Contra Pre Generalized *b* - Continuous Functions in Topological Spaces

S. Sekar

Department of Mathematics, Government Arts College (Autonomous), Salem – 636 007, Tamil Nadu, India. E-Mail: sekar_nitt@rediffmail.com

R. Brindha

Department of Mathematics, King College of Technology, Namakkal – 637 020, Tamil Nadu, India. E-Mail: brindhaaramasamy@gmail.com

Abstract

In this paper, the authors introduce a new class of functions called contra pre generalized b - continuous function (briefly contra pgb continuous) in topological spaces. Some characterizations and several properties concerning contra pre generalized b - continuous functions are obtained.

Mathematics Subject Classification: 54C05, 54C08, 54C10.

Keywords: rgb-continuity, contra rgb-continuity, pgb-open set, pgb-continuity, gp^* -continuity, contra gp^* -continuity.

1 Introduction

In 1970, Dontchev [7, 15] introduced the notions of contra continuous function. A new class of function called contra b-continuous function introduced by Nasef [6]. In 2009, Omari and Noorani [1] have studied further properties of contra b-continuous functions. In this paper, we introduce the concept of contra pgb-continuous function via the notion of pgb-open set and study some of the applications of this function. We also introduce and study two new spaces called pgb-Hausdorff spaces, pgb-normal spaces and obtain some new results. Through out this paper (X, τ) and (Y, σ) represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let $A \subseteq X$, the closure of A and interior of A will be denoted by cl(A) and int(A) respectively, union of all pgb-open sets X contained in A is called pgb-interior of A and it is denoted by pgb-int(A), the intersection of all pgb-closed sets of X containing A is called pgb-closure of A and it is denoted by pgb-closure of A.

2 Preliminaries

Definition 2.1. Let a subset A of a topological space (X, τ) , is called

- 1) a pre-open set [12] if $A \subseteq int(cl(A))$.
- 2) a semi-open set [8] if $A \subseteq cl(int(A))$.
- 3) a α -open set [14] if $A \subseteq int(cl(int(A)))$.
- 4) a b -open set [2] if $A \subseteq cl(int(A)) \cup int(cl(A))$.
- 5) a generalized closed set (briefly g-closed)[4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 6) a generalized α closed set (briefly $g\alpha$ closed) [8] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in X.
- 7) a generalized b- closed set (briefly gb- closed) [1] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 8) a generalized $\alpha *$ closed set (briefly $g\alpha *$ -closed)[11] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in X.
- 9) a pre generalized closed set (briefly pg- closed) [16] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is pre open in X.
- 10) a semi generalized closed set (briefly sg- closed) [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
- 11) a generalized αb closed set (briefly $g\alpha b$ closed) [10] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in X.
- 12) a regular generalized b -closed set (briefly rgb-closed)[12] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 13) a pre generalized b -closed set (briefly pgb- closed) [17] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is pre open in X.

Definition 2.2. A function $f: (X, \tau) \to (Y, \sigma)$, is called

- 1) a contra continuous [5] if $f^{-1}(V)$ is closed in (X, τ) for every open set V of (Y, σ) .
- 2) a contra b-continuous [13] if $f^{-1}(V)$ is b-closed in (X, τ) for every open set V of (Y, σ) .
- 3) a contra $g\alpha$ -continuous [8] if $f^{-1}(V)$ is $g\alpha$ -closed in (X, τ) for every open set V of (Y, σ) .
- 4) a contra $g\alpha$ *-continuous [11] if $f^{-1}(V)$ is $g\alpha$ *-closed in (X, τ) for every open set V of (Y, σ) .
- 5) a contra g-continuous [9] if $f^{-1}(V)$ is g-closed in (X, τ) for every open set V of (Y, σ) .
- 6) a contra $g\alpha b$ -continuous [18] if $f^{-1}(V)$ is $g\alpha b$ -closed in (X, τ) for every open set V of (Y, σ) .
- 7) a contra rgb-continuous [11] if $f^{-1}(V)$ is rgb-closed in (X, τ) for every open set V of (Y, σ) .

3 On Contra Pre Generalized *b* - Continuous Functions

In this section, we introduce contra pre generalized b - continuous functions and investigate some of their properties.

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called contra pre generalized b - continuous if $f^{-1}(V)$ is pgb - closed in (X, τ) for every open set V in (Y, σ) .

Example 3.2. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \varphi, \{a, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Clearly f is contrapgb - continuous.

Definition 3.3. Let A be a subset of a space (X, τ) .

- (i) The set $\cap \{F \subset X : A \subset F, F \text{ is } pgb-closed\}$ is called the pgb closure of A and it is denoted by pgb-cl(A).
- (ii) The set $\cup \{G \subset X : G \subset A, G \text{ is } pgb open\}$ is called the pgb interior of A and it is denoted by pgb int(A).

Lemma 3.4. For $x \in X$, $x \in pgb-cl(A)$ if and only if $U \cap A \neq \phi$ for every pgb - open set U containing x.

Proof. Necessary part : Suppose there exists a pgb - open set U containing x such that $U \cup A = \varphi$. Since $A \subset X - U$, $pgb - cl(A) \subset X - U$. This implies $x \notin pgb - cl(A)$. This is a contradiction.

Sufficiency part : Suppose that $x \notin pgb - cl(A)$. Then \exists a pgb - closed subset F containing A such that $x \notin F$. Then $x \in X - F$ is pgb - open, $(X - F) \cap A = \varphi$. This is contradiction.

Lemma 3.5. The following properties hold for subsets A, B of a space X:

- (i) $x \in ker(A)$ if and only if $A \cap F \neq \phi$ for any $F \in (X, x)$.
- (ii) $A \subset ker(A)$ and A = ker(A) if A is open in X.
- (iii) If $A \subset B$, then $ker(A) \subset ker(B)$.

Theorem 3.6. Let $f : (X, \tau) \to (Y, \sigma)$ be a map. The following conditions are equivalent:

- (i) f is contra pgb continuous,
- (ii) The inverse image of each closed in (Y, σ) is pgb open in (X, τ) ,
- (iii) For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in pgb O(X)$, such that $f(U) \subset F$,
- (iv) $f(pgb cl(X)) \subset ker(f(A))$, for every subset A of X,
- (v) $pgb cl(f^{-1}(B)) \subset f^{-1}(ker(B))$, for every subset B of Y.

Proof. (i) \Leftrightarrow (ii) and (ii) \Rightarrow (iii) are obvious.

(iii \rightarrow (ii) : Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in pgb - O(X, x)$ such that $f(U_x) \subset F$. Hence we obtain $f^{-1}(F) = \bigcup \{U_x \setminus x \in f^{-1}(F)\} \in pgb - O(X, x)$. Thus the inverse of each closed set in (Y, σ) is pgb - open in (X, τ) . (ii) \Rightarrow (iv) : Let A be any subset of X. Suppose that $y \notin kerf(A)$). By lemma there exists $F \in C(Y, y)$ such that $f(A) \cap F = \varphi$. Then, we have $A \cap f^{-1}(F) = \varphi$ and $pgb - cl(A) \cap f^{-1}(F) = \varphi$. Therefore, we obtain $f(pgb - cl(A)) \cap F = \varphi$ and $y \notin f(pgb - cl(A))$. Hence we have $f(pgb - cl(X)) \subset ker(f(A))$. (iv) \Rightarrow (v): Let B be any subset of Y. By (iv) and Lemma, We have $f(pgb - cl(f^{-1}(B))) \subset (ker(f(f^{-1}(B)))) \subset ker(B)$ and $pgb - cl(f^{-1}(B)) \subset f^{-1}(ker(B))$. $(\mathbf{v}) \Rightarrow (\mathbf{i})$: Let V be any open set of Y. By lemma we have $pgb - cl(f^{-1}(V)) \subset f^{-1}(ker(V)) = f^{-1}(V)$ and $pgb - cl(f^{-1}(V)) = f^{-1}(V)$. It follows that $f^{-1}(V)$ is pgb - closed in X. We have f is contra pgb - continuous.

Definition 3.7. A function $f : (X, \tau) \to (Y, \sigma)$ is called pgb - continuous if the preimage of every open set of Y is pgb - open in X.

Remark 3.8. The following two examples will show that the concept of pgb - continuity and contra pgb - continuity are independent from each other.

Example 3.9. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{Y, \varphi, \{a, b\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Clearly f is contra pgb - continuous but f is not pgb continuous. Because $f^{-1}(\{a, b\}) = \{a, c\}$ is not pgb - open in (X, τ) where $\{a, b\}$ is open in (Y, σ) .

Example 3.10. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{Y, \varphi, \{b\}, \{b, c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by identity function. Clearly f is pgb - continuous but f is not contra pgb - continuous. Because $f^{-1}(\{b, c\}) = \{b, c\}$ is not contra pgb - closed in (X, τ) where $\{a, b\}$ is open in (Y, σ) .

Theorem 3.11. If a function $f : (X, \tau) \to (Y, \sigma)$ is contrapgb - continuous and (Y, σ) is pre then f is pgb - continuous.

Proof. Let x be an arbitrary point of (X, τ) and V be an open set of (Y, σ) containing f(x). Since (Y, σ) is regular, there exists an open set W of (Y, σ) containing f(x) such that $cl(W) \subset V$. Since f is contra pgb - continuous, by Theorem there exists $U \in pgb - O(X, x)$ such that $f(U) \subset cl(W)$. Then $f(U) \subset cl(W) \subset V$. Hence f is pgb - continuous.

Theorem 3.12. Every contra - continuous function is contra pgb - continuous function.

Proof. Let V be an open set in (Y, σ) . Since f is contra - continuous function, $f^{-1}(V)$ is b - closed in (X, τ) . Every b-closed set is pgb - closed. Hence $f^{-1}(V)$ is pgb - closed in (X, τ) . Thus f is contra pgb - continuous function. \Box

Remark 3.13. The converse of theorem need not be true as shown in the following example.

Example 3.14. Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \varphi, \{a, b\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Clearly f is contra pgb - continuous but f is not contra b-continuous. Because $f^{-1}(\{a, b\}) = \{a, c\}$ is not b-closed in (X, τ) where $\{a, b\}$ is open in (Y, σ) .

- **Theorem 3.15.** (i) Every contra $g\alpha$ -continuous function is contra pgbcontinuous function.
- (ii) Every contra $g\alpha$ *-continuous function is contra pgb-continuous function.
- (iii) Every contra g continuous function is contra pgb-continuous function.
- (iv) Every contra $g\alpha b$ -continuous function is contra pgb-continuous function.
- (v) Every contra rgb-continuous function is contra pgb-continuous function.
- (vi) Every contra pgb-continuous function is contra pg-continuous function.

Remark 3.16. Converse of the above statements is not true as shown in the following example.

- **Example 3.17.** (i) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \varphi, \{a\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Clearly f is contra pgb - continuous but f is not contra $g\alpha$ -continuous. Because $f^{-1}(\{a\}) = \{c\}$ is not $g\alpha$ -closed in (X, τ) where $\{a\}$ is open in (Y, σ) .
- (ii) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Clearly f is contra pgb-continuous but f is not contra $g\alpha$ -continuous. Because $f^{-1}(\{c\}) = \{a\}$ is not $g\alpha$ -closed in (X, τ) where $\{c\}$ is open in (Y, σ) .
- (iii) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{b\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Clearly f is contra pgb-continuous but f is not contra g-continuous. Because $f^{-1}(\{b\}) = \{b\}$ is not g-closed in (X, τ) where $\{b\}$ is open in (Y, σ) .
- (iv) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\sigma = \{Y, \varphi, \{c\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Clearly f is contra pgb continuous but f is not contra $g\alpha b$ continuous. Because $f^{-1}(\{c\}) = \{b\}$ is not $g\alpha b$ closed in (X, τ) where $\{c\}$ is open in (Y, σ) .
- (v) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{b\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Clearly f is contra pgb - continuous but f is not contra rgb-continuous. Because $f^{-1}(\{b\}) = \{a\}$ is not rgb-closed in (X, τ) where $\{b\}$ is open in (Y, σ) .

(vi) Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{b\}, \{a, b\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Clearly f is contra pgb - continuous but f is not contra pgb - continuous. Because $f^{-1}(\{a, b\}) = \{a, b\}$ is not pgb - closed in (X, τ) where $\{a, b\}$ is open in (Y, σ) .

Definition 3.18. A space (X, τ) is said to be (i) pgb - space if every pgb - open set of X is open in X, (ii) locally pgb - indiscrete if every pgb - open set of X is closed in X.

Theorem 3.19. If a function $f : X \to Y$ is contrapgb - continuous and X is pgb - space then f is contra continuous.

Proof. Let $V \in O(Y)$. Then $f^{-1}(V)$ is pgb - closed in X. Since X is pgb - space, $f^{-1}(V)$ is closed in X. Hence f is contra continuous.

Theorem 3.20. Let X be locally pgb - indiscrete. If $f : X \to Y$ is contrapgb - continuous, then it is continuous.

Proof. Let $V \in O(Y)$. Then $f^{-1}(V)$ is pgb - closed in X. Since X is locally pgb - indiscrete space, $f^{-1}(V)$ is open in X. Hence f is continuous. \Box

Definition 3.21. A function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G_f .

Definition 3.22. The graph G_f of a function $f : X \to Y$ is said to be contrapgb - closed if for each $(x, y) \in (X \times Y) - G_f$ there exists $U \in pgb - O(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G_f$.

Theorem 3.23. If a function $f : X \to Y$ is contrapgb - continuous and Y is Urysohn, then G_f is contrapgb - closed in the product space $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G_f$. Then $y \neq f(x)$ and there exist open sets H_1, H_2 such that $f(x) \in H_1, y \in H_2$ and $cl(H_1) \cap cl(H_2) = \varphi$. From hypothesis, there exists $V \in pgb - O(X, x)$ such that $f(V) \subset cl(H_1)$. Therefore, we have $f(V) \cap cl(H_2) = \varphi$. This shows that G_f is contra pgb - closed in the product space $X \times Y$.

Theorem 3.24. If $f : X \to Y$ is pgb - continuous and Y is T_1 , then G_f is contra pgb - closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) - G_f$. Then $y \neq f(x)$ and there exist open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is pgb - continuous, there exists $U \in pgb - O(X, x)$ such that $f(U) \subset V$. Therefore, we have $f(U) \cap (Y - V) = \varphi$ and $(Y - V) \in pgb - C(Y, y)$. This shows that G_f is contra pgb - closed in $X \times Y$.

Theorem 3.25. Let $f : X \to Y$ be a function and $g : X \to X \times Y$, the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contrapgb - continuous, then f is contrapgb - continuous.

Proof. Let U be an open set in Y, then $X \times U$ is an open set in $X \times Y$. Since g is contra pgb - continuous. It follows that $f^{-1}(U) = g^{-1}(X \times U)$ is an pgb - closed in X. Hence f is pgb - continuous. \Box

Theorem 3.26. If $f : X \to Y$ is a contra pgb - continuous function and $g : Y \to Z$ is a continuous function, then $g \circ f : X \to Z$ is contra pgb - continuous.

Proof. Let $V \in O(Y)$. Then $g^{-1}(V)$ is open in Y. Since f is contra pgb - continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is pgb - closed in X. Therefore, $g \circ f : X \to Z$ is contra pgb - continuous.

Theorem 3.27. Let $p: X \times Y \to Y$ be a projection. If A is pgb - closed subset of X, then $p^{-1}(A) = A \times Y$ is pgb - closed subset of $X \times Y$.

Proof. Let $A \times Y \subset U$ and U be a regular open set of $X \times Y$. Then $U = V \times Y$ for some regular open set V of X. Since A is pgb - closed in X, bcl(A) and so $bcl(A) \times Y \subset V \times Y = U$. Therefore $bcl(A \times Y) \subset U$. Hence $A \times Y$ is pgb - closed sub set of $X \times Y$.

4 Applications

Definition 4.1. A topological space (X, τ) is said to be pgb - Hausdorff space if for each pair of distinct points x and y in X there exists $U \in pgb - O(X, x)$ and $V \in pgb - O(X, y)$ such that $U \cap V = \varphi$.

Example 4.2. Let $X = \{a, b, c\}$ with $\tau = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Let x and y be two distinct points of X, there exists an pgb-open neighbourhood of x and y respectively such that $\{x\} \cap \{y\} = \varphi$. Hence (X, τ) is pgb-Hausdorff space.

Theorem 4.3. If X is a topological space and for each pair of distinct points x_1 and x_2 in X, there exists a function f of X into Uryshon topological space Y such that $f(x_1) \neq f(x_2)$ and f is contrapgb-continuous at x_1 and x_2 , then X is pgb-Hausdorff space.

Proof. Let x_1 and x_2 be any distinct points in X. By hypothesis, there is a Uryshon space Y and a function $f : X \to Y$ such that $f(x_1) \neq f(x_2)$ and f is contra *pgb*-continuous at x_1 and x_2 . Let $y_i = f(x_i)$ for i = 1, 2 then $y_1 \neq y_2$. Since Y is Uryshon, there exists open sets U_{y_1} and U_{y_2} containing y_1

and y_2 respectively in Y such that $cl(U_{y_1}) \cap cl(U_{y_2}) = \varphi$. Since f is contra pgbcontinuous at x_1 and x_2 , there exists and pgb-open sets V_{x_1} and V_{x_2} containing x_1 and x_2 respectively in X such that $f(V_{xi}) \subset cl(U_{yi})$ for i = 1, 2. Hence we have $(V_{x_1}) \cap (V_{x_2}) = \varphi$. Therefore X is pgb - Hausdorff space. \Box

Corollary 4.4. If f is contra pgb - continuous injection of a topological space X into a Uryshon space Y then X is pgb-Hausdorff.

Proof. Let x_1 and x_2 be any distinct points in X. By hypothesis, f is contrapgb-continuous function of X into a Uryshon space Y such that $f(x_1) \neq f(x_2)$, because f is injective. Hence by theorem, X is pgb - Hausdorff.

Definition 4.5. A topological space (X, τ) is said to be pgb - normal if each pair of non - empty disjoint closed sets in (X, τ) can be separated by disjoint pgb - open sets in (X, τ) .

Definition 4.6. A topological space (X, τ) is said to be ultra normal if each pair of non - empty disjoint closed sets in (X, τ) can be separated by disjoint clopen sets in (X, τ) .

Theorem 4.7. If $f : X \to Y$ is a contra pgb - continuous function, closed, injection and Y is Ultra normal, then X is pgb - normal.

Proof. Let U and V be disjoint closed subsets of X. Since f is closed and injective, f(U) and f(V) are disjoint subsets of Y. Since Y is ultra normal, there exists disjoint clopen sets A and B such that $f(U) \subset A$ and $f(V) \subset B$. Hence $U \subset f^{-1}(A)$ and $V \subset f^{-1}(B)$. Since f is contra pgb - continuous and injective, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint pgb - open sets in X. Hence X is pgb - normal.

Definition 4.8. A topological space X is said to be pgb - connected if X is not the union of two disjoint non - empty pgb - open sets of X.

Theorem 4.9. A contra pgb - continuous image of a pgb - connected space is connected.

Proof. Let $f: X \to Y$ be a contra pgb - continuous function of pgb - connected space X onto a topological space Y. If possible, let Y be disconnected. Let A and B form disconnectedness of Y. Then A and B are clopen and $Y = A \cup B$ where $A \cap B = \varphi$. Since f is contra pgb - continuous, $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are non - empty pgb - open sets in X. Also $f^{-1}(A) \cap f^{-1}(B) = \varphi$. Hence X is non - pgb - connected which is a contradiction. Therefore Y is connected.

Theorem 4.10. Let X be pgb - connected and Y be T_1 . If $f : X \to Y$ is a contra pgb - continuous, then f is constant.

Proof. Since Y is T_1 space $v = \{f^{-1}(y) : y \in Y\}$ is a disjoint pgb - open partition of X. If $|v| \ge 2$, then X is the union of two non empty pgb - open sets. Since X is pgb - connected, |v| = 1. Hence f is constant.

Theorem 4.11. If $f : X \to Y$ is a contra pgb - continuous function from pgb - connected space X onto space Y, then Y is not a discrete space.

Proof. Suppose that Y is discrete. Let A be a proper non - empty open and closed subset of Y. Then $f^{-1}(A)$ is a proper non - empty pgb - clopen subset of X, which is a contradiction to the fact X is pgb - connected.

References

- Ahmad Al Omari and Mohd. Salmi Md. Noorani, On Generalized b closed sets, Bull. Malays. Math. Sci. Soc(2), vol. 32, no. 1, (2009), pp. 19–30.
- [2] D. Andrijevic, Semi pre open sets, Mat.Vesnik, vol. 38, no. 1, (1986), pp. 24–32.
- [3] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets on topology, Indian J. Maths., vol. 29, no. 3, 1987, pp. 375–382.
- [4] J. Dontchev, On generalized semi- pre open sets, Mem. Fac. Sci. Kochi. Univ. ser. A. math., vol. 16, (1995), pp. 35.
- [5] J. Dontchev, Contra continuous functions and strongly S-closed spaces, Int. Math. Sci., vol. 19, (1996), pp. 303–310.
- [6] Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. Pure. Appl. Math., vol. 28, (1997), pp. 351–360.
- [7] D. Iyappan and N. Nagaveni, On semi generalized b-closed set, Nat. Sem. On Mat. & Comp. Sci., Jan (2010), Proc.6.
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, vol. 70, (1963)), pp. 36–41.
- [9] N. Levine, Generalized closed sets in topology, Tend Circ., Mat. Palermo(2), vol. 19, (1970), pp. 89–96.
- [10] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., vol. 15, (1994), pp. 51–63.

- [11] K.Mariappa and S.Sekar, On regular generalized b-closed set, Int. Journal of Math. Analysis, vol. 7, no. 13, (2013), pp. 613–624.
- [12] A.S. Mashor Abd., M.E. El-Monsef and S.N. Ei-Deeb, On Pre continuous and weak pre-continuous mapping, Proc. Math. Phys. Soc. Egypt, vol. 53, (1982), pp. 47–53.
- [13] Metin Akdag and Alkan Ozkan, Some properties of Contra gb-continuous functions, Journal of New results in Science, vol. 1, (2012), pp. 40–49.
- [14] O. Njastad, On some classes of nearly open sets, Pacific J Math., vol. 15, (1965), pp. 961–970.
- [15] N. Nagaveni, Studies on generalized on homeomorphisms in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore (1999).
- [16] O. Ravi, M. Lellis Thivagar and R. Latha, Properties of contra sg continuous maps, Gen. Math. Notes, vol.4, no.1, (2011), pp. 70–84.
- [17] S. Sekar and R. Brindha, On pre generalized b-closed set in Topological Spaces, International Journal of Pure and Applied Mathematics, vol. 111, no. 4, (2016).
- [18] S. Sekar and R. Brindha, On pre generalized b-continuous map in Topological Spaces, International Electronic Journal of Pure and Applied Mathematics, accepted for publication.

Received: December, 2016