
Mathematica Aeterna, Vol. 6, 2016, no. 3, 309 - 321

Convergence of Nonlinear Recurrence Relations with

Threshold Control and 2k− Periodic Coefficients

Liping Dou and Chengmin Hou

Department of Mathematics, Yanbian University, Yanji 133002
cmhou@foxmail.com

Abstract

An nonlinear recurrence involving a piecewise constant McCulloch-

Pitts function and 2k−periodic coefficient sequences is investigated. It

is found that each solution tends to 〈−1〉 or 〈1〉, depending on whether

the parameter λ varies from −∞ to +∞. We hope that our results

will be useful in understanding interacting network models involving

piecewise constant control functions.
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1 Introduction

Let N = {0, 1, 2, · · · }. In [1], Zhu and Huang discussed the ”limit cycle” of
recurrence relation

xn = axn−2 + bfλ(xn−1), n ∈ N, (1)

where a ∈ (0, 1), b = 1 − a. And f : R → R is a nonlinear threshold function
of the form

fλ(x) =

{

1 x ∈ (0, λ]
0 x ∈ (−∞, 0]

⋃

(λ,+∞)
, (2)

in which λ is a constant which acts as a threshold, through analysis get the
convergence of solutions and the existence of asymptotically stable periodic
solutions.

Yet in real life models, the coefficients a and b, since they are a part of
the control mechanism, can rarely be kept constants. They may became time
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dependent and show periodic behaviors. For this reason, in [2], the authors
discussed the limit cycles of the following difference equation

xn = anxn−2 + bnfλ(xn−1), n ∈ N, (3)

where {an}
∞

n=0, {bn}
∞

n=0 are 2- periodic sequences with ai ∈ (0, 1), bi ∈ (0,+∞), i =
0, 1. And f : R → R is defined by (2), and by the transform x2n = yn, x2n+1 =
zn for n ∈ {−1, 0, · · · }, the above equation can be converted into the following
2−dimensional autonomous dynamical system

{

yn = a0yn−1 + b0fλ(zn−1)
zn = a1zn−1 + b1fλ(yn)

, (4)

in which the positive number λ can be regarded as a threshold bifurcation
parameter. By induction, all solutions of (3) from (−∞, 0]2 tend to the point
(0,0), all solutions of (3) from R

2/(−∞, 0]2 tend to the point ( b0
1−a0

, 0), (0, b1
1−a1

),

or ( b0
1−a0

, b1
1−a1

). In [3], the authors discussed the limit cycles of the following
difference equation

xn = anxn−2 + bnfλ(xn−1), n ∈ N, (5)

where {an}
∞

n=0, {bn}
∞

n=0 are 2k-periodic sequences with ai ∈ (0, 1), bi = 1− ai,
i = 0, 1, · · · , 2k − 1. And f satisfies

fλ(x) =

{

1 x ∈ (0, λ]
0 x ∈ (−∞, 0]

⋃

(λ,+∞)
,

in which the number λ can be regarded as a threshold bifurcation parameter.
By induction, the authors deduce (bifurcation) result such as the following.

If 0 < λ < 1, then all solutions{(xn, xn+1)}
∞

n=−2 which originated from the
positive orthant approach a limit 2-cycles; if λ > 1, then all solutions that
originated from the positive orthant tend towards the limit 1-cycle(1,1); if
λ = 1, then all solutions originated from the positive orthant tend towards the
limit 1-cycle(1,1) or 2-cycles(1,0) or (0,1).

This paper mainly studies the following form of nonlinear difference equa-
tion

xn = anxn−2 + bnfλ(xn−1), n ∈ N, (6)

where {an}
∞

n=0, {bn}
∞

n=0 are 2k-periodic sequences with ai ∈ (0, 1), bi = 1− ai,
i = 0, 1, 2, · · · , 2k − 1, f satisfies

fλ(x) =

{

1 x ∈ (λ,+∞)
−1 x ∈ (−∞, λ]

,

in which the number λ can be regarded as a threshold bifurcation parameter.
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In order to study the asymptotic behavior of (6), let us first note that
it is a three-term recurrence relation so that, given x−2 and x−1, we may
calculate x0, x1, x2, and so forth in a sequential manner. The resulting se-
quence x = {xn}

∞

n=−2 is naturally called a solution of (6). For example, when
{an}

∞

n=0, {bn}
∞

n=0 are 4-periodic sequences, we may write

x0 = a0x−2 + b0fλ(x−1),

x1 = a1x−1 + b1fλ(x0),

x2 = a2x0 + b2fλ(x1),

x3 = a3x1 + b3fλ(x2),

x4 = a4x2 + b4fλ(x3) = a0x2 + b0fλ(x3),

x5 = a5x3 + b5fλ(x4) = a1x3 + b1fλ(x4),

....

This motivates us to define a vector equation. Given a sequence x = {xn}
∞

n=a,
its Casoratian vector sequence is {〈xi〉}

∞

i=a, where 〈xi〉 = col(xi, xi+1, · · · , xi+2k−1), i =
a, a+ 1, · · · . Then (6) is equivalent to the asynchronous vector equation

〈x2kn〉 = A〈x2k(n−1)〉+Bfλ(〈x2k(n−1)+1〉), n = 0, 1, 2, · · · , (7)

where

A =











a0 0 0

0 a1
. . .

. . .
. . . 0

0 0 a2k−1











, B =











b0 0 0

0 b1
. . .

. . .
. . . 0

0 0 b2k−1











,

fλ〈xi〉 = col(fλ(xi), fλ(xi+1), · · · , fλ(xi+2k−1)).

Note that, given (x−2, x−1), we may use (7) to generate 〈x0〉, 〈x2k〉, 〈x4k〉, · · · .
Which, when ”line up”, yields the same x0, x1, x2, · · · as described above. For
this reason, the sequence {〈xi〉}

∞

i=0 will be called the solution of (7) determined
by (x−2, x−1).

Therefore, to obtain complete asymptotic behaviors of (6), we need to de-
rive the results for solutions of (7) determined by vectors (x−2, x−1) in the
entire plane. In the following discussion, we will allow the bifurcation param-
eter λ to vary from −∞ to +∞. For the sake of convenience, we also need to
introduce some notations:

δ = a0a2 · · ·a2k−2, ρ = a1a3 · · · a2k−1,

while the numbers
D

(j0,j1,··· ,jm)
i , E

(j0,j1,··· ,jm)
i ,
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A
(j0,j1,··· ,jm)
i , B

(j0,j1,··· ,jm)
i ,

and their properties are listed in the Appendix. These numbers are introduced
in order to break the plane into different parts such that the behavior of each
solution of (7) which originates from each part may be traced.

Indeed, we will consider five cases: (i) λ = 1, (ii) λ > 1, (iii) λ = −1, (iv)
λ < −1, and (v) −1 < λ < 1.

2 Main Results

The case where λ = 1.

Lemma 2.1 Suppose λ = 1. If {(〈x2kn〉)}
∞

n=0 is a solution of (7) with
(x−2, x−1) ∈ R

2/(λ,+∞)2, then there exists an integer r ∈ {0, 1, · · · , 2k −
2}, j ∈ N such that (x2kj+r, x2kj+r+1) ∈ (−∞, λ]2.

Proof. (i). Suppose (x−2, x−1) ∈ (−∞, λ]2, then we are done.
(ii). Suppose (x−2, x−1) ∈ (−∞, λ] × (λ,+∞). For our assumption, we have
aiλ+ bi = λ for i = 0, 1, · · · , 2k − 1. By induction,

x0 = a0x−2 + b0fλ(x−1) = a0x−2 + b0 ≤ a0λ+ b0 = λ,

x1 = a1x−1 + b1fλ(x0) = a1x−1 − b1 ∈ R,

x2 = a2x0 + b2fλ(x1) ≤ a2x0 + b2 ≤ a2λ+ b2 = λ,

...

x2ki+2m = a2mx2ki+2m−2 + b2mfλ(x2ki+2m−1) ≤ a2mλ+ b2m = λ.

We see that x2ki+2m ∈ (−∞, λ] for any m ∈ {0, 1, · · · , k − 1} and i ∈ N; and
hence,

x2ki+2m+1 = a2m+1x2ki+2m−1 + b2m+1fλ(x2ki+2m)

= a2m+1x2ki+2m−1 − b2m+1

= a2m+1(a2m−1x2ki+2m−3 − b2m−1)− b2m+1

= a2m+1a2m−1 · · · a1ρ
ix−1 + a2m+1a2m−1 · · · a1ρ

i − 1.

Thus, limi→+∞ x2ki+2m+1 = −1 ∈ (−∞, λ] for any m ∈ {0, 1, · · · , k − 1}, then
there exists enough large j ∈ N such that (x2kj , x2kj+1) ∈ (−∞, λ]2.
(iii). Suppose (x−2, x−1) ∈ (λ,+∞)× (−∞, λ]. By induction, we may see that
x2ki+2m−1 ∈ (−∞, λ] for any m ∈ {0, 1, · · · , k} and i ∈ N; and hence,

x2ki+2m = a2mx2ki+2m−2 + b2mfλ(x2ki+2m−1)

= a2mx2ki+2m−2 − b2m

= a2m(a2m−2x2ki+2m−4 − b2m−2)− b2m

= a2ma2m−2 · · · a0δ
ix−2 + a2ma2m−2 · · · a0δ

i − 1.
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Thus, limi→+∞ x2ki+2m = −1 ∈ (−∞, λ] for any m ∈ {0, 1, · · · , k − 1}, then
there exists enough large j ∈ N such that (x2kj , x2kj+1) ∈ (−∞, λ]2.
By (i), (ii), (iii) the proof is complete.

Theorem 2.2 Suppose λ = 1. The solution {(〈x2kn〉)}
∞

n=0 of (7) with
(x−2, x−1) ∈ R

2/(λ,+∞)2 will tend to 〈−1〉.

Proof. In view of Lemma 1, we may assume without loss of generality that
(x−2, x−1) ∈ (−∞, λ]2. For our assumption, we have aiλ − bi < λ for i =
0, 1, · · · , 2k − 1. Furthermore, by induction, we have,

x0 = a0x−2 + b0fλ(x−1) = a0x−2 − b0 ≤ a0λ− b0 < λ,

x1 = a1x−1 + b1fλ(x0) = a1x−1 − b1 ≤ a1λ− b1 < λ,

x2 = a2x0 + b2fλ(x1) = a2x0 − b2 ≤ a2λ− b2 < λ,

...

x2k−1 = a2k−1x2k−3 + b2k−1fλ(x2k−2) ≤ a2k−1λ− b2k−1 < λ.

We see that x2ki+j = ajx2ki+j−2 − bj ∈ (−∞, λ] for any j ∈ {0, 1, · · · , 2k − 1}
and i ∈ N; and hence,

〈x2kn〉 = A〈x2k(n−1)〉 − B

= An〈x0〉 −An−1B − · · · −B

= An〈x0〉+ An −E.

Since 〈x0〉 ∈ (−∞, λ] and An tends towards 0 as n tends towards +∞, we see
that {(〈x2kn〉)}

∞

n=0 tends towards 〈−1〉. The proof is complete.

Theorem 2.3 Suppose λ = 1. The solution {(〈x2kn〉)}
∞

n=0 of (7) with
(x−2, x−1) ∈ (λ,+∞)2 will tend to 〈1〉.

Proof. For our assumption, we have aiλ + bi = λ for i = 0, 1, · · · , 2k − 1.
Furthermore, by induction, we have,

x0 = a0x−2 + b0fλ(x−1) = a0x−2 + b0 > a0λ+ b0 = λ,

x1 = a1x−1 + b1fλ(x0) = a1x−1 + b1 > a1λ+ b1 = λ,

x2 = a2x0 + b2fλ(x1) = a2x0 + b2 > a2λ+ b2 = λ,

...

x2k−1 = a2k−1x2k−3 + b2k−1fλ(x2k−2) > a2k−1λ+ b2k−1 = λ.

We see that x2ki+j = ajx2ki+j−2 + bj ∈ (λ,+∞) for any j ∈ {0, 1, · · · , 2k − 1}
and i ∈ N; and hence,

〈x2kn〉 = A〈x2k(n−1)〉+B

= An〈x0〉 − An−1B + · · ·+B

= An〈x0〉 − An + E.
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Since 〈x0〉 ∈ (λ,+∞) and An tends towards 0 as n tends towards +∞, we see
that {(〈x2kn〉)}

∞

n=0 tends towards 〈1〉. The proof is complete.

The case where λ > 1.

Lemma 2.4 Suppose λ > 1. If {(〈x2kn〉)}
∞

n=0 is a solution of (7) with
(x−2, x−1) ∈ R

2, then there exists an integer r ∈ {0, 1, · · · , 2k− 2}, j ∈ N such
that (x2kj+r, x2kj+r+1) ∈ (−∞, λ]2.

Proof. (i). Suppose (x−2, x−1) ∈ (−∞, λ]2, then we are done.
(ii). Suppose (x−2, x−1) ∈ (−∞, λ] × (λ,+∞)

⋃

(λ,+∞) × (−∞, λ]. By
induction, the proof are similar to (ii), (iii) of Lemma 1, and hence omitted.

(iii). Suppose (x−2, x−1) ∈ (λ,+∞)2, if x2ki+m ∈ (λ,+∞) for all m ∈
{0, 1, · · · , 2k−1}, i ∈ N, then x2ki+m = amx2ki+m−2+bm for allm ∈ {0, 1, · · · , 2k−
2}, thus limi→+∞ x2ki+m = 1 ∈ (−∞, λ], which is a contradiction. Therefore,
there exist j ∈ N, such that x2kj ∈ (−∞, λ], x0, x1, · · · , x2k−1, x2k,
x2k+1, · · · , x4k−1, · · · , x2kj−2, x2kj−1 ∈ (λ,+∞). So by (i), (ii), (iii) conclusion
holds. The proof is complete.

Theorem 2.5 Suppose λ > 1. The solution {(〈x2kn〉)}
∞

n=0 of (7) with
(x−2, x−1) ∈ R

2 will tend to 〈−1〉.

In view of Lemma 2, we may assume without loss of generality that (x−2, x−1) ∈
(−∞, λ]2. For our assumption, we have aiλ − bi < λ for i = 0, 1, · · · , 2k − 1.
So the proof is same as Theorem 1 and is skipped.

The case where λ = −1.

By arguments similar to those in the lemma 2, we may show the following
result. The case λ = −1 is similar to λ = 1, the proof of Lemma 3, Theorem
4 and Theorem 5, we can refer to Lemma 1, Theorem 1 and Theorem 2.

Lemma 2.6 Suppose λ = −1. If {(〈x2kn〉)}
∞

n=0 is a solution of (7) with
(x−2, x−1) ∈ R

2/(−∞, λ]2, then there exists an integer r ∈ {0, 1, · · · , 2k −
2}, j ∈ N such that (x2kj+r, x2kj+r+1) ∈ (λ,+∞)2.

Proof. For our assumption, we have aiλ+bi > aiλ−bi = λ for i = 0, 1, · · · , 2k−
1.

(i). Suppose (x−2, x−1) ∈ (λ,+∞)2, then we are done.
(ii). Suppose (x−2, x−1) ∈ (−∞, λ] × (λ,+∞). By induction, we see that

x2ki+2m−1 ∈ (λ,+∞) for any m ∈ {0, 1, · · · , k} and i ∈ N; and hence,

x2ki+2m = a2mx2ki+2m−2 + b2mfλ(x2ki+2m−1)

= a2mx2ki+2m−2 + b2m

= a2m(a2m−2x2ki+2m−4 + b2m−2) + b2m

= a2ma2m−2 · · · a0δ
ix−2 − a2ma2m−2 · · · a0δ

i + 1.
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Thus, limi→+∞ x2ki+2m+1 = 1 ∈ (λ,+∞) for any m ∈ {0, 1, · · · , k − 1}, then
there exists enough large j ∈ N such that (x2kj , x2kj+1) ∈ (λ,+∞)2.

(iii). Suppose (x−2, x−1) ∈ (λ,+∞)× (−∞, λ]. By induction, we may see
that x2ki+2m ∈ (λ,+∞) for any m ∈ {0, 1, · · · , k − 1} and i ∈ N; and hence,

x2ki+2m+1 = a2m+1x2ki+2m−1 + b2m+1fλ(x2ki+2m)

= a2m+1x2ki+2m−1 + b2m+1

= a2m+1(a2m−1x2ki+2m−3 + b2m−1) + b2m+1

= a2m+1a2m−1 · · · a1ρ
ix−1 − a2m+1a2m−1 · · · a1ρ

i + 1.

Thus, limi→+∞ x2ki+2m+1 = 1 ∈ (λ,+∞) for any m ∈ {0, 1, · · · , k − 1}, then
there exists enough large j ∈ N such that (x2kj , x2kj+1) ∈ (λ,+∞)2.
By (i), (ii), (iii) the proof is complete.

Theorem 2.7 Suppose λ = −1. The solution {(〈x2kn〉)}
∞

n=0 of (7) with
(x−2, x−1) ∈ (−∞, λ]2 will tend to 〈−1〉.

Proof. For our assumption, we have aiλ − bi = λ for i = 0, 1, · · · , 2k − 1.
Furthermore, by induction, we see that x2ki+j = ajx2ki+j−2 − bj ∈ (−∞, λ]
for any j ∈ {0, 1, · · · , 2k − 1} and i ∈ N; and hence, the proof is similar as
Theorem 1 and is skipped.

Theorem 2.8 Suppose λ = −1. The solution {(〈x2kn〉)}
∞

n=0 of (7) with
(x−2, x−1) ∈ R

2/(−∞, λ]2 will tend to 〈1〉.

Proof. In view of Lemma 3, we may assume without loss of generality that
(x−2, x−1) ∈ (λ,+∞)2. For our assumption, we have aiλ + bi > λ for i =
0, 1, · · · , 2k− 1. Furthermore, by induction, the proof is similar as Theorem 2
and is skipped.

The case where λ < −1.

Lemma 2.9 Suppose λ < −1. If {(〈x2kn〉)}
∞

n=0 is a solution of (7) with
(x−2, x−1) ∈ R

2, then there exists an integer r ∈ {0, 1, · · · , 2k− 2}, j ∈ N such
that (x2kj+r, x2kj+r+1) ∈ (λ,+∞)2.

Proof. (i). Suppose (x−2, x−1) ∈ (λ,+∞)2, then we are done.
(ii). Suppose (x−2, x−1) ∈ (−∞, λ] × (λ,+∞)

⋃

(λ,+∞) × (−∞, λ]. By
induction, the proof are similar to (ii), (iii) of Lemma 3, and hence omitted.

(iii). Suppose (x−2, x−1) ∈ (−∞, λ]2, if x2ki+m ∈ (−∞, λ] for all m ∈
{0, 1, · · · , 2k−1}, i ∈ N, then x2ki+m = amx2ki+m−2−bm for allm ∈ {0, 1, · · · , 2k−
1}, thus limi→+∞ x2ki+m = −1 ∈ (λ,+∞), which is a contradiction. Therefore,
there exist j ∈ N, such that x2kj ∈ (λ,+∞), x0, x1, · · · ,
x2k−1, x2k, x2k+1, · · · , x4k−1, · · · , x2kj−2, x2kj−1 ∈ (−∞, λ]. So by (i), (ii), (iii)
conclusion holds. The proof is complete.
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Theorem 2.10 Suppose λ < −1. The solution {(〈x2kn〉)}
∞

n=0 of (7) with
(x−2, x−1) ∈ R

2 will tend to 〈1〉.

For our assumption, we have aiλ + bi > λ for i = 0, 1, · · · , 2k − 1. In view
of Lemma 4, we may assume without loss of generality that (x−2, x−1) ∈
(λ,+∞)2. So the proof is similar as Theorem 2 and is skipped.

The case where −1 < λ < 1.

By arguments similar to those in the Theorem 5 and Theorem 6, we may
show the following two results.

Theorem 2.11 Suppose −1 < λ < 1, then the following conclusions hold.

(i). Suppose (x−2, x−1) ∈ (λ,+∞)2, the every solution of (7) tend to 〈1〉.

(ii). Suppose (x−2, x−1) ∈ (−∞, λ]2, the every solution of (7) tend to 〈−1〉.

For our assumption, we have aiλ + bi > λ > aiλ− bi for i = 0, 1, · · · , 2k − 1.
So (i) and (ii) respectively are similar Theorem 2 and Theorem 1. Hence the
proofs are omitted.

Theorem 2.12 Suppose −1 < λ < 1. Suppose that {(〈x2kn〉)}
∞

n=0 is a solu-

tion of (7) with (x−2, x−1) ∈ (D
(0,2,··· ,2m−2)
i , D

(0,2,··· ,2m)
i ]×(L

(1,3,··· ,2l+1)
j , L

(1,3,··· ,2l−1)
j ],

where i, j ∈ {0, 1, · · · }, m, l ∈ {0, 1, · · · , k − 1}, then,

(i).limi→∞{(〈x2kn〉)}
∞

n=0 = 〈−1〉 for i = j, 0 ≤ m ≤ l.

(ii).limi→∞{(〈x2kn〉)}
∞

n=0 = 〈1〉 for i = j,m > l.

(iii).limi→∞{(〈x2kn〉)}
∞

n=0 = 〈−1〉 for i < j.

(iv).limi→∞{(〈x2kn〉)}
∞

n=0 = 〈1〉 for i > j.

Proof. Suppose that (x−2, x−1) ∈ (D
(0,2,··· ,2m−2)
i , D

(0,2,··· ,2m)
i ]×(L

(1,3,··· ,2l+1)
j , L

(1,3,··· ,2l−1)
j ],

then,

(i)We distinguish two different cases.

Case 1. Consider 0 = i = j, 0 ≤ m ≤ l. Then, by induction, we have,

x0 = a0x−2 + b0fλ(x−1) = a0x−2 − b0 ∈ (D
(2,4,··· ,2m−2)
0 , D

(2,4,··· ,2m)
0 ],

x1 = a1x−1 + b1fλ(x0) = a1x−1 + b1 ∈ (L
(3,5,··· ,2l+1)
0 , L

(3,5,··· ,2l−1)
0 ],

...

x2m = a2mx2m−2 + b2mfλ(x2m−1) = a2mx2m−2 − b2m ∈ (a2mD
(−2)
0 − b2m, D

(−2)
0 ],

x2m+1 = a2m+1x2m−1 + b2m+1fλ(x2m−1) ≤ a2m+1λ− b2m+1 < λ.
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Case 2. Consider 0 < i = j, 0 ≤ m ≤ l. Then, by induction, we have,

x0 = a0x−2 + b0fλ(x−1) = a0x−2 − b0 ∈ (D
(2,4,··· ,2m−2)
i , D

(2,4,··· ,2m)
i ],

x1 = a1x−1 + b1fλ(x0) = a1x−1 + b1 ∈ (L
(3,5,··· ,2l+1)
i , L

(3,5,··· ,2l−1)
i ],

...

x2k−2 = a2k−2x2k−4 + b2k−2fλ(x2k−3) = a2k−2x2k−4 − b2k−2 ∈ (D
(0,2,··· ,2m−2)
i−1 , D

(0,2,··· ,2m)
i−1 ],

x2k−1 = a2k−1x2k−3 + b2k−1fλ(x2k−2) = a2k−1x2k−3 + b2k−1 ∈ (L
(1,3,··· ,2l+1)
j−1 , L

(1,3,··· ,2l−1)
j−1 ].

and by induction, we have,

x2ki = a0x2ki−2 + b0fλ(x2ki−1) = a0x2ki−2 − b0 ∈ (D
(2,4,··· ,2m−2)
0 , D

(2,4,··· ,2m)
0 ],

x2ki+1 = a1x2ki−1 + b1fλ(x2ki) = a1x2ki−1 + b1 ∈ (L
(3,5,··· ,2l+1)
0 , L

(3,5,··· ,2l−1)
0 ],

...

x2ki+2m = a2mx2ki+2m−2 − b2m ∈ (a2mD
(−2)
0 − b2m, D

(−2)
0 ],

x2ki+2m+1 = a2m+1x2ki+2m−1 + b2m+1fλ(x2ki+2m) ≤ a2m+1λ− b2m+1 < λ.

So by Theorem 7, we can get limi→∞{(〈x2kn〉)}
∞

n=0 = 〈−1〉.
(ii) similar to (i), by distinguishing two different cases and by induction,

we have the following:
Case 1. Consider 0 = i = j,m > l.
Case 2. Consider 0 < i = j,m > l.
The proof in detail please see (i).
(iii) We distinguish four different cases.
Case 1. Consider 0 = i < j, 0 ≤ m ≤ l. Then, by induction, we have,

x0 = a0x−2 + b0fλ(x−1) = a0x−2 − b0 ∈ (D
(2,4,··· ,2m−2)
0 , D

(2,4,··· ,2m)
0 ],

x1 = a1x−1 + b1fλ(x0) = a1x−1 + b1 ∈ (L
(3,5,··· ,2l+1)
j , L

(3,5,··· ,2l−1)
j ],

...

x2m = a2mx2m−2 + b2mfλ(x2m−1) = a2mx2m−2 − b2m ∈ (a2mD
(−2)
0 − b2m, D

(−2)
0 ],

x2m+1 = a2m+1x2m−1 + b2m+1fλ(x2m) = a2m+1x2m−1 − b2m+1 ≤ a2m+1λ− b2m+1 < λ.

Case 2. Consider 0 = i < j,m > l. Then, by induction, we have,

x0 = a0x−2 + b0fλ(x−1) = a0x−2 − b0 ∈ (D
(2,4,··· ,2m−2)
0 , D

(2,4,··· ,2m)
0 ],

x1 = a1x−1 + b1fλ(x0) = a1x−1 + b1 ∈ (L
(3,5,··· ,2l+1)
j , L

(3,5,··· ,2l−1)
j ],

...

x2m = a2mx2m−2 + b2mfλ(x2m−1) = a2mx2m−2 − b2m ∈ (a2mD
(−2)
0 − b2m, D

(−2)
0 ],

x2m+1 = a2m+1x2m−1 + b2m+1fλ(x2m) = a2m+1x2m−1 − b2m+1 ≤ a2m+1λ− b2m+1 < λ.
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Case 3. Consider 0 < i < j, 0 ≤ m ≤ l. Then, by induction, we have,

x0 = a0x−2 + b0fλ(x−1) = a0x−2 − b0 ∈ (D
(2,4,··· ,2m−2)
i , D

(2,4,··· ,2m)
i ],

x1 = a1x−1 + b1fλ(x0) = a1x−1 + b1 ∈ (L
(3,5,··· ,2l+1)
i , L

(3,5,··· ,2l−1)
i ],

...

x2k−2 = a2k−2x2k−4 + b2k−2fλ(x2k−3) = a2k−2x2k−4 − b2k−2 ∈ (D
(0,2,··· ,2m−2)
i−1 , D

(0,2,··· ,2m)
i−1 ],

x2k−1 = a2k−1x2k−3 + b2k−1fλ(x2k−2) = a2k−1x2k−3 + b2k−1 ∈ (L
(1,3,··· ,2l+1)
j−1 , L

(1,3,··· ,2l−1)
j−1 ].

and by induction, we have,

x2ki = a0x2ki−2 + b0fλ(x2ki−1) = a0x2ki−2 − b0 ∈ (D
(2,4,··· ,2m−2)
0 , D

(2,4,··· ,2m)
0 ],

x2ki+1 = a1x2ki−1 + b1fλ(x2ki) = a1x2ki−1 + b1 ∈ (L
(3,5,··· ,2l+1)
j−i , L

(3,5,··· ,2l−1)
j−i ],

...

x2ki+2m = a2mx2ki+2m−2 − b2m ∈ (a2mD
(−2)
0 − b2m, D

(−2)
0 ],

x2ki+2m+1 = a2m+1x2ki+2m−1 + b2m+1fλ(x2ki+2m) ≤ a2m+1λ− b2m+1 < λ.

Case 4. Consider 0 < i < j,m > l. Then, by induction, we have,

x0 = a0x−2 + b0fλ(x−1) = a0x−2 − b0 ∈ (D
(2,4,··· ,2m−2)
i , D

(2,4,··· ,2m)
i ],

x1 = a1x−1 + b1fλ(x0) = a1x−1 + b1 ∈ (L
(3,5,··· ,2l+1)
i , L

(3,5,··· ,2l−1)
i ],

...

x2k−2 = a2k−2x2k−4 + b2k−2fλ(x2k−3) = a2k−2x2k−4 − b2k−2 ∈ (D
(0,2,··· ,2m−2)
i−1 , D

(0,2,··· ,2m)
i−1 ],

x2k−1 = a2k−1x2k−3 + b2k−1fλ(x2k−2) = a2k−1x2k−3 + b2k−1 ∈ (L
(1,3,··· ,2l+1)
j−1 , L

(1,3,··· ,2l−1)
j−1 ].

and by induction, we have,

x2ki = a0x2ki−2 + b0fλ(x2ki−1) = a0x2ki−2 − b0 ∈ (D
(2,4,··· ,2m−2)
0 , D

(2,4,··· ,2m)
0 ],

x2ki+1 = a1x2ki−1 + b1fλ(x2ki) = a1x2ki−1 + b1 ∈ (L
(3,5,··· ,2l+1)
j−i , L

(3,5,··· ,2l−1)
j−i ],

...

x2ki+2m−1 = a2m−1x2ki+2m−3 + b2m−1fλ(x2ki+2m−2) = a2m−1x2ki+2m−3 − b2m−1

∈ (L
(1,3,5,··· ,2l+1,2m+1,2m+3,··· ,2k−1)
j−i , L

(1,3,5,··· ,2l−1,2m+1,2m+3,··· ,2k−1)
j−i ],

x2ki+2m = a2mx2ki+2m−2 − b2m ∈ (a2mD
(−2)
0 − b2m, D

(−2)
0 ],

x2ki+2m+1 = a2m+1x2ki+2m−1 + b2m+1fλ(x2ki+2m) ≤ a2m+1λ− b2m+1 < λ.

So by Theorem 7, we can get limi→∞{(〈x2kn〉)}
∞

n=0 = 〈−1〉.
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(iv) similar to (iii), by distinguishing four different cases and by induction,
we have the following:

Case 1. Consider 0 = j < i, 0 ≤ m ≤ l.
Case 2. Consider 0 = j < i,m > l.
Case 3. Consider 0 < j < i, 0 ≤ m ≤ l.
Case 4. Consider 0 = j < i,m > l.
The proof in detail please see (iii).

Theorem 2.13 Suppose −1 < λ < 1. Suppose that {(〈x2kn〉)}
∞

n=0 is a solu-

tion of (7) with (x−2, x−1) ∈ (A
(0,2,··· ,2m)
i , A

(0,2,··· ,2m−2)
i ]×(B

(1,3,··· ,2l−1)
j , B

(1,3,··· ,2l+1)
j ],

where i, j ∈ {0, 1, · · · }, m, l ∈ {0, 1, · · · , k − 1}, then,
(i).limi→∞{(〈x2kn〉)}

∞

n=0 = 〈1〉 for i = j, 0 ≤ m ≤ l.
(ii).limi→∞{(〈x2kn〉)}

∞

n=0 = 〈−1〉 for i = j,m > l.
(iii).limi→∞{(〈x2kn〉)}

∞

n=0 = 〈1〉 for i < j.
(iv).limi→∞{(〈x2kn〉)}

∞

n=0 = 〈−1〉 for i > j.

The proof is similar Theorem 8. Hence the proofs are omitted.

3 Discussion

The result in the previous section for the system (7) can easily be translated
into result for (6). We summa as follow:

(1) Suppose λ = 1. A solution {(xn, xn+1)}
∞

n=−2 of (6) with (x−2, x−1) ∈
(λ,+∞)2 will tend towards 〈1〉. If (x−2, x−1) ∈ R

2/(λ,+∞)2, the solutions
will tend towards 〈−1〉.

(2) Suppose λ > 1. A solution {(xn, xn+1)}
∞

n=−2 of (6) with (x−2, x−1) ∈ R
2

will eventually fall into (−∞, λ]2 and approach 〈−1〉.
(3) Suppose λ = −1. A solution {(xn, xn+1)}

∞

n=−2 of (6) with (x−2, x−1) ∈
(−∞, λ]2 will tend towards 〈−1〉. If (x−2, x−1) ∈ R

2/(−∞, λ]2, the solutions
will tend towards 〈1〉.

(4) Suppose λ < −1. A solution {(xn, xn+1)}
∞

n=−2 of (6) with (x−2, x−1) ∈
R

2 will eventually fall into (λ,+∞)2 and approach 〈1〉.
(5) Suppose−1 < λ < 1. A solution {(xn, xn+1)}

∞

n=−2 of (6) with (x−2, x−1) ∈
(λ,+∞]2 will tend towards 〈1〉. If (x−2, x−1) ∈ (−∞, λ]2, the solutions will tend
towards 〈−1〉. If (x−2, x−1) ∈ R

2/(−∞, λ]2/(λ,+∞)2, results in detail please
see Theorem 8 and Theorem 9.

In neural network terminologies, we have discussed a simple neuron recur-
rent McCulloch-Pitts-type neural network with a threshold and 2k-periodic
coefficients. Such an observation seems to appear in many natural processes
and hence our model may be use to explain such phenomena. It is also ex-
pected that when a group of neural units interact with each other in a network
where each unit is governed by evolutionary laws of the form (6), complex
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but manageable analytical results can be obtained. These will be left to other
studiers in the future.

4 Appendix

We let
〈1〉 = (1, 1, · · · , 1), 〈−1〉 = (−1,−1, · · · ,−1).

D
(j0,j1,··· ,jm)
i =

λ+ 1− aj0aj1 · · · ajmδ
i

aj0aj1 · · ·ajmδ
i

, j0, j1, · · · , jm ∈ {0, 2, · · · , 2k − 2} (8)

B
(j0,j1,··· ,jm)
i =

λ+ 1− aj0aj1 · · · ajmρ
i

aj0aj1 · · ·ajmρ
i

, j0, j1, · · · , jm ∈ {1, 3, · · · , 2k − 1} (9)

A
(j0,j1,··· ,jm)
i =

λ− 1 + aj0aj1 · · · ajmδ
i

aj0aj1 · · ·ajmδ
i

, j0, j1, · · · , jm ∈ {0, 2, · · · , 2k− 2} (10)

L
(j0,j1,··· ,jm)
i =

λ− 1 + aj0aj1 · · ·ajmρ
i

aj0aj1 · · · ajmρ
i

, j0, j1, · · · , jm ∈ {1, 3, · · · , 2k − 1} (11)

We assume −1 < λ < 1. Then,

D
(−2)
0 = B

(−1)
0 = λ.

D
(0,2,··· ,2m−2)
i = D

(−2)
i+1 ,

B
(1,3,··· ,2m−1)
i = B

(−1)
i+1 ,

D
(j0,j1,··· ,jm)
i < D

(j0,j1,··· ,jm+1)
i ,

B
(j0,j1,··· ,jm)
i < B

(j0,j1,··· ,jm+1)
i ,

lim
i→∞

D
(j0,j1,··· ,jm)
i = lim

i→∞

B
(j0,j1,··· ,jm)
i = +∞.

And,
A

(−2)
0 = L

(−1)
0 = λ.

A
(0,2,··· ,2m−2)
i = A

(−2)
i+1 ,

L
(1,3,··· ,2m−1)
i = L

(−1)
i+1 ,

A
(j0,j1,··· ,jm+1)
i < A

(j0,j1,··· ,jm)
i ,

L
(j0,j1,··· ,jm+1)
i < L

(j0,j1,··· ,jm)
i ,

lim
i→∞

A
(j0,j1,··· ,jm)
i = lim

i→∞

L
(j0,j1,··· ,jm)
i = −∞.

Thus,

(λ,+∞) =
i=0
⋃

∞

m=0
⋃

k−1

(D
(0,2,··· ,2m−2)
i , D

(0,2,··· ,2m)
i ] (12)
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(λ,+∞) =

i=0
⋃

∞

m=0
⋃

k−1

(B
(1,3,··· ,2m−1)
i , B

(1,3,··· ,2m+1)
i ] (13)

(−∞, λ] =

i=0
⋃

∞

m=0
⋃

k−1

(A
(0,2,··· ,2m)
i , A

(0,2,··· ,2m−2)
i ] (14)

(−∞, λ]) =

i=0
⋃

∞

m=0
⋃

k−1

(L
(1,3,··· ,2m+1)
i , L

(1,3,··· ,2m−1)
i ] (15)
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