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Abstract: This paper deals with an exact linearization approach to control chaos in non-
linear dynamical systems. The linearization technique has been presented as an algorithmic
process to stabilize the systems at the control goal. The paper provides a unified frame-
work for studying the two cases of having a point or a limit cycle as the control goal. A few
conditions are obtained on the controller parameters that determine whether the control
action guides the system asymptotically to a point or a limit cycle. The theoretical results
are then applied to Sprott system N to substantiate the effectiveness of this method. The
cases of both linear and non-linear output functions are studied. Numerical simulations
provide some insight into the geometry of the basins of attraction of the control goal.
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1. Introduction

The word ‘chaos’ defines an aperiodic long term behaviour in deterministic systems
that exhibits sensitive dependence on initial conditions. As it arises very frequently in
problems of applied sciences, control of chaos has grown into an exceedingly important
topic in the study of nonlinear dynamics. Since 1990, wide applications of chaos theory
in secret communication has led to heightened interest in this field. Currently, there are
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several well known methods for controlling chaos[1] such as open loop control, closed loop
control, parametric entrainment control, linear, non-linear and adaptive feedback control,
etc. Some of these methods stabilize the dynamical systems globally whereas others do
so locally, in a neighbourhood of control goal. Generally, the local stabilization methods
are rooted in linearizing the systems using Taylor’s theorem, which is valid only in a
neighbourhood. Apart from these, there are some non-conventional methods of which
exact linearizartion control[2] is a prominent example. The idea of converting a non-linear
system to a linear system through some suitable non-singular co-ordinate transformation[3]
has been proven to be a very powerful method in control theory. Though this method
stabilize the system locally, it is often more effective than conventional methods. Notable
work in this direction was done by Yu[4] who used input-output linearization method for
controlling chaos. In 1998, Kocarev used differential geometric control techniques to non
linear dynamical systems[5]. In the subsequent years, Liqun and Yanzhu[6, 7], Alvarez[8]
and Tsagas and Mazumdar[9] applied the exact linearization control to chaotic oscillators.
Chaos in Chen equations was recently controlled using feedback linearization by Shi and
Zhu[10]. Recently Islam et al[11] extended the method to produce a general framework
that accommodates both points and limit cycles as the control target. The main theoretical
results of this paper are aimed at placing the results found in[11] on a rigorous footing.

Section 2 contains the theoretical results of the paper and Section 3 discusses the appli-
cation of these results on Sprott system N . Section 2.1 is a recapitulation of the results
related to state space exact linearization. Section 2.2 provides rigorous proofs that estab-
lish necessary and sufficient condition for stabilizing a chaotic system at a point and a
sufficient condition for stabilizing the system onto a limit cycle. Certain definitions are
proposed involving goal points, admissibility of goal points and reachability of goal points
in connection with the proofs. The resulting algorithmic process to stabilize the system at
a point or a on limit cycle is outlined in Section 2.3.

2. Exact linearization and control of chaos

A non-linear dynamical system is generally represented by

(1) ẋ = f(x)

and the corresponding control-affine system by

(2) ẋ = f(x) + g(x)u

where x ∈ R
n; f, g ∈ C∞(Rn) and u is a real valued C∞ function on R

n.

2.1. Exact linearization of non-linear systems.

Definition 1. A Ck(k ≥ 1) function T : U ⊂ R
n → R

n is said to be a Ck local dif-
feomorphism if for each x ∈ U , there exists a neighbourhood Wx such that T |Wx

is a
diffeomorphism.

Definition 2. A system of the form (2) is said to be feedback linearizable[1] with respect
to output y = λ(x) on an open set U ⊂ R

n provided there exists a Ck(k ≥ 1) local
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diffeomorphsim T (x) and a smooth function v = α(x) + β(x)u such that the coordinate
transformation z = T (x) produces a linear controllable system.

The linear controllable system, in its most general form, is given by :

(3) ż = Cz +Bv,

where the pair (C,B) is controllable. It is a well known fact[12] that for feedback lineariz-
able systems, there exists a suitable choice of the local diffeomorphism T such that

C =









0 1 0 . . . 0
0 0 1 . . . 0
...

...
0 0 0 . . . 0









and B =









0
0
...
1









Hence, in what follows, we assume that C and B has the above form.

Definition 3. Lie bracket of smooth vector fields F,G : U ⊂ R
n → R

n is defined to be the
vector field [F,G] : U → R

n given by

[F,G](x) := (DG(x))F (x)− (DF (x))G(x)

where DF (x)( resp. DG(x)) is the derivative of F ( resp. G) at the point x.

Let us now introduce the notation

adk

f
g = [f, adk−1

f
g], for all k ∈ N

where we define

ad0
fg = g.

Viewing these as elements in R
n,

adk

f
g(x) = [(adk

f
g(x))

1
, (adk

f
g(x))

2
, . . . , (adk

f
g(x))

n
]T ,

where
(

adk

f
g(x)

)

j
=

n
∑

i=1

[

f
i

∂

∂x
i

(

adk−1
f

g(x)
)

j
−

(

adk−1
f

g(x)
)

i

∂

∂x
i

(f
j
)

]

.

With these definitions in hand, we state the two results[12] that are fundamental to
exact linearization of non-linear systems.

Result 1. A system of the form (2) is feedback linearizable in the neighbourhood N(x0) of
x0 ∈ R

n if and only if the following conditions are satisfied on N(x0) :

1) The matrix M = [g(x), adfg(x), ..., ad
n−1
f g] has rank n

2) S = span{g, adfg, ..., adn−2
f g} is involutive

If the above two conditions are satisfied, then the existence of the suitable output function
λ(x) is given by the following result.
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Result 2. If the conditions 1) and 2) in Result 1 hold, then there exists a real valued
Ck(k ≥ 1) function λ : N(x0) → R such that

L
ad

k
f g
λ(x) = 0, 0 ≤ k ≤ n− 2

and
L
ad

n−1

f
gλ(x) 6= 0

for all x ∈ N(x0).

Here we use the notation L
F
G(x) to denote the Lie derivative of the real valued function

G(x) with respect to the vector field F .

2.2. Stabilization of the linearized system. The feedback linearized system (3), with
v chosen to be a1z1 + a2z2 + ...+ anzn where a1, a2, ..., an ∈ R, can be represented by

(4) ż = Az

where

A =









0 1 0 . . . 0
0 0 1 . . . 0
...

...
a1 a2 a3 . . . an









.

Let the equilibrium points of this linear system be N(A) = {z : Az = 0}.
Definition 4. The admissible set of goal points of system (2) under the feedback control u
is defined to be ∪z∈N(A)T

−1(z) where T−1(z) = {x : T (x) = z}.
Definition 5. A point z0 is said to be asymptotically reachable from U if for all z ∈ U ,
there exists an integral curve of system (4) such that limt→∞ z(t) = z0.

Definition 6. An admissible goal point is termed a goal point of the system provided it is
reachable from an open set U(x0) containing x0.

Theorem 1. A point x0 is a goal point of (2) if T (x0)(= z0) ∈ N(A) and z0 is an
asymptotically stable equilibrium point of (4).

Proof. To prove this theorem, let us assume that T (xo) = z0 ∈ N(A) and z0 be an asymp-
totically stable erquilibrium point of (4). Since z0 is an asymptotically stable erquilibrium
point of (4) and T is a local diffeomorphism, there exist an open set V (z0) ∈ N(z0)
such that T−1(V (z0)) = U(x0)(say) is an open set containing x0 with an integral curve
ψ(t) ∈ V (z0) of system (4) such that ψ(0) = z ∈ V (z0) and limt→∞ ψ(t) = z0.Therefore
T−1ψ(t) ∈ U(x0) and limt→∞ T−1ψ(t) = T−1(limt→∞ ψ(t)) = T−1(z0) = x0.

This shows that T−1Ψ is the required integral curve of system (2) to get x0 as goal point. �

Analogous to the admissible goal points, it is also possible to treat limit cycles as control
goals. Let Cx(t) be a periodic solution of (2). It is then easy to observe that T (Cx) is a
periodic solution of (4). The converse holds only when the periodic solution Cz(t) of (4)
lies in T (N(x0)), so that T−1(Cz) is well defined. Whenever T−1(Cz) exists and is well
defined, it is also periodic as can be observed quite easily.
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Theorem 2. If (4) has a periodic solution Cz such that Cz(t) ∈ T (N(x0)) for all t ≥ 0,
then Cx = T−1(Cz) is a periodic solution of (2).

Proof. Follows from the above discussion. �

Now we restrict our discussions to R
3.

Theorem 3. T−1(0) is the complete set of goal points if and only if the transformation
T : N(x0) → R

3 produces a system of the form (4) with the matrix A satisfying a1 <
0, a2 < 0, a3 < 0, a1 + a2a3 > 0.

Proof. The conditions on A ensure that the equilibrium points of (4) are asymptotically
stable. Thus A must be non-singluar, that is, N(A) = {0}.

By Theorem 1, x0 is a goal point if and only if z0 = T (x0) is asymptotically stable and
z0 is asymptotically stable if and only if A satisfies the inequalities in the theorem. But
z0 can only take the value 0 in this case. Hence, we have, x0 is a goal point if and only if
T (x0) = 0 and A satisfies the conditions of the theorem. �

Theorem 4. If the matrix A in (4) satisfies a1 < 0, a2 < 0, a3 < 0, a1 + a2a3 = 0 and
the periodic solution of (4) has sufficiently small amplitude, then (2) has a stable periodic
solution.

Proof. If A satisfies the conditions of the theorem, the linear system (4) has a stable
periodic solution, say Cz.Further suppose that a1, a2 and a3 are chosen such that Cz has
sufficiently small amplitude, that is, Cz(t) ∈ T (N(x0)) for all t ≥ 0. Then, by Theorem
2, we have a periodic solution Cx of (2). As Cz is stable and Cx = T−1(Cz), Cx is also
stable. �

2.3. Algorithm for control of chaos by exact linearization.

Step 1: : Problem formulation and computation of adk
fg

Consider a non-linear dynamical system

(5) ẋ = f(x)

and its corresponding non-linear single input control system as

(6) ẋ = f(x) + g(x)u,

The quantities adk
fg for 0 ≤ k ≤ n− 1 are computed.

Step 2: : Determination of region where exact linearization is applicable
To find a set Ω such that for all x0 ∈ Ω, there exists an open set Ux0

such that the
matrix

M = [g(x), adfg(x), ..., ad
n−1
f g]

has rank n and

S = span{g, adfg, ..., adn−2
f g}

is involutive for all x ∈ Ux0
.
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Step 3: : Determination of output function
Then, by Result 2, there exist a real valued function λ(x) in a neighbourhood N(x0)
of the point x0 such that the following are satisfied :

L
g
λ(x) = L

ad
f
g
λ(x) = L

ad2
f
g
λ(x) = . . . . . . = L

ad
n−2

f
g
= 0

and

L
ad

n−1

f
g
λ(x) 6= 0.

The function λ(x) is determined by solving the system on (n − 1) first order
PDEs given by the above conditions.

Step 4: : Determination of the transformation formulae
We have the coordinate transformation z : N(x

◦
) → R

n given by,

z = (z
1
, z

2
, . . . , z

n
)T = T (x)

= [T
1
(x), T

2
(x), . . . , T

n
(x)]T

= [λ(x), L
f
λ(x), . . . , Ln−1

f
λ(x)]T .(7)

and a smooth transformation of feedback, given by

v = α(x) + β(x)u

= Ln

f
λ(x) + L

g
Ln−1

f
λ(x)u

By Result 1, with these transformations applied, the non-linear system is trans-
formed to the linear controllable system,

ż
1
= z

2

ż
2
= z

3

...

ż
n−1

= z
n

ż
n
= v

In order to have a closed loop linear system, let us choose

v = a
1
z
1
+ a

2
z
2
+ ...+ anzn

where a1, a2, ..., an ∈ R.
Step 5: : Stabilization of the chaotic system (the specific case n=3)

Firstly, let the matrix A satisfy the conditions a1 < 0, a2 < 0, a3 < 0, a1+ a2a3 > 0.
Then, G = T−1(0) gives the set of goal points.
Now let the matrix A satisfy the conditions a1 < 0, a2 < 0, a3 < 0, a1 + a2a3 = 0.
Then, we have to choose x(0) such that z(0) is very close to the origin and hence,
the resulting limit cycle Cz will be of sufficiently small amplitude. This would
stabilize the chaotic system onto the limit cycle Cx.
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3. Application of the algorithm to the Sprott chaotic system N

Step 1: : Problem formulation and computation of adk
fg

We consider the Sprott chaotic system-N described by

ẋ
1
= −αx

2

ẋ
2
= x

1
+ x2

3

ẋ
3
= β + x

2
− γx

3
(8)

which is chaotic for α = 2, β = 1 and γ = 2. The above system of equations can
be written as

(9) ẋ = f(x)

where ẋ =





ẋ
1

ẋ
2

ẋ
3



 and f(x) =





−αx
2

x
1
+ x2

3

β + x
2
− γx

3



 .

The corresponding nonlinear control system is

(10) ẋ = f(x) + g(x)u,

where g(x) = (0, 0,−x3)T and u(x
1
, x

2
, x

3
) is the parametric entrainment control is

applied to the parameter γ.
Computation of adk

fg for k = 1, 2 gives :

adfg(x) = [f, g](x) =





0
2x2

3

−(β + x
2
)





ad2
f
g(x) = [f, adfg](x) =





2αx2
3
+ β + x

3

2x
3
(3β + 3x

2
− 2γx

3
)

−(β + x
2
+ γβ − 2x2

3
)





Step 2: : Determination of region where exact linearization is applicable
Here,

det(M) =

∣

∣

∣

∣

∣

∣

0 0 2αx2
3
+ β + x

3

0 2x2
3

2x
3
(3β + 3x

2
− 2γx

3
)

−x
3

−(β + x
2
) −(β + x

2
+ γβ − 2x2

3
)

∣

∣

∣

∣

∣

∣

= 2x3
3
(β + x

3
+ 2αx2

3
)

= 0, if and only if x3 = 0.

Let Ω = π−1
3 (R \ {0}) where π3 : R

3 → R is the projection onto the third
coordinate. Continuity of π3 implies that Ω is open. Hence, for any x0 ∈ Ω, there
exists Ux0

⊂ Ω, and hence, det(M) 6= 0 for all x ∈ Ux0
.
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As the third coordinate is nonzero on Ux0
,

[g, ad
f
g](x) =





0
−4x2

3

−(β + x
2
)



 =
3

x
3

(β + x
2
)g(x) + (−2)ad

f
g(x)

which establishes that S = span{g(x), αd
f
g(x)} is involutive for all x ∈ Ux0

.
Thus, exact linearization is applicable on the open subset Ω of R3.

Step 3, 4 and 5: : Determination of output function, transformation for-
mulae and stabilization of chaos
Solving the system of two PDEs given by L

g
λ(x) = 0 and Ladf gλ(x) = 0, it is ob-

served that λ(x) is a function of x1 only, that is, λ(x) = ψ(x1). It is also necessary
to have Lad2

fg
λ(x) 6= 0 on some neighbourhood of x0, where x0 ∈ Ω.

In order to investigate the dependence of the control system on the choice of
output function, two separate cases are studied with a linear and a non-linear (qua-
dratic) output function respectively.

Case I : Linear output ψ(x
1
)

Considering the linear output functionψ(x
1
) = x

1
+ xg, where xg(> 0) is a positive real

constant, the transformation formulae




z
1

z
2

z
3



 =





x1 + xg
−αx

2

−α(x
1
+ x2

3
)



 =





T1
T2
T3





will transform the chaotic system to the linear controllable system for the control action

u =
1

L
g
L2

f
λ(x)

[v − L3
f
λ(x)]

=
1

2αx2
3

[a
1
(x

1
+ c)− αa

2
x

2
− αa

3
(x

1
+ x2

3
)− α2x

2
+ 2αx

3
(β + x

2
− γx

3
)]

where a
1
, a

2
, a

3
∈ R are the control parameters. The inverse transformation is





x
1

x
2

x
3



 = T−1(Z) =





T−1
1

(z)
T−1

2
(z)

T−1
3

(z)



 =







z
1
− xg

− 1
α
z
2

±
√

− 1
α
z
3
− z

1
+ xg







The set of goal points, G is given by G = {(−xg, 0,±√
xg) : xg > 0}. Suppose a1, a2, a3

have been chosen suitably. Then, modifying xg, we can drive the system towards any goal
point in G. In this case, any point on the curve x23 = x1, x2 = 0 can be reached with this
control action u.

Simulation results and discussion for Case I :
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Figure 1. Phase portrait of Sprott-N chaotic system
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−30

−25

−20

−15

−10

−5

0

5

10

−20 −15 −10 −5 0 5 10

−5

−4

−3

−2

−1

0

1

2

3

4

5

x
2

x
1

x 3

F
2
(− 8, 0, − 2.8284)
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Figure 7. Convergence of the chaotic system to the limit cycles separated by attractor

Figure 1 shows the phase portrait of the Sprott chaotic system-N with parameter val-
ues α = 2, β = 1 and γ = 2. In figure 2, we present the change of the state variables
x

1
, x

2
and x

3
with varying time t. The dotted line represents the behaviour of the state

variables of the original non linear chaotic system whereas the solid line gives the same
for the controlled chaotic system. In figure 3 and figure 4, the control parameters are
given the value a

1
= −6, a

2
= −3 and a

3
= −3 so that the matrix A has only negative

eigenvalues. For figure 3, we have the initial conditions x
1
(0) = −0.4, x

2
(0) = 0.4 and

x
3
(0) = 0.4, lying in the region corresponding to x

3
positive. It is observed that for this

choice of initial condition, the trajectories asymptotically settle down to the goal point
F2 = (−8, 0,−2.8248) corresponding to x

g
= 8. If a new intial condition is chosen by

taking x3 to be the negative of the previous value and rest of the coordinates fixed, that
is, with initial conditions x

1
(0) = −0.4, x

2
(0) = 0.4 and x

3
(0) = −0.4, it is seen that the

system stabilizes at F1 = (−8, 0, 2.8248). F1 and F2 are separated by the chaotic attractor
itself,as seen in Figure 4. The essence of Figure 4 is that it gives us a good geometric idea
of how the choice of initial condition will determine what state the system will ultimately
reside in. Given a fixed xg > 0, there are two goal points F1 and F2, given by (xg, 0,

√
xg)

and (xg, 0,−√
xg) respectively. Let N(F1) and N(F2) be the respective neighbourhoods

where the system is exactly linearizable. Here, xg 6= 0 as the exact linearization carried out
in this problem holds only for x3 6= 0. Clearly, there exists non-empty disjoint open sets U1

and U2 such that F1 ∈ U1 and F2 ∈ U2. If we define Vi = Ui ∩N(Fi) for i = 1, 2, then for
any x ∈ Vi, the trajectories of the system starting at x asymptotically reach Fi(i = 1, 2).

With open sets V
′

i ⊂ N(Fi) (defined with the same motivation as above) and the control
parameters modified to a1 = −9, a2 = −3 and a3 = −3, we obtain analogous results for
the goal cycles Li, where i = 1, 2. For initial conditions in V

′

1 , sufficiently close to F1,
with the x3 coordinate positive, the system settles down onto the goal cycle L1 around F1.
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Similarly, x3 negative causes the system to reach the limit cycle L2. Figure 7 illustrates
these results. Figure 5 gives time series of the state variables in this situation. Figure 6
displays the chaotic attractor and the limit cycle together.

Case 2 : Quadratic output ψ(x
1
)

Let the quadratic output be ψ(x
1
) = x21 − xg, where xg(> 0) is a positive constant.

The transformation formulae




z
1

z
2

z
3



 =





x2
1
− xg

−2αx
1
x

2

2α2x2
2
− 2αx2

1
− 2αx

1
x2

3



 =





T
1

T
2

T
3





will transform the chaotic system to the linear controllable system for the control parameter

u =
1

L
g
L2

f
λ(x)

[v − L3
f
λ(x)]

=
1

4αx
1
x2

3

[a
1
(x2

1
− xg)− 2αa

2
x

1
x

2
+ a

3
(2α2x2

2
− 2αx2

1
− 2αx

1
x2

3
)− 6α2x

2
(x

1
+ x2

3
)

− 2α2x
1
x

2
− 4α2x

2
(x

1
+ x2

3
) + 4αx

1
x

3
(β + x

2
− γx

3
)]

with a
1
, a

2
, a

3
∈ R.

The inverse transformation is





x
1

x
2

x
3



 = T−1(Z) =





T−1
1

(z)
T−1

2
(z)

T−1
3

(z)



 =











±√
z
1
+ xg

∓ z
2

2α
√

z
1
+xg

±
√

1

±2α
√

z
1
+xg

[
z2
2

2(z
1
+xg)

− 2α(z
1
+ xg)− z

3
]











The set of goal points G is given by G = {(−√
xg, 0,±x

1

4

g ) : xg > 0}. Suppose a1, a2, a3
has been chosen as discussed in the paper. Then modifying xg, we can drive the system
to any goal point in G. Again, we can choose a1, a2, a3 such that it reaches a goal cycle.
Then, modifying xg, we can drive the system to a limit cycle around any point in G.

Simulation results and discussion for Case II :
The observations of Case II are almost similar to those made in Case I. The standard
initial condition used for all the figures are xg = 0.4 and x1 = −0.4, x2 = 0.4, x3(0) = 0.4.
In order to illustrate how the control goal makes a jump with specific changes in initial
condition, the initial condition is changed to x1 = −0.4, x2 = 0.4, x3(0) = −0.4. Figure 8
and 9 gives the time series and the phase diagram of the system for the case of convergence
to a goal point. Here, the control parameters were chosen as a1 = −12, a2 = −4, a3 = −4.
Figure 11 and 12 provide the time series and phase diagrams concerning convergence to a
goal cycle, obtained with control parameters a1 = −16, a2 = −4, a3 = −4. Figures 10 and
13 are important as they reveal the basins of attraction of steady states and periodic states
of the controlled system to a certain extent. Given xg, let the two possible goal points be
given by E1 and E2. Following the discussion for simulation in Case I, here we can again
define open sets Wi ⊂ N(Ei) such that for all x ∈ Wi, the trajectories of the starting at
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Figure 8. Stabilization of the state trajectories for the quadratic output function
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Figure 9. Convergence of the chaotic system to the control goal for quadratic output
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Figure 11. Stabilization of the state trajectories to periodic motion for limit
cycles in quadratic output
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Figure 13. Convergence of the chaotic system to the limit cycles for quadratic output
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x asymptotically reach Ei (i = 1, 2). This has been shown in Figure 10. For a fixed xg,
the system also admits two possible goal cycles. There exists open sets W

′

i ⊂ N(Ei) such
that for any x ∈ W

′

i , the trajectory starting at x settles down to a periodic state, that is,
a goal cycle around the point Ei(i = 1, 2). Figure 13 is an illustration of this observation.

References

[1] Andrievskii BR, Fradkov AL et al, Control of chaos: methods and applications, Autom Remote
Control 64(5):713 (2003)

[2] Mistler, V., A. Benallegue, and N. K. M’sirdi, Exact linearization and noninteracting control of a 4
rotors helicopter via dynamic feedback, Robot and Human Interactive Communication, Proceedings.
10th IEEE International Workshop on. IEEE, 2001.

[3] H. K. Khalil, Nonlinear Systems, 3rd Ed., Prentice Hall, 2002.
[4] Yu, X., Controlling chaos using input-output linearization approach, International Journal of Bifur-

cation and Chaos 7, 1997,1659-1664.
[5] Kocarev,Parlitz and Hu., Lie Derivatives and Dynamical Systems, Chaos, Solitons and Fractals 9,

1998, 1359-1366.
[6] Liqun, Chen, and Liu Yanzhu, Control of the Lorenz chaos by the exact linearization, Applied Math-

ematics and Mechanics 19.1 (1998): 67-73.
[7] Chen, Li-Qun, and Yan-Zhu Liu, A modified exact linearization control for chaotic oscillators, Non-

linear Dynamics 20.4 (1999): 309-317.
[8] Alvarez-Gallegos J., Nonlinear regulation of a Lorenz system by feedback linearization techniques,

Dyn Control 4 :272-289.
[9] Tsagas GR, Mazumdar HP et al, On the control of a dynamical system by a linearization method via

Lie Algebra, Rev Bull Cal Math Soc 8(1,2): 2532 (2000)
[10] X. Shi and Q. Zhu, An Exact Linearization Feedback Control of CHEN Equation, International

Journal of Nonlinear Science Vol.3(2007) No.1,pp.58-62
[11] M. Islam, B. Islam and N. Islam, Chaos control in Shimizu morioka system by Lie algebric exact

linearization, Int. J. Dynam. Control.
[12] W. Respondek, Introduction to Geometric Nonlinear Control : Linearization, Observability,

Decoupling, Lecture Notes (Summer School on Mathematical Control Theory, Trieste, 2001)

Received: November 12, 2016


