-ANR
divisor is an invariant of the G-homotopy type and consequently every retract

of a G-ANR divisor is a G-ANR divisor.

7 Quotients and unions of G-AN R divisors and

absolutely neighborhood G-contractible spaces

Let A a compact G-AN R contained in a metric G-space B. By theorem 2.5,
when Bisa G-ANR, B/Aisa G-ANR. But if B/Ais a G-ANR it not implies
that B is a G-ANR. We will shows that in this case, B is at least a G-ANR
divisor (see remark 3.6).

Theorem 7.1 Let (B, A) be a metric G-par, where A is a compact G-ANR
divisor. Then B is a G-AN R dwisor if and only if B/A is an G-AN R divisor.

Proof. Suppose that B is a G-ANR divisor and let Y € G-ANR(B). Then
Y/A is a G-ANR because A is a compact G-ANR divisor. It is clear that
Y/A € G-ANR(B/A). Y/B is G-homeomorphic to (Y/A)/(B/A). Besides
Y/Bisa G-ANFE and Y/A is a G-ANR. Therefore, B/A is a G-AN R divisor.
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Now, let B/A is a G-ANR divisor. Then Y/B = (Y/A)/(B/A) is a G-
ANE. Thus, B is a G-ANR divisor. [J
In case when A is a G-AR compact subset of B in the previous theorem,

the equivalence is not true always. However, the first implication is true while
the second implies only that if B/A is a G-AR then B is a G-ANR.

If we change the condition G-AN R by absolutely neighborhood G-contractible
in the theorem 7.1, then the affirmation is valid too. For to prove this we need
before the following lemma.

Lemma 7.2 Let (B, A) a G-pair such that both A and B are absolutely neigh-
borhood G-contractible. Let Y € G-ANR(B) and let U be an invariant neigh-
borhood of A in'Y. Then B is G-deformable into U under a G-deformation
that leaves A pointwise fized.

Proof. Let (X, C') ametric G-pair. Then by theorem 5.6, there exists an invari-
ant neighborhood V of B in Y such that each G-map f : C — V has an invari-
ant extension F': X — Y. Similarly there exists an invariant neighborhood W
of Ain U NV such that each G-map H : C — W has an invariant extension
H: X - UnNV. Fix a point a € A and define a G-map h* : AU(B\W) - W

by
' A
h*(l’) _ z, fo € A4,
a, ifxe (B\W).
Hence h* has an equivariant extension H* : B — U NV. Now define a G-map
f*:(Bx{0})UAxI)U(Bx{1}) =V by

x, ifx e B and t=0,
[ (z,t) = < x, ifreAand 0<t <1,
H*(z), ifrxeBand t=1.

Then there exits a G-extension F* : Bx [ — Y for f*. It is easy to check that
F* is the desires G-deformation. [J

Theorem 7.3 Let (B, A) be a metric G-pair, where A is a compact absolutely
netghborhood G-contractible. Then B is absolutely neighborhood G-contractible
if and only if B/A is an absolutely neighborhood G-contractible.

Proof. Let Y € G-ANR(B) and let p : Y — Y/A the canonical projection.
Suppose that B is absolutely neighborhood G-contractible. In agreement with
theorem 5.4 we shall shows that B/A is G-contractible in an arbitrary invariant
neighborhood U of B/Ain Y/A. Y/Ais a G-ANR and since U is open in Y/A
then U is a G-ANR. Hence there exists an invariant neighborhood V' of p(A)
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G-contractible in U. By lemma 7.2 there exists a G-deformation k; : B —
p~Y(U) leaving A pointwise fixed and such that k;(B) C p~'(V). The G-
homotopy pk(p|g)~* : B/A — U equivariantly deforms B/A into V, which is
G-contractible in U. So, B/A is G-contractible in U and if follows that B/A
is absolutely neighborhood G-contractible.

Now suppose that B/A is absolutely neighborhood G-contractible. Since
Y/Ais G-AN R and hence B/A is G-contractible in Y/A under a G-deformation
ki. By theorem 6.1, p has a G-homotopy inverse ¢ : Y/A — Y. Leti: B —Y

the inclusion. Then we have i < qp|B = qkop|n £ qkip|p. Since ky is constant,
¢ is nullhomotopic G-map and by theorem 5.4, B is absolutely neighborhood
G-contractible. [

The fact of build up G-ANR starting from others G-ANR is possible if
the last G-AN R have some property (see [4], Theorem 5.1). However, is the
union of G-ANR divisors a G-ANR divisor again? First we shall show that
the disjoint union of G-AN R divisors is G-AN R divisor and later we generalize
this fact.

Lemma 7.4 Let Ay and Ay be a compact G-AN R divisors such that A;NAy =
0. Then Ay U Ay is a G-ANR divisor.

Proof. Let Y € G-ANR(A;UA,). Then Y/A;isa G-ANR. Letp:Y — Y/A;
the canonical projection. It is clear that p|4, is a G-homeomorphism. Hence

p(A2) is a G-AN R divisor; so % isa G-ANR. Let q: Y/A; — % the

canonical projection. It is easy to see that gp(A;) and gp(Az) are singletons.

Thus, they and their union are G-ANR. By theorem 2.5, (;/({A‘zl))/(qp(Al) U

qp(Az)) is a G-AN R, but it is homeomorphic to Y/(A; U As) and we conclude
that A; U Ay is a G-ANR divisor. [J

Theorem 7.5 Let B compact metric G-space. Let {B;}!'_, be an invariant
closed cover of B. If for each finite sub-collection {A;} of {B;}, the intersec-
tion (| Ai; is a G-ANR divisor (or empty), then B is a G-ANR divisor.

Proof. We shall proceed by induction. It is trivial that the theorem is true for
n = 1. Suppose that it is true for n = k and we shall prove that if verifies for
n==k+1. Let C; = B;N Bgy1, for i = 1,2, ..., k. By hypothesis, each C; is
a G-ANR divisor (or empty). Let D = U%_| B; and E = Uf_,C;; by induction
hypothesis D and E are G-AN R divisors (or empty). Then we have two cases:

i) If E # (), then by theorem 7.1, By,1/E is a G-AN R divisor. But By, 1/E
is G-homeomorphic to B/D. Again applying theorem 7.1 B is a G-ANR
divisor.
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ii) If E = (), then B is the disjoint union of Bj,; and D. By Lemma 7.4,
the proof is complete. [

From theorems 5.8 and 7.5 follows

Corollary 7.6 Let B compact metric G-space. Let {B;}!, be an invariant
closed cover of B. If for each finite sub-collection {A;,} of {B;}, the intersec-
tion () Ay, is absolutely neighborhood G-contractible (or empty), then B is a
G-ANR divisor.
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