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Abstract

In this paper, we deal with an initial boundary value problem for a fast

diffusive polytropic filtration equation with nonlocal source and inner

absorption in bounded domain. By using the super- and sub-solution

method, we obtain some critical extinction exponents on whether oc-

currences the extinction phenomenon of nonnegative weak solutions or

not.

Mathematics Subject Classification: 35K65, 35B33, 35B40
Keywords: polytropic filtration equation, critical extinction exponent, ex-
tinction, non-extinction.



808 J.Z. Cui, X.H. Xu and Z.B. Fang

1 Introduction

We consider the following polytropic filtration equation with a nonlocal source
and inner absorption

ut = div(|∇um|p−2∇um) + λur
∫

Ω
us(x, t)dx− αuq, x ∈ Ω, t > 0, (1.1)

subjected to the homogeneous Dirichlet boundary and initial conditions

u(x, t) = 0, x ∈ ∂Ω, t > 0, (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where m > 0, 0 < m(p−1) < 1, r+s > 0, q, α, λ > 0, and Ω ⊂ RN(N ≥ 1) is a
bounded domain with smooth boundary and the initial data u0 is a nonnegative
and bounded function with um0 ∈ W

1,p
0 (Ω).

Many natural phenomena have been formulated as nonlocal diffusive equa-
tion (1.1), such as the model of non-Newton flux in the mechanics of fluid,
the model of population, biological species, and so on(we refer to [1,2,3] and
the references therein). For example, in the theory of nonlinear filtration,
our model (1.1) may be used to describe the nonstationary flows in a porous
medium of fluids with a power dependence of the tangential stress on the ve-
locity of displacement under polytropic conditions. In this case, the equation
(1.1) is called the non-Newtonian polytropic filtration equation. In the math-
ematical model for a heat conduction process, the function u(x, t) represents
the temperature, the term div(|∇um|p−2∇um) represents the thermal diffusion,
ur is the local hot source,

∫
Ω u

s(x, t)dx is the nonlocal hot source and −uq is
the local cool source.

To motivate our work, let us recall some results of finite time extinction
properties of solutions for nonlinear diffusion equations. Extinction is the
phenomenon whereby there exists a finite time T > 0 such that the solution
is nontrivial on (0, T ) and then u(x, t) ≡ 0 for all (x, t) ∈ Ω × [T,+∞). In
this case, T is called the extinction time. It is also an important property of
solutions for nonlinear parabolic equations which have been studied by many
researchers. For example, Kalashnikov [4] studied the Cauchy problem of the
semilinear parabolic equation with an absorption term

ut = △u− λup x ∈ RN , t > 0,

and obtained extinctions as well as localization and finite propagation prop-
erties of the solutions. Evans and Knerr [5] investigated extinction behaviors
of the solutions for the Cauchy problem of the semilinear parabolic equation
with a fully nonlinear absorption term

ut = △u− β(u), x ∈ RN , t > 0.
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Ferrieira and Vazquez [6] studied extinction phenomena of the solutions for
the Cauchy problem of the porous medium equation with an absorption term

ut = (um)xx − up, x ∈ RN , t > 0,

by using the analysis of self-similar solution. By constructing a suitable com-
parison function, Li and Wu [7] considered the problem of the porous medium
equation with a local source term

ut = △um + λup, x ∈ Ω, t > 0,

subject to the homogeneous Dirichlet boundary condition (1.2) and initial con-
dition (1.3). They obtained some conditions for extinction and non-extinction
of the solutions to the above equation and decay estimates. On extinctions
of solutions to the p-Laplacian equation or the doubly degenerate equations,
refer to [8,9] and the references therein.

For nonlocal parabolic equation (1.1) without inner absorption term, when
p = 2, r = 0 and N > 2, Han and Gao [10] showed that s = m is a critical
exponent for occurrence of extinction or non-extinction. Thereafter, Fang and
Wang [11] investigated the critical extinction exponents for equation (1.1) with
p = 2, r > 0 and q = 0. Recently, Fang and Xu [12] considered equation (1.1)
withm = 1, r = 0 and a linear absorption term in the whole dimensional space,
and find the critical exponents. They also obtained the exponential decay esti-
mates which depend on the initial data, coefficients, and domains. Thereafter,
they obtained the same results for a class of nonlocal porous medium equations
with strong absorption, see [13]. By using a similar argument in [9,12,13], one
can show the following results for problem (1.1)-(1.3) with 0 < q ≤ 1:

Theorem. Suppose that 0 < m(p− 1) < 1 and q = 1.
(1) If r + s = m(p − 1), then the solution vanishes in finite time for any

nonnegative initial data u0(x) provided that |Ω| (or λ) is sufficiently small.
(2) If r + s > m(p − 1), then the solution of problem (1.1)-(1.3) vanishes

in finite time provided that u0(x)(or |Ω| or λ) is sufficiently small.
(3) If r + s < m(p − 1), then the solution of problem (1.1)-(1.3) can not

vanish in finite time for any nonnegative initial data u0(x).
In addition, suppose that 0 < m(p−1) = r+ s < 1 and 0 < q < 1, then the

solution vanishes in finite time for any nonnegative initial data u0(x) provided
that |Ω| (or λ) is sufficiently small.

Note that, the above-mentioned Theorem holds under suitable Lp-integral
norm sense. However, the critical case r + s = m(p− 1) with nonlocal source
term does not depend on the first eigenvalue of the corresponding p-Laplacian
operator, which is different from that of the local source case.
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Motivated by the mentioned works above, instead of energy methods, we
will use the super- and sub- solution method to obtain the critical extinc-
tion exponents for (r + s, q) of problem (1.1)-(1.3), and improve the results
of [10,11,12,13]. In fact, there exists a critical curvilinear line (r + s)∗ =
min(q,m(p− 1)) such that the (r+ s, q)-parameter plane is divided into three
parts, with the right part of the line corresponding to extinction for all solu-
tions and the left part corresponding to at least one nonextinction solution.
Moreover, there exists a critical point on this line such that the line is also
divided into three parts, which exhibit different features of extinction. In our
problem, the difficulty lies in finding the competitive relationship of diffusion,
nonlocal source and inner absorption on whether determining the extinction
of solutions or not and constructing corresponding super- and sub- solutions.

Throughout the paper, we need make some notations as follows.
Let ψ(x) be the positive solution of the following elliptic problem

−div(|∇ψ|p−2∇ψ) = 1, in Ω, ψ|∂Ω = 0, (1.4)

and denote M = maxx∈Ω ψ(x). By the strong maximum principle, we know
that M > 0.

Let λ1 be the first eigenvalue of the problem

−div(|∇ϕ|p−2∇ϕ) = λ|ϕ|p−2ϕ, in Ω, ϕ|∂Ω = 0, (1.5)

and denote the corresponding eigenfunction by ϕ1(x) with ‖ϕ1‖L∞(Ω) = 1.

Theorem 1.1 If r+ s > m(p− 1), then the solution of problem (1.1)-(1.3)
vanishes in finite time for appropriately small initial data u0(x). If r + s =
m(p−1) with λ|Ω|Mp−1 < 1, then the solution of problem (1.1)-(1.3) vanishes
in finite time for any nonnegative bounded initial data.

Theorem 1.2 If q = r+s < 1 with λ|Ω| < α or q < min{r+s, 1}, then the
solution of problem (1.1)-(1.3) vanishes in finite time for appropriately small
initial data u0(x).

Remark 1.1 The small condition on initial data u0(x) in Theorems 1 and
2 can be removed if λ is appropriately small.

Theorem 1.3 If r + s < min{q,m(p − 1)} or r + s = q < m(p − 1) with
λ > α, then the problem (1.1)-(1.3) admits at least one nonextinction solution
for any nonnegative initial data u0(x).

Theorem 1.4 If r+ s = m(p− 1) < q with λ
∫
Ω ϕ

s
m

1 dx > λ1, then the prob-
lem (1.1)-(1.3) admits at least one nonextinction solution for any nonnegative
initial data u0(x).
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Theorem 1.5 If r + s = m(p− 1) < 1 ≤ q with λ
∫
Ω ϕ

s
m

1 dx = λ1, then the
problem (1.1)-(1.3) admits at least one nonextinction solution for any positive
initial data u0(x).

Theorem 1.6 If r+s = m(p−1) < q < 1 with λ|Ω| ≤ λ1, then the solution
u(x, t) of problem (1.1)-(1.3) vanishes in the sense that limt→∞‖u(·, t)‖m+1 =
0. In addition, if r + s = m(p − 1) < q < 1 with λ|Ω|Mp−1 = 1, then the
problem (1.1)-(1.3) admits at least one extinction solution for any nonnegative
and bounded initial data u0(x).

Remark 1.2 If r = q and s = 0, then the equation (1.1) becomes a local p-
Laplacian equation. It is easy to see that, for λ−α < λ1 with r = m(p−1) = q,
the solution of problem (1.1)-(1.3) vanishes in finite time, whereas for λ−α ≥
λ1, the problem (1.1)-(1.3) admits at least one nonextinction solution.

The rest of our paper is organized as follows. In Section 2, we give pre-
liminary knowledges including the suitable definition of solutions of problem
(1.1)-(1.3) and lemmas that are required in the proofs of our results and present
the proofs for main results in Section 3.

2 Preliminaries

Throughout this paper

Q = Ω× (0,∞), QT = Ω× (0, T ),

E = {ξ : ξ ∈ L2q(QT ) ∩ L
2(r+s)(QT ), ξt ∈ L2(QT ),∇ξ

m ∈ Lp(QT )},

Ẽ = {ξ : ξ ∈ L2(QT ), ξt ∈ L2(QT ),∇ξ ∈ Lp(QT ), ξ ≥ 0, ξ|∂Ω×(0,T ) = 0}.

Due to the singularity of (1.1), problem (1.1)-(1.3) has no classical solutions
in general, and hence, it is reasonable to find a weak solution of the problem.
To this end, we first give the following definition of weak solution.

Definition 2.1 A nonnegative measurable function u ∈ E is called a weak
super-solution of problem (1.1)-(1.3) in QT if the following conditions hold:

a. u(x, 0) ≥ u0(x) in Ω;
b. u(x, t) ≥ 0 on ∂Ω× (0, T );
c. For any T > 0 and ξ ∈ Ẽ, we have
∫ ∫

QT

{utξ + |∇um|p−2∇um∇ξ − λur
∫

Ω
usdxξ + αuqξ}dxdt ≥ 0.

Replacing ≥ by ≤ in the aforementioned inequalities yields the definition of a
sub-solution of (1.1)-(1.3). Furthermore, if u is a super-solution as well as a
sub-solution, then it is called a solution of (1.1)-(1.3).
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Before proving our main results, we give a modified comparison principle for
problem (1.1)-(1.3), which can be proved by establishing suitable test function
and Gronwall’s inequality as in [14,15].

Proposition 2.2 (Comparison principle) Let (v,w) be a pair of super-
and sub-solution of problem (1.1)-(1.3). If either r + s ≥ 1 and w is upper
bounded or 0 < r+s < 1 and v has a positive lower bound, then w(x, t) ≤ v(x, t)
in QT .

3 Proofs of the main results

In this section, we give detailed proofs of our main results to problem (1.1)-
(1.3) by using the comparison principle and constructing suitable super- and
sub- solutions.

Proof of Theorem 1.1: The proof is divided into two steps (i) r + s =
m(p− 1) with λ|Ω|Mp−1 < 1 and (ii) r + s > m(p− 1).

(i) For any bounded smooth domain Ω′ such that Ω′ ⊃⊃ Ω, let φ(x) be the
positive solution of the following elliptic problem

−div(|∇φ|p−2∇φ) = 1, in Ω′, φ|∂Ω′ = 0.

By the comparison principle, we know ψ(x) ≤ φ(x) in Ω. SetM1 = maxx∈Ω φ(x)
and δ = minx∈Ω φ(x). It is well known that δ > 0 from the strong maximum
principle.

By continuity, we can choose a suitable domain Ω′ with Ω′ ⊃⊃ Ω such that
λ|Ω|Mp−1

1 < 1. Let v(x, t) = f(t)φ
1
m (x), where f(t) satisfies

f ′(t)M
1
m

1 + (1− λ|Ω|Mp−1
1 )f r+s(t) = 0, t > 0,

f(0) = f0 ≥ δ−
1
m‖u0‖L∞(Ω).

Since r + s = m(p − 1) < 1, it follows from the ODE theory that f(t) is
nonincreasing and f(t) = 0 for all

t ≥ T ∗ =
M

1
m

1

(1− λ|Ω|Mp−1
1 )(1− r − s)

f 1−r−s
0 .

Then it can be seen that v(x, t) is the super-solution of problem (1.1)-(1.3).
In fact, since r + s = m(p− 1) and f ′(t) ≤ 0, then we obtain for any ξ ∈ Ẽ,

∫ ∫

QT

∂v

∂t
ξ+|∇vm|p−2∇vm∇ξ−λvr

∫

Ω
vsdxξ+αvqξdxdt
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=
∫ ∫

QT

f ′(t)φ
1
m ξ+fm(p−1)(t)|∇φ|p−2∇φ∇ξ−λf r+s(t)φ

r
m

∫

Ω
φ

s
mdxξ+αf q(t)φ

q

m ξdxdt

=
∫ ∫

QT

[
f ′(t)φ

1
m+fm(p−1)(t)−λf r+s(t)φ

r
m

∫

Ω
φ

s
mdx+αf q(t)φ

q

m

]
ξdxdt

≥
∫ ∫

QT

[
f ′(t)φ

1
m+fm(p−1)(t)−λf r+s(t)φ

r
m

∫

Ω
φ

s
mdx

]
ξdxdt

≥
∫ ∫

QT

[
f ′(t)M

1
m

1 +(1−λ|Ω|Mp−1
1 )f r+s(t)

]
ξdxdt

= 0.

Therefore, for any T < T ∗, applying Proposition 2.2 to (1.1)-(1.3) in QT , we
have u(x, t) ≤ v(x, t) for (x, t) ∈ QT , which implies u(x, T ) ≤ v(x, T ). Hence,
u(x, T ∗) = 0 by the arbitrariness of T < T ∗ and v(x, T ∗) = 0. Furthermore, let
ũ(x, t) = u(x, t+ T ∗), then ũ(x, t) satisfies (1.1),(1.2) and the initial condition
ũ(x, 0) = 0. Now, by the aforementioned proof, we can that ũ(x, t) ≤ v(x, t)
with any f0 > 0. From the relation of the extinction time T ∗ of v(x, t) to f0,
it follows that ũ(x, t) = 0 for any t > 0, namely u(x, t) = 0 for all t > T ∗.

(ii) Let φ and M1 be the same as case (i) and set v(x, t) = kφ
1
m (x) with

k =
[ 1

2λ|Ω|M
r+s
m

1

] 1
r+s−m(p−1)

.

Then it is easy to verify v(x, t) is a super-solution of problem (1.1)-(1.3) pro-

vided that u0(x) ≤ kφ
1
m in Ω. Applying Proposition 2.2 to (1.1)-(1.3) in QT ,

we have u(x, t) ≤ v(x, t) for (x, t) ∈ QT , which implies that u(x, t) ≤ kM
1
m

1 .
Therefore, u(x, t) satisfies

ut−div(|∇um|p−2∇um)+αuq ≤ λ(kM
1
m

1 )r+s−m(p−1)um(p−1)−s
∫

Ω
usdy, x ∈ Ω, t > 0.

By the choice of k, we can easily prove that λ(kM
1
m

1 )r+s−m(p−1)|Ω|Mp−1
1 = 1

2
<

1. Thus, by the result of case (i), we can conclude that the solution u(x, t)
of (1.1)-(1.3) vanishes in finite time if the initial data u0(x) is appropriately
small.

Proof of Theorem 1.2: (i) For q = r + s < 1 with λ|Ω| < α, we set
v(x, t) = f(t), where f(t) satisfies the following problem

f ′(t) + (α− λ|Ω|)f r+s = 0, t > 0,

f(0) = ‖u0‖L∞(Ω).

Since q = r + s < 1 and λ|Ω| < α, it is easily verify that f(t) vanishes at
some finite time T ∗. Moreover, as in the proof of Theorem 1.1, we can prove
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v(x, t) = f(t) is a super-solution of (1.1)-(1.3). Hence, by applying Proposition
2.2 to u(x, t) and f(t) for any 0 < T < T ∗, then u(x, t) also vanishes at T ∗.

(ii) For q < min{r + s, 1}, we set v(x, t) = f(t), where f(t) satisfies the
following problem

f ′(t) + (α− λ|Ω|f r+s−q(t))f q = 0, t > 0,

f(0) = f0,

where 0 < f0 < ( α
λ|Ω|

)
1

r+s−q . Since 0 < q < 1, similar to the case (i), it is well

known that f(t) vanishes in finite time and f(t) is a super-solution of (1.1)-
(1.3) provided that u0(x) is small enough such that ‖u0‖L∞(Ω) ≤ f0. Applying
Proposition 2.2 to u(x, t) and f(t) guarantees the finite time extinction of
u(x, t).

Proof of Theorem 1.3: (i) For r + s < min{q,m(p − 1)}, we we shall
prove that problem (1.1)-(1.3) admits at least one nonextinction solution for
any nonnegative initial data by constructing a suitable pair of super-and sub-
solution of (1.1)-(1.3).

We firstly consider case r + s < q ≤ m(p − 1). Let w(x, t) = µg(t)ϕ
1
m

1 (x),
where ϕ1(x) is the first eigenfunction corresponding to the eigenvalue λ1 of
problem (1.5) with ‖ϕ1‖L∞(Ω) = 1, µ > 0 is to be determined later, and g(t)
satisfies the ODE problem

g′(t) = −λ1g
m(p−1)(t) + λgr+s(t)− αgq(t), t > 0,

g(t) > 0, t > 0, (3.4)

g(0) = 0.

It is easy to check that g(t) is a nondecreasing and bounded function. In fact,

g(t) ≤ min{(
λ

α
)

1
q−r−s , (

λ

λ1
)

1
m(p−1)−r−s}.

Simple calculations show that

wt = µ(−λ1g
m(p−1)(t)+λgr+s(t)−αgq(t))ϕ

1
m

1 ,

and

div(|∇wm|p−2∇wm)−αwq+λwr
∫

Ω
wsdx

= −λ1µ
m(p−1)gm(p−1)(t)ϕ

m(p−1)
m

1 (x)− αµqgq(t)ϕ
q

m

1 (x) + λµr+sgr+sϕ
r
m

1

∫

Ω
ϕ

s
m

1 dx.

We can choose µ > 0 small enough such that

λ1g
m(p−1)(µm(p−1)ϕ

p−1
1 − µϕ

1
m

1 ) + αgq(t)(µqϕ
q

m

1 − µϕ
1
m

1 )
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≤ λgr+s(t)(µr+sϕ
r
m

1

∫

Ω
ϕ

s
m

1 dx− µϕ
1
m

1 (x)), (3.5)

which implies that w(x, t) is a sub-solution of (1.1)-(1.3). Indeed, let

F1(x) =
xm(p−1) − x

xr+s − x
,

and

F2 =
xq − x

xr+s − x
,

then because of r + s < m(p − 1) and r + s < q, limx→0+ Fi(x) = 0(i = 1, 2),
which guarantee that (3.5) holds for sufficiently small µ > 0.

Next, we turn our attention to construct a super-solution of (1.1)-(1.3). Set

v(x, t) = max
{
‖u0‖L∞(Ω), (

λ|Ω|

α
)

1
q−r−s , µmax

t≥0
g(t)

}
,

then it can be verified that v(x, t) is the super-solution of (1.1)-(1.3) and
w(x, t) ≤ v(x, t). Therefore, by an iteration process, we can obtain s solu-
tion u(x, t) of (1.1)-(1.3), which satisfies w(x, t) ≤ u(x, t) ≤ v(x, t). Indeed,
define u1(x, t) = v(x, t) and {uk(x, t)}

∞
k=2 iteratively to be a solution of the

problem

ukt − div(|∇umk |
p−2∇umk ) + αu

q
k = λurk−1

∫

Ω
usk−1dx,

subject to the boundary value condition (1.2) and initial condition (1.3). Then,
by the comparison principle and regularity of p-Laplacian equation, the func-
tion u(x, t) = limk→∞ uk(x, t) for every x ∈ Ω and t > 0, is the solution of
(1.1)-(1.3). Because w(x, t) does not vanish, neither does u(x, t).

Similar to that mentioned above, we can prove that the solution u(x, t) of
(1.1)-(1.3) does not vanish in finite time for the case r + s < m(p− 1) < q.

(ii) For r+s = q < m(p−1) with λ > α, we let w(x, t) = µg(t)ϕ
1
m

1 (x),where
ϕ1(x) is the same as case (i), µ > 0 is to be determined later, and g(t) satisfies
the ODE problem

g′(t) = −λ1g
m(p−1)(t) + (λ− α)gq(t), t > 0,

g(t) > 0, t > 0,

g(0) = 0.

Then g(t) is nondecreasing and satisfies g(t) ≤ (λ−α
λ1

)
1

m(p−1)−q . Similar to (i)
we can see that w(x, t) is a sub-solution of (1.1)-(1.3) provided that µ > 0 is
sufficiently small.

To construct a super-solution of (1.1)-(1.3), we consider the following eigen-
value problem

−div(|∇ϕ|p−2∇φ) = λ|ϕ|p−2ϕ, in Ω̃, ϕ|
∂Ω̃

= 0,



816 J.Z. Cui, X.H. Xu and Z.B. Fang

where Ω̃ ⊃⊃ Ω is a bounded domain with smooth boundary ∂Ω̃. Let λ̃1 and
ϕ̃1(x) > 0 (x ∈ Ω̃) be its first eigenvalue and the corresponding eigenfunction,
respectively. We may normalize ϕ̃1(x) such that ‖ϕ̃1‖L∞(Ω̃)

= 1. Denote

δ̃ = minx∈Ω ϕ̃1(x) > 0 and set v(x, t) = kϕ̃1

1
m (x) with

k = max
{
(
λ|Ω|

λ̃1δ̃p−1
)

1
m(p−1)−q , δ̃−

1
m‖u0‖L∞(Ω), µ(

λ− α

λ1
)

1
m(p−1)−q

}
,

then it is easy to verify that v(x, t) is a super-solution of (1.1)-(1.3) and
w(x, t) ≤ v(x, t). Therefore, by applying the monotonicity iteration process we
can obtain a nonextinction solution u(x, t) satisfying w(x, t) ≤ u(x, t) ≤ v(x, t).

Proof of Theorem 1.4: The proof is similar to that of Theorem 1.3, so

we sketch it briefly here. Set w(x, t) = µg(t)ϕ
1
m

1 (x), where ϕ1(x) is defined in
(1.5) and g(t) satisfies the following ODE problem

g′(t) = (λ
∫

Ω
ϕ

s
m

1 dy − λ1)g
m(p−1)(t)− αgq(t), t > 0,

g(t) > 0, t > 0,

g(0) = 0.

Since λ
∫
Ω ϕ

s
m

1 dy > λ1 and m(p − 1) < q, it is well known that g(t) is nonde-

creasing and bounded by (
λ
∫
Ω
ϕ

s
m
1 dy−λ1

α
)

1
q−m(p−1) . Then w(x, t) is a sub-solution

of (1.1)-(1.3) provided that µ > 0 is sufficiently small. On the other hand,

v(x, t) = max
{
‖u0‖L∞(Ω), (

λ|Ω|

α
)

1
q−r−s , µmax

t≥0
g(t)

}
,

can be chosen to be the super-solution of (1.1)-(1.3) and satisfy w(x, t) ≤
v(x, t). Therefore, by monotonicity iteration, we know that (1.1)-(1.3) ad-
mits at least one solution u(x, t) such that w(x, t) ≤ u(x, t) ≤ v(x, t). Since
w(x, t) > 0 in Ω× (0,+∞), u(x, t) can not vanish at any finite time.

Proof of Theorem 1.5: For r + s = m(p− 1) < 1 ≤ q with λ
∫
Ω ϕ

s
m

1 dy =

λ1, set w(x, t) = h0e
−βtϕ

1
m

1 (x), where h0 and β are two positive constants to be
determined later. It is easy to verify that when q = 1, w(x, t) is a sub-solution

of (1.1)-(1.3) if β ≥ α and h0 is so small that h0ϕ
1
m

1 (x) ≤ u0(x). When q > 1,
w(x, t) is a sub-solution of (1.1)-(1.3) if β ≥ αh

q−1
0 and h0 is so small that

h0ϕ
1
m

1 (x) ≤ u0(x). In addition, since w(x, t) is bounded, we can choose a
sufficiently large constant C > 0 such that C > w(x, t) to be a super-solution
of (1.1)-(1.3). Therefore, by monotonicity iteration, we can obtain a solution
u(x, t) satisfying w(x, t) ≤ u(x, t) ≤ L. Since w(x, t) does not vanish at any
finite time, neither does u(x, t).
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Proof of Theorem 1.6: (i) For r+ s = m(p−1) < q < 1 with λ|Ω| ≤ λ1,

we let u(x, t) be the solution of (1.1)-(1.3) with the bounded initial datum u0.

Then, by De Giorgi method, it is easily to show that

‖u(·, t)‖L∞ ≤ l = max{‖u0‖L∞(Ω), (
λ

α
)

1
q−r−s}.

Multiplying Equation (1.1) by um and integrating over Ω produces the identity

1

m+ 1

d

dt

∫

Ω
um+1dx+

∫

Ω
|∇um|pdx+ α

∫

Ω
uq+mdx = λ

∫

Ω
ur+mdx

∫

Ω
usdx.

(3.6)
Recall the hölder inequality and Sobolev embedding theorem, we have

∫

Ω
ur+mdx ≤ |Ω|

s
r+m+s (

∫

Ω
ur+m+sdx)

r+m
r+m+s ,

∫

Ω
usdx ≤ |Ω|

r+m
r+m+s (

∫

Ω
ur+m+sdx)

s
r+m+s ,

and ∫

Ω
|∇um|pdx ≥ λ1

∫

Ω
umpdx.

Combining together with (3.6) and noting that r + s = m(p− 1), we have

1

m+ 1

d

dt

∫

Ω
um+1dx+ α

∫

Ω
uq+mdx ≤ (λ|Ω| − λ1)

∫

Ω
ur+m+sdx.

Setting λ|Ω| ≤ λ1, we can obtain

1

m+ 1

d

dt

∫

Ω
um+1dx+ α

∫

Ω
uq+mdx ≤ 0

Because of q < 1, we obtain
∫

Ω
um+qdx ≥ lq−1

∫

Ω
um+1dx. (3.7)

Substituting above inequality into (3.7) yields

1

m+ 1

d

dt

∫

Ω
um+1dx+ αlq−1

∫

Ω
um+1dx ≤,

and thus ∫

Ω
um+1dx ≤ e−

α(m+1)t

l1−q

∫

Ω
um+1
0 dx,

which implies that
∫
Ω u

m+1dx→ 0 as t→ ∞.

(ii) For r + s = m(p − 1) < q < 1 with λ|Ω|Mp−1 = 1, we let v(x, t) =

f(t)ψ
1
m (x), where ψ(x) is defined in (1.4) and f(t) satisfies

f ′(t) + αM− 1−q

m f q(t) = 0, t > 0
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f(0) = f0 > 0

Since 0 < q < 1, then f(t) is nonincreasing and f(t) = 0 for t ≥ T ∗ =
f
1−q
0

αM−
1−q
m (1−q)

. Noting that r + s = m(p − 1) and λ|Ω|Mp−1 = 1, one can see

that v(x, t) is the super-solution of (1.1)-(1.3) provided that u0(x) ≤ f0ψ
1
m (x)

in Ω. By using the arguments similar to the proof of case (i) of Theorem 1.1,
we can show that any solution u(x, t) of (1.1)-(1.3) vanishes in finite time.
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