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C.P. 34120

Abstract
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1 Introduction

The property of a space B such that if it is closed embedded into a ANR
space X then the space X/B obtained of collapsing B to a point, is a ANE,
is established in [8], and it is is said that B is a ANR divisor. D. M. Hyman
gave several characterizations of these spaces in his paper and in [9].

We shall give the equivariant analogous of these results, when the acting
group is a compact.

2 Preliminary Notes

Here and in what follows G will always denote a Hausdorff compact group. By
a G-space we mean a topological space where G acts continuously. The basic
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ideas of G-spaces can be found in [5], [6], [10]. A subset B of a G-space is
said invariant or G-subset if GB = B. The subset G(x) = {gx ∈ X|g ∈ G} is
called the orbit of x. These subsets make a partition of X and we obtain a new
space called the orbit space, such is denoted like X/G. By a map f : X → Y
of a space X into a space Y , we mean a continuous function from X to Y . If
X and Y are G-spaces, then a map f : X → Y is a equivariant map or G-map
satisfying f(gx) = gf(x); that is, f commute with the action. If f(gx) = f(x),
then f is said invariant map.

Let X be a metrizable G-space. A metric d over X is said invariant if each
transition is a d-isometry and d is compatible with the topology of X.

The equivariant definitions of A(N)E and A(N)R are similar those classic
definitions, and the reader can see, for instance, [1], [2], [3]. We consider the
class of spaces G-M of all metrizable G-spaces. Since G is compact, by [10]
each space belongs to G-M has an invariant metric.

A couple (X,A) is a G-pair if X is a G-space and A is an invariant closed
subset of X.

A G-space Y is called a G-ANE (for the class G-M) (notation: Y ∈ G-
ANE), if for any G-pair (X,A) with X ∈ G-M and any G-map f : A → Y ,
there exist an invariant neighborhood U of A in X and a G-map ψ : U → Y
such that ψ|A = f . The map ψ is called a G-extension of f over U . If in
addition we can always take U = X, then we say that Y is a G-AE (notation:
Y ∈ G-AE).

Let A be an invariant closed subset of X. Then A is called equivariant
neighborhood retract of X if there exists a G-map r : U → A with U an
invariant neighborhood of A in X, such that r|A = idA where idA is the
identity map on A. The G-map r is called a G-retraction of U onto A. If
U = X then A is called G-retract or equivariant retract of X.

Let Y be a G-space. Then Y is called a G-ANR (notation: Y ∈ G-ANR)
provided Y ∈ G-M, and for any G-space X from G-M, where Y is embedded
as invariant closed subset, Y is a equivariant neighborhood retract of X. If
in addition Y is G-retract of X, then we say that Y is a G-AR (notation:
Y ∈ G-AR).

Let X, Y be G-spaces and {ht : X → Y |t ∈ I} be a G-maps family
with indexing set the unit interval I = [0, 1]. The family {ht|t ∈ I} is called
a G-homotopy from h0 to h1, if the function H : X × I → Y defined by
H(x, t) = ht(x) for every x ∈ X and t ∈ I, is a G-map. Here I has the trivial
action and X × I the diagonal action. The G-map H is called G-homotopy
too. Frequently, we use the notation ht, t ∈ I, to represent the G-homotopy
{ht|t ∈ I} from h0 to h1.

Let f0, f1 : X → Y be two G-maps. They are said G-homotopic if there
exists a G-homotopy ft, t ∈ I from f0 to f1. In addition, the relation being
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G-homotopic is an equivalence relation and we have a category of G-spaces

and G-homotopy classes of mappings. We write f0
G∼ f1 if f0 and f1 are

G-homotopic.

Let A, B be any two invariant subsets of G-space X. B is said to be G-
deformable into A over X if the identity G-map id : B → B is G-homotopic
in X to a G-map of B into A. That is, we require a G-homotopy ft, t ∈ I,
called a G-deformation, such that f0(b) = b for each b ∈ B, and f1(B) ⊂ A. If
we have B = X, we omit “over X ” and say simply that X is G-deformable
into A.

An G-map f : X → Y G-homotopic to a constant G-map is called nullho-
motopic G-map. Call a G-space G-contractible if id : Y → Y is nullhomotopic
G-map.

An invariant subsetA of aG-spaceX is a strong neighborhoodG-deformation
retract of X if there exist an invariant neighborhood U of A in X and a G-
homotopy ft, t ∈ I from f0 into f1, such that f0 is the inclusion U ↪→ X, f1 is
a G-retraction of U onto A, and ft(a) = a for all a ∈ A and t ∈ I.

Let f : X → Y a G-map. We say that a G-map h : Y → X is a right
G-homotopy inverse of f if the composition fh is G-homotopic to the identity
in Y . Analogously, we define a left G-homotopy inverse of f . The G-map f :
X → Y is called a G-homotopy equivalence if there exist a G-map h : Y → X

such that both fh
G∼ idY and hf

G∼ idX . We shall say that a G-space X is
G-homotopically dominated by a G-space Y , if there exist a G-map f : X → Y
such that f have a left G-homotopy inverse.

We shall say that two G-spaces X and Y have the same G-homotopy type if
we can find two G-maps f : X → Y and h : Y → X such that the compositions
fh and hf are G-homotopic to the appropiate identity.

Let (Y,B) be a G-pair. We shall say that B is a strong neighborhood
G-deformation retract of Y if there exists an invariant neighborhood W of B
and a G-homotopy ht : W → Y , t ∈ I, where I have the trivial action of G,
such that h0 is the inclusion of B in Y , and h1 is a G-retraction of W over B
and h(b, t) = b for all b ∈ B and for all t ∈ I.

We notice that in general a metrizable G-ANE space Y need not be a
G-ANR, because it may not belong to the class G-M. But if Y ∈ G-M and
Y ∈ G-ANE, then it is easy to see that, Y ∈ G-ANR. We constantly refer to
the following result, whose proof can be found in ([3], Theorem 14).

Theorem 2.1 Let X a metric G-space. Then, X is a G-ANE if and only if
it is G-ANR.

It is well known the following result which is frequently used in this docu-
ment.
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Theorem 2.2 Let W be an invariant open subset of a G-space Y . If Y ∈ G-
ANE, then W is a G-ANE.

Other result used in this work corresponds to the equivariant theorem of
K. Borsuk about of the homotopy extension property and ANR’s spaces (see
[[1], Theorem 5]). Firs we define the G-homotopy extension property.

Definition 2.3 A G-pair (X,A) is said that has the G-homotopy extension
property (abbreviated G-HEP ) respect to a G-space Y is given G-maps f :
X → Y and H : A× I → Y such that H(a, 0) = f(a) for all a ∈ A, then there
exists a G-map H∗ : X× I → Y satisfying H∗(a, t) = f(a) for all a ∈ A, t ∈ I
and H∗(x, 0) = f(x) for all x ∈ X.

Theorem 2.4 Let (X,A) be a metric G-pair. Then (X,A) has the G-HEP
respect to every G-ANR.

Finally, we use the following application of the equivariant generalization of
the Borsuk-Whitehead-Hanner theorem (see [4], Corollary 3.12). In the theory
of retracts the readers can see [7] and [8].

Theorem 2.5 Let (X,A) be a G-pair whit X ∈ G-M ∩G-ANE and A ∈ G-
ANE. Then X/A ∈ G-ANE.

3 G-ANR divisors

We will need the following results to introduce the definition of G-ANR divisor.

Theorem 3.1 Let Y be a metric G-space, X be a G-space and f : B → X a
G-map, where B is an invariant closed subset of Y . If X, Y ∈ G-ANE then,
Y ∪f X ∈ G-ANE if and only if p(X) is a strong neighborhood G-deformation
retract of Y ∪f X.

Proof. See ([4], Lemma 3.9). �

By G-ANR(B) we shall denote the class of G-ANR containing to B as an
invariant closed subspace.

Theorem 3.2 Let B be a G-space, let X ∈ G-ANR and let f : B → X be
a G-map. If there exists a G-space Y0 ∈ G-ANR(B) such that Y0 ∪f X ∈ G-
ANE, then for every Y ∈ G-ANR(B) we have Y ∪f X is a G-ANE.
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Proof. Let p : Y t X → Y ∪f X be the canonical projection. To prove that
Y ∪f X is a G-ANE, it suffices, by theorem 3.1, to show that p(X) is a strong
neighborhood G-deformation retract of Y ∪f X.

Since Y ∈ G-ANR, by theorem 2.1, Y ∈ G-ANE. Then, the inclusion
i : B → Y have a G-extension φ : U → Y over an invariant neighborhood U of
B in Y0. Since Y ∈ G-ANR, by theorem 2.1, Y ∈ G-ANE. Let q : Y0 tX →
Y0 ∪f X be the natural projection; then, we have that q(U t X) is open in
Y0 ∪f X and, like U , is a G-ANE. By the theorem 3.1, there exists a strong
neighborhood G-deformation retraction h : W × I → q(U t X), where W is
an invariant neighborhood of q(X) in q(U t X) and, accordingly, is open in
Y0 ∪f X. Since q−1(W ) ∩ Y0 is invariant open set in Y0 and, by theorem 2.1,
X0 ∈ G-ANE; by the theorem 2.2, we have that q−1(W )∩Y0 ∈ G-ANE. Thus,
the inclusion j : B → q−1(W ) ∩ Y0 have a G-extension ψ : V → q−1(W ) ∩ Y0,
where V is an invariant neighborhood of B in Y . Also, V ∈ G-ANE, by the
theorem 2.2. It follows that there exists an invariant neighborhood D of A in
U and a G-deformation s : D× I → V satisfying s(b, t) = b for all b ∈ B, t ∈ I
and s1 = φψ|V .

Let Ψ : U tX → Y tX be a G-map, defined by

Ψ(x) =

{
φ(x), if x ∈ Y,
x, if x ∈ X,

Define a G-map k : p(D tX)× I → Y ∪f X by

k(z, t) =


ps2t(p|Y )−1(z), if z ∈ p(D) and 0 ≤ t ≤ 1/2,

pΨq−1h2t−1qψ(p|Y )−1(z), if z ∈ p(D) and 1/2 ≤ t ≤ 1,

z, if z ∈ p(X) and 0 ≤ t ≤ 1.

Then k is a strong neighborhood G-deformation retraction and concludes
the proof. �

Corollary 3.3 Let B be a metric G-space. If there exists a G-space Y0 ∈ G-
ANR(B) such that Y0/B ∈ G-ANE, then for every Y ∈ G-ANR(B) we have
Y/B is a G-ANE.

When B is compact, then Y/B is metrizable [7]; applying this fact to
corollary 3.3, we have

Theorem 3.4 Let B be a compact metrizable G-space. If there exists a G-
space Y0 ∈ G-ANR(B) such that Y0/B ∈ G-ANR, then for every G-space
Y ∈ G-ANR(B), we have that Y/B is an G-ANR.
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Definition 3.5 A G-space B is called a G-ANR divisor if it is metrizable and
Y/B is a G-ANE for every G-space Y ∈ G-ANR(B).

Remark 3.6 By the theorem 2.5, we note that a compact metrizable G-ANR
G-space it will also be a G-ANR divisor.

4 G-deformation neighborhood basis

Definition 4.1 A G-space X is a strongly locally G-contractible at a point
x ∈ X if there is an invariant neighborhood V of x in X and a G-contraction
kt, of V into X such that kt(x) = x, for all t ∈ I.

By theorem 3.1 and previous definition, we obtain:

Lemma 4.2 Let B be an invariant closed subset of a G-space Y ∈ G-ANR.
Then Y/B ∈ G-ANE if and only if Y/B is strongly locally G-contractible at
a point p(B), where p : Y → Y/B is the canonical projection.

Now, we shall introduce the notion of a G-deformation neighborhood basis
with the purpose to establish condition for Y/B to be a strongly locally G-
contractible at a point p(B).

Definition 4.3 Let (Y,B) be a G-pair. A sequence {Un, hn}n≥1, is called a
G-deformation neighborhood basis for B in Y if it satisfies

(B1) Each Un is an invariant neighborhood of B in Y .

(B2) Un+1 ⊂ Un, for all n ∈ N .

(B3) For each invariant neighborhood V of B in Y , there exists n ∈ N such
that Un ⊂ V .

(B4) Let U0 = Y . Then, for all n ≥ 1, hn : Un×I → Un−1 is a G-deformation
such that

hn(Un × {1}) ⊂ Un+1

(B5) If m > n, then hn(Um × I) ⊂ Um−1.

Lemma 4.4 Let (Y,B) be a G-pair. If B has a G-deformation neighborhood
basis in Y , then Y/B is strongly locally G-contractible at a point p(B), where
p : Y → Y/B is the canonical projection.
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Proof. Let {Un, hn}n≥1 a G-deformation neighborhood basis for B. For each
n and for all s ∈ I, let hsn : Un → Y a G-map given by hsn(x) = hn(x, s). Now
we define the G-map h : U1 × [0,∞)→ Y by

h(x, t) =

{
h1(x, t), if k = 0,

ht−kk+1 ◦ h1k ◦ h1k−1 ◦ ... ◦ h12 ◦ h11(x), if k ≥ 1.

where k is a non-negative integer such that t ∈ [k, k + 1].
Since the range of h1n is contained in the domain of hsn+1 for all n and s,

composition is well defined.
We verify that is well-defined. Let (x, t) ∈ U1× [0,∞), where t = k, and k

is a non-negative integer. Then t ∈ [k − 1, k] ∩ [k, k + 1]. Thus,

h(x, t) = h1k ◦ h1k−1 ◦ ... ◦ h12 ◦ h11(x)

and other hand

h(x, t) = h0k+1 ◦ h1k ◦ h1k−1 ◦ ... ◦ h12 ◦ h11(x) = h0k+1 ◦ h(x, t).

But, hn is a G-deformation for each n. Then,

h(x, t) = h0k+1 ◦ h(x, t) = hk+1(h(x, t), 0) = h(x, t).

So h is well-defined.
Also, h is continuous, since is continuous in each closed subset U1×[k, k+1].

In addition, is easily to see that is equivariant since is composition of G-maps.
Moreover, h has the following properties:

(1) For all n > 1, h(Un × [0,∞)) ⊂ U [n/2] (here [n/2] denotes the greatest
integer less than or equal to n/2).

(2) For all t ∈ [1,∞), we have h(U1 × {t}) ⊂ U [t].

(3) h(B × [0,∞)) ⊂ B.

We verify the previous properties are satisfy.

(1) Let (x, t) ∈ Un × [0,∞) and k a non negative integer such that t ∈
[k, k + 1].

(i) If k ≥ [n/2], by (B2) we must consider that x ∈ U1. Then by (B4)
and the definition of h1 we have

h(x, t) ∈ Uk ⊂ U [n/2].

(ii) If k < [n/2] is trivial to check that n− k − 1 ≥ [n/2]. Since x ∈ Un

and n − k > k + 1, we apply (B5) in the definition of h, and we obtain
h(x, t) ∈ U[n/2], so the proof of (1) is finished.
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(2) In this case, let k ≥ 1, where k ≤ t ≤ k + 1. Then [t] = k and by (B4),
hk+1 is a deformation into Uk. We conclude applying the definition of h.

(3) By (B1) and (B2) follows that B = ∩∞n=1Un. So, applying part (1) of
this lemma, we obtain the desired.

We consider a homeomorphism f of [0, 1) onto [0,∞). Define a function

J : p(U1)× I → Y/B,

by

J(x, t) =

{
p(h(p−1(x), f(t))), if x ∈ p(U1) and t < 1,

p(B), if x ∈ p(U1) and t = 1.

It is clear that J is equivariant. Now, to see that is well-defined, it is necessary
to check only in p(B). Let b1, b2 ∈ B and t ∈ [0, 1). Then, accordance
with (3), h(p−1(p(b1)), f(t)) ∈ B. Thus, p(h(p−1(p(b1)), f(t))) = J(p(b1), t) =
J(p(b2), t) and J is well-defined.

Moreover, J(p(B)× I) = p(B).
In order that J to be continuous it is sufficient to show that J is continuous

at the points of p(U1)× {1} and p(B)× I.
It is easy to see that each Un is a satured set by p. Then, for each n ∈ N ,

p(Un) is a neighborhood of p(B). Moreover, by (B3), {p(Un)|n ≥ 1} is a
neighborhood basis of p(B) in Y/B. From here will prove the continuity of J .

Let (w0, 1) ∈ p(U1) × {1}. Let V be a neighborhood of J(w, 1) = p(B).
Then there exists a non-negative integer m such that p(B) ∈ p(Um) ⊂ V . We
consider f−1(m,∞) ∪ {1}, which has the form (r, 1], for some r ∈ [0, 1). Let
W = p(U1) × (r, 1]. Thus, W is a neighborhood of (w0, 1). We affirm that
J(W ) ⊂ V . In fact, let (w, t) ∈ W . The case t = 1 is trivial. If t ∈ [0, 1) then
J(w, t) = p(h(p−1(w), f(t))); since t ∈ f−1(m,∞) it follows that f(t) ∈ (m,∞)
and by (2), h(p−1(w), f(t)) ∈ Um. So J(w, t) = p(h(p−1(w), f(t))) ∈ p(Um) ⊂
V .

At the same way, let (p(B), t) ∈ p(B) × I and V a neighborhood of p(B)
in Y/B. Then, there exists a neighborhood p(Um) of p(B) in Y/B contained
in V . We choose a non-negative integer k such that [k/2] > m. If we consider
the neighborhood W = p(Uk) × I of (p(B), t) and apply (1), then we have
J(W ) ⊂ p(U [k/2]) ⊂ p(Um) ⊂ V . We conclude that J is continuous.

Finally, only is necessary to check that J is a contraction from a neighbor-
hood of p(B) into Y/B. If follows of the definition of J that J |p(U1)×{1} = p(B)
and for each z ∈ p(U1), J(z, 0) = p(h(p−1(z), 0)) = pp−1(z) = z.

This complete the proof. �
From the lemmas 4.2 and 4.4, we obtain:
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Theorem 4.5 Let B be an invariant closed subset of a G-space Y ∈ G-ANR.
If B has a G-deformation neighborhood basis in Y then Y/B ∈ G-ANE.

From corollary 3.3 and theorem 4.5, it follows

Corollary 4.6 Let B be an invariant closed subset of a G-space Y ∈ G-ANR.
If B has a G-deformation neighborhood basis in Y then B is a G-ANR divisor.

5 Absolute neighborhood G-contractibility

Definition 5.1 Let (Y,B) be a G-pair. B is said to be neighborhood G-
contractible in Y if B is G-contractible in every invariant neighborhood U
of B in Y .

Observation 5.2 A neighborhood G-contractible G-space is G-contractible.

Definition 5.3 A metric G-space B is said to be absolutely neighborhood G-
contractible if B is neighborhood G-contractible in every Y ∈ G-ANR(B).

The next theorem characterizes the property of a metric G-space to be
absolutely neighborhood G-contractible, through some weaker conditions.

Theorem 5.4 Let B be a metric G-space. Then are equivalents,

(a) There exists a Y ∈ G-ANR(B) such that B is neighborhood G-contractible
in Y .

(b) For each Y ∈ G-ANR(B), we have that B is G-contractible in Y .

(c) B is absolutely neighborhood G-contractible.

Proof. Then we show that (a) implies (b). Let Z ∈ G-ANR(B). Then the
identity G-map i : B → B extends to a G-map ϕ : U → Z, where U is an
invariant neighborhood of B in Y . By (a) B is G-contractible in U under an
invariant homotopy ht. Hence the homotopy ϕht equivariantly contract B into
Z.

Now, we show that (b) implies (c). Let U be an invariant neighborhood
of B in Y . Then, by theorem 2.1 and theorem 2.2, U is a G-ANR(B) and
by (b) B is G-contractible into U . Therefore, B is absolutely neighborhood
G-contractible.

Finally, the prove that (c) implies (a) is trivial. �
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In this section we will show that every absolutely neighborhoodG-contractible
compactum is a G-ANR divisor. Before this fact it is necessary some previous
theorems, the first of which is a characterization of absolute neighborhood G-
contractibility. Then mention a corollary of an important result such that will
represent a useful tool, the Equivariant Extension Homotopy Theorem 2.4.

Since any constant G-map on A can be extended a X, for the theorem 2.4
it follows that

Corollary 5.5 Let (X,A) be a metric G-pair and f a nullhomotopic G-map
from A into G-space Y ∈ G-ANR. Then f has a G-extension F : X → Y .

Theorem 5.6 Let B be a metric G-space. Then, B is absolutely neighborhood
G-contractible if and only if for every G-space Y ∈ G-ANR(B), there exists an
invariant neighborhood V of B in Y such that for every metric G-pair (X,A),
each G-map f : A→ V has an equivariant extension F : X → Y .

Proof. First, suppose that B is absolutely neighborhood G-contractible and
let Y ∈ G-ANR(B). Let kt an equivariant contraction of B over Y to a point
b0. Now we define a G-map h : (Y × {0}) ∪ (B × I) ∪ (Y × {1})→ Y by

h(y, t) =


y, if y ∈ Y and t = 0,

kt(y), if y ∈ B and t ∈ I,
b0, if y ∈ Y and t = 1.

Since Y is a G-ANR(B), h has an equivariant extension H : W → Y ,
where W is an invariant open neighborhood of (Y ×{0})∪ (B× I)∪ (Y ×{1})
in Y × I. Let V an invariant neighborhood of B in Y such that V × I ⊂ W .
Hence H|V×I equivariantly contract V over Y to a point b0. Let f : A→ V be
any G-map and J = H ◦(f× id), where id is the identity G-map on I. Clearly,
J is a G-homotopy of A× I in Y and it follows that f is G-nullhomotopic over
Y , and by corollary 5.5 equivariantly extends on Y .

Conversely, let Y ∈ G-ANR(B) and V an invariant neighborhood of B
such that satisfies the property stated in the hypothesis. Then the G-map
f : (V × {0}) ∪ (V × {1}) → V defined by f(v, 0) = v, f(v, 1) = b0 has an
equivariant extension F : V × I → Y . Hence V is G-contractible over Y ; in
particular, B is contractible over Y and applying theorem 5.4 (b), we complete
the proof. �

Lemma 5.7 Let B be a compact absolutely neighborhood G-contractible metric
G-space and Y ∈ G-ANR(B). Then B has a G-deformation neighborhood
basis.
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Proof. By the previous theorem there exists an invariant neighborhood U1

of B in Y such that any G-map from an invariant closed subset of a metric
G-space into U1 has an equivariant extension over Y . We may choose U1 such
that d(x,B) < 1 for all x ∈ U1, where d is some metric on Y . Accordance with
theorem 2.1 and theorem 2.2, we apply successively the theorem 5.6 obtaining
a sequence of invariant neighborhoods {Un}n>1 of B such that

(1) Un ⊂ Un−1;
(2) every G-map from an invariant closed subset of a metric G-space into

Un has an equivariant extension over Un−1;
(3) for all x ∈ Un we have that d(x,B) < 1/n.
By (1) and (3) it follows that the sequence {Un}n≥1 satisfies (B1)-(B3).

Now, we verify (B4) and (B5). First, we choose a point b0 ∈ B. For each
positive integer n, define a G-map

fn : (Un\Un+1) ∪ Un+2 → Un+2

by

fn(x) =

{
b0, if x ∈ (Un\Un+1),

x if x ∈ Un+2.

From (2), fn extends to an G-map Fn : Un → Un+1. Define a G-map by

jn : (Un+1 × {0}) ∪ (Un+2 × I) ∪ (Un+1 × {1})→ Un+1

by

jn(x, t) =


x, if x ∈ Un+1 and t = 0,

x if x ∈ Un+2 and 0 ≤ t ≤ 1,

Fn(x) if x ∈ Un+1 and t = 1.

At he same way, by (2), jn extends to a G-map Jn : Un+1 × I → Un.
To finish, we define a G-map

kn : (Un × {0}) ∪ (Un+1 × I) ∪ (Un × {1})→ Un

as follows

kn(x, t) =


x, if x ∈ Un and t = 0,

Jn(x, t) if x ∈ Un+1 and 0 ≤ t ≤ 1,

Fn(x) if x ∈ Un and t = 1

Again by (2), kn has an equivariant extension hn : Un× I → Un−1 if n > 1;
while k1 extends to an equivariant map h1 : U1 × I → Y . It is easily to
see that the sequence {hn|n ≥ 1} satisfies (B4)-(B5). So {(Un, hn)}n≥1 is a
G-deformation neighborhood basis of B in Y . �

Applying corollary 4.6 and lemma 5.7 we obtain the main result of this
section.
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Theorem 5.8 Let B be a compact metric G-space. If B is absolutely neigh-
borhood G-contractible then B is a G-ANR divisor.

6 Homotopy characterization of absolute neigh-

borhood G-contractibility

In this section we shall prove that the canonical projection p : Y → Y/B,
where Y ∈ G-ANR(B), is a G-homotopy equivalence when B is compact and
absolutely neighborhood G-contractible. Case when B is G-contractible the
same conclusion remains valid too.

Theorem 6.1 Let B be a compact metric G-space. Then are equivalent

(a) B is absolutely neighborhood G-contractible.

(b) For every Y ∈ G-ANR(B), the canonical projection p : Y → Y/B is a
G-homotopy equivalence.

(c) For every Y ∈ G-ANR(B), p has a left G-homotopy inverse.

Proof. (a)⇒ (b). Let Y ∈ G-ANR(B) where B is absolutely neighborhood G-
contractible. By theorem 5.8, Y/B ∈ G-ANE. Hence, there exits an invariant
neighborhood U of p(B) in Y/B and a G-contraction jt, from U to p(B) in
Y/B, defined by

j0 = i, j1 = c, jt = r, t ∈ (0, 1)

where i is the inclusion of U into Y/B, c is the constant G-map c(u) = p(B)
for every u in U , and r : U → Y/B is a G-map such that extends the inclusion
of p(B) into Y/B to U .

Thus, jt(p(B)) = p(B) for all t ∈ I. Applying theorem 2.4, we obtain a
G-homotopy Jt : Y/B → Y/B such that extends jt. Besides J0 is the identity
over Y/B.

Since J1 extends simetrically j1, we have

J1(U) = p(B). (1)

Due to that p−1(U) is open in Y , p−1(U) is a G-ANR by theorem 2.2,
and therefore p−1(U) ∈ G-ANR(B). Since B is absolutely neighborhood G-
contractible by theorem 5.6, there exists an invariant neighborhood V of B in
p−1(U) such that the every metric G-pair (X,A), each G-map f : A→ V has
an equivariant extension F : X → p−1(U). Let kt be a G-contraction of B to
a point b0 into V . Define the G-map

f : (V × {0}) ∪ (B × I) ∪ (V × {1})→ V
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by

f(y, t) =


y, if y ∈ V and t = 0,

kt(y), if y ∈ B and 0 ≤ t ≤ 1,

b0, if y ∈ V and t = 1.

Since the image of f is contained of V , by theorem 5.6, f equivariantly can
be extended to a G-map F : V × I → p−1(U). By theorem 2.4, we obtain
a G-homotopy Kt : Y → Y such that Kt(y) = F (y, t) for all y ∈ V and
0 ≤ t ≤ 1, and such that K0 is the identity over Y . It is clear that Kt extends
kt; consequently,

K1(B) = b0 (2)

and

Kt(B) ⊂ p−1(U). (3)

Let i and j be identityG-maps of Y and Y/B, respectively. Let ϕ = K1p
−1 :

Y/B → Y . By (2), ϕ is well-defined and due to that p is an identification,
ϕ is continuous and clearly equivariant. We shall show that ϕ is an inverse
G-homotopy of p.

In agreement (1) y (3), we can to see that J1pKtp
−1 is a well-defined G-

homotopy between G-maps J1pK0p
−1 and J1pK1p

−1 over Y/B. Then we can
write

j = J0
G∼ J1 = J1pK0p

−1 G∼ J1pK1p
−1 = J1pϕ

G∼ pϕ : Y/B → Y/B

At the same way

i = K0
G∼K1 = K1p

−1p = ϕp : Y → Y

Then we conclude that p is a G-homotopic equivalence with G-homotopy in-
verse ϕ.

(b)⇒ (c) It is trivial.

(c)⇒ (a) Let Y ∈ G-ANR(B) and let q : Y/B → Y be a left G-homotopy

inverse of p. Then qp
G∼ idY , where idY is the identity on Y . However qp(B) is

a single point. Hence B is a G-contractible into Y and by theorem 5.4 (b), B
is absolutely neighborhood G-contractible. �

The following theorem generalizes the equivalence of statements (b) and
(c) of theorem 5.4.

Theorem 6.2 Let B be a metric G-space. Thus, B is absolutely neighborhood
G-contractible if and only if every G-map of B into a G-space Y ∈ G-ANR is
G-nullhomotopic.
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Proof. Let f : B → Y a G-map. Let X ∈ G-ANR(B). Since Y ∈ G-ANR, f
has an equivariant neighborhood extension F : U → Y . Since B is absolutely
neighborhood G-contractible, applying theorem 5.4 , we have that the inclusion
i : B → U is G-nullhhomotopic. Thus f = F ◦ i is G-nullhomotopic.

Conversely, let U be an invariant neighborhood of B in Y ∈ G-ANR(B).
Hence U is a G-ANR(B) and by hypothesis, the inclusion i : B → U is
G-nullhomotopic and therefore, B is absolutely neighborhood G-contractible.
�

From the previous theorem immediately follows

Corollary 6.3 Let B be a metric G-space. If B is G-homotopically dominated
by an absolutely neighborhood G-contractible G-space A, then B is absolutely
neighborhood G-contractible.

Proof. Let f : B → A be a G-map such that there exists a G-map h : A→ B

satisfying hf
G∼ idB, where idB is the identity of B. Let l : B → Y an arbitrary

G-map, where Y ∈ G-ANR. We shall prove that l is G-nullhomotopic, and
by previous theorem the proof will be completed. Let k = l ◦ h : A→ Y ; then
by (b) of theorem 5.4, there exists a G-homotopy kt : A→ Y such that k0 = k
and k1 is a constant G-map. Now, define Lt : B → Y by Lt = kt ◦ f . Then,
we have

L0 = k0 ◦ f = k ◦ f = l ◦ h ◦ f G∼ l

On the other hand L1 = k1 ◦ f is a constant map and L0
G∼ L1. Hence l is

nullhomotopic. �

Remark 6.4 Corollary say us that the absolute neighborhood G-contractibility
is an invariant of the G-homotopy type between metric G-spaces. From here,
every invariant retract of an absolutely neighborhood G-contractible G-space,
is too.

Theorem 6.5 Let B be a metric G-space. If B is G-homotopically dominated
by a G-ANR divisor A then B is a G-ANR divisor.

Proof. Let X ∈ G-ANR(A), Y ∈ G-ANR(B), and p : X → X/A, q : Y →
Y/B the canonical projections. Let f : B → A be a G-map such that there

exists a G-map h : A → B satisfying hf
G∼ idB, where idB is the identity of

B. Denote by αt the G-homotopy between hf and idB. Since Y is a G-ANR
then there exists an equivariant extension map φ : N → Y of h where N is an
invariant neighborhood of A in X. Since N is an invariant open in X, then
by theorem 2.2, N is a G-ANR and consequently N/A is a G-ANE due to
that A is a G-ANR divisor. By lemma 4.2 and the fact of N/A is an invariant
neighborhood of p(A), there exists a strong G-contraction ht : W → N/A
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such that ht(p(A)) = p(A) and W is an invariant neighborhood of p(A) in
X/A. Since p−1(W ) is an invariant open in X, p−1(W ) is a G-ANR. Thus,
there exists a G-extension ψ : U → p−1(W ) of f , where U is an invariant
neighborhood of B in Y .

Define a G-map λ : (U × {0}) ∪ (B × I) ∪ (U × {1})→ Y by

λ(u, t) =


u, if u ∈ U and t = 0,

αt(u), if u ∈ B and 0 ≤ t ≤ 1,

φ ◦ ψ(u), if u ∈ U and t = 1.

Since Y ∈ G-ANR, we can extend λ to a G-map J : E → Y , where E is an
invariant neighborhood of (U ×{0})∪ (B× I)∪ (U ×{1}) in U × I. Let V be
an invariant neighborhood of B in U such that V × I ⊂ E and J(V × I) ⊂ U .
Hence the restriction J |V×I define a G-homotopy jt : V → U such that j0 is
the identity G-map on V , j1 = φ ◦ ψ|V and jt(B) ⊂ B for all t. Finally, we
define a G-map k : q(V )× I → Y/B by

kt(x) =

{
qj2tq

−1(x), if x ∈ q(V ) and 0 ≤ t ≤ 1
2
,

qϕp−1h2t−1pψq
−1(x), if x ∈ q(V ) and 1

2
≤ t ≤ 1.

It is easy to check that k strongly G-deforms q(V ) in q(B) and the proof
is complete. �

Remark 6.6 The previous theorem state that the property of to be a G-ANR
divisor is an invariant of the G-homotopy type and consequently every retract
of a G-ANR divisor is a G-ANR divisor.

7 Quotients and unions of G-ANR divisors and

absolutely neighborhood G-contractible spaces

Let A a compact G-ANR contained in a metric G-space B. By theorem 2.5,
when B is a G-ANR, B/A is a G-ANR. But if B/A is a G-ANR it not implies
that B is a G-ANR. We will shows that in this case, B is at least a G-ANR
divisor (see remark 3.6).

Theorem 7.1 Let (B,A) be a metric G-par, where A is a compact G-ANR
divisor. Then B is a G-ANR divisor if and only if B/A is an G-ANR divisor.

Proof. Suppose that B is a G-ANR divisor and let Y ∈ G-ANR(B). Then
Y/A is a G-ANR because A is a compact G-ANR divisor. It is clear that
Y/A ∈ G-ANR(B/A). Y/B is G-homeomorphic to (Y/A)/(B/A). Besides
Y/B is a G-ANE and Y/A is a G-ANR. Therefore, B/A is a G-ANR divisor.
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Now, let B/A is a G-ANR divisor. Then Y/B ∼= (Y/A)/(B/A) is a G-
ANE. Thus, B is a G-ANR divisor. �

In case when A is a G-AR compact subset of B in the previous theorem,
the equivalence is not true always. However, the first implication is true while
the second implies only that if B/A is a G-AR then B is a G-ANR.

If we change the conditionG-ANR by absolutely neighborhoodG-contractible
in the theorem 7.1, then the affirmation is valid too. For to prove this we need
before the following lemma.

Lemma 7.2 Let (B,A) a G-pair such that both A and B are absolutely neigh-
borhood G-contractible. Let Y ∈ G-ANR(B) and let U be an invariant neigh-
borhood of A in Y . Then B is G-deformable into U under a G-deformation
that leaves A pointwise fixed.

Proof. Let (X,C) a metric G-pair. Then by theorem 5.6, there exists an invari-
ant neighborhood V of B in Y such that each G-map f : C → V has an invari-
ant extension F : X → Y . Similarly there exists an invariant neighborhood W
of A in U ∩ V such that each G-map H : C → W has an invariant extension
H : X → U ∩V . Fix a point a ∈ A and define a G-map h∗ : A∪ (B\W )→ W
by

h∗(x) =

{
x, if x ∈ A,
a, if x ∈ (B\W ).

Hence h∗ has an equivariant extension H∗ : B → U ∩ V . Now define a G-map
f ∗ : (B × {0}) ∪ (A× I) ∪ (B × {1})→ V by

f ∗(x, t) =


x, if x ∈ B and t = 0,

x, if x ∈ A and 0 ≤ t ≤ 1,

H∗(x), if x ∈ B and t = 1.

Then there exits a G-extension F ∗ : B× I → Y for f ∗. It is easy to check that
F ∗ is the desires G-deformation. �

Theorem 7.3 Let (B,A) be a metric G-pair, where A is a compact absolutely
neighborhood G-contractible. Then B is absolutely neighborhood G-contractible
if and only if B/A is an absolutely neighborhood G-contractible.

Proof. Let Y ∈ G-ANR(B) and let p : Y → Y/A the canonical projection.
Suppose that B is absolutely neighborhood G-contractible. In agreement with
theorem 5.4 we shall shows that B/A is G-contractible in an arbitrary invariant
neighborhood U of B/A in Y/A. Y/A is a G-ANR and since U is open in Y/A
then U is a G-ANR. Hence there exists an invariant neighborhood V of p(A)
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G-contractible in U . By lemma 7.2 there exists a G-deformation kt : B →
p−1(U) leaving A pointwise fixed and such that k1(B) ⊂ p−1(V ). The G-
homotopy pkt(p|B)−1 : B/A→ U equivariantly deforms B/A into V , which is
G-contractible in U . So, B/A is G-contractible in U and if follows that B/A
is absolutely neighborhood G-contractible.

Now suppose that B/A is absolutely neighborhood G-contractible. Since
Y/A isG-ANR and henceB/A isG-contractible in Y/A under aG-deformation
kt. By theorem 6.1, p has a G-homotopy inverse q : Y/A→ Y . Let i : B → Y

the inclusion. Then we have i
G∼ qp|B = qk0p|B

G∼ qk1p|B. Since k1 is constant,
i is nullhomotopic G-map and by theorem 5.4, B is absolutely neighborhood
G-contractible. �

The fact of build up G-ANR starting from others G-ANR is possible if
the last G-ANR have some property (see [4], Theorem 5.1). However, is the
union of G-ANR divisors a G-ANR divisor again? First we shall show that
the disjoint union of G-ANR divisors is G-ANR divisor and later we generalize
this fact.

Lemma 7.4 Let A1 and A2 be a compact G-ANR divisors such that A1∩A2 =
∅. Then A1 ∪ A2 is a G-ANR divisor.

Proof. Let Y ∈ G-ANR(A1∪A2). Then Y/A1 is a G-ANR. Let p : Y → Y/A1

the canonical projection. It is clear that p|A2 is a G-homeomorphism. Hence

p(A2) is a G-ANR divisor; so (Y/A1)
p(A2)

is a G-ANR. Let q : Y/A1 → (Y/A1)
p(A2)

the

canonical projection. It is easy to see that qp(A1) and qp(A2) are singletons.

Thus, they and their union are G-ANR. By theorem 2.5, (Y/A1)
p(A2)

/(qp(A1) ∪
qp(A2)) is a G-ANR, but it is homeomorphic to Y/(A1 ∪A2) and we conclude
that A1 ∪ A2 is a G-ANR divisor. �

Theorem 7.5 Let B compact metric G-space. Let {Bi}ni=1 be an invariant
closed cover of B. If for each finite sub-collection {Aij} of {Bi}, the intersec-
tion

⋂
Aij is a G-ANR divisor (or empty), then B is a G-ANR divisor.

Proof. We shall proceed by induction. It is trivial that the theorem is true for
n = 1. Suppose that it is true for n = k and we shall prove that if verifies for
n = k + 1. Let Ci = Bi ∩ Bk+1, for i = 1, 2, ..., k. By hypothesis, each Ci is
a G-ANR divisor (or empty). Let D = ∪ki=1Bi and E = ∪ki=1Ci; by induction
hypothesis D and E are G-ANR divisors (or empty). Then we have two cases:

i) If E 6= ∅, then by theorem 7.1, Bk+1/E is a G-ANR divisor. But Bk+1/E
is G-homeomorphic to B/D. Again applying theorem 7.1 B is a G-ANR
divisor.
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ii) If E = ∅, then B is the disjoint union of Bk+1 and D. By Lemma 7.4,
the proof is complete. �

From theorems 5.8 and 7.5 follows

Corollary 7.6 Let B compact metric G-space. Let {Bi}ni=1 be an invariant
closed cover of B. If for each finite sub-collection {Aij} of {Bi}, the intersec-
tion

⋂
Aij is absolutely neighborhood G-contractible (or empty), then B is a

G-ANR divisor.
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