Constructions of Hom-Jordan algebras

Nan Huang
School of Mathematics and Statistics
Northeast Normal University

Abstract

The purpose of this paper is to study Hom-Jordan algebras. We discuss some of its properties. For further study, we also give some new definitions and the examples.

Mathematics Subject Classification: 17A40, 17B10, 17B56
Keywords: Hom-Jordan algebras, morphism

1 Introduction

The notion and some properties of Jordan algebras were introduced by A. A. Albert in [1]. And in [5], we know there is a relationship between Jordan algebras and associative algebras. The definition of Hom-Jordan algebra was introduced by A. Makhlouf in [2]. It is clear that the Hom-Jordan algebra $(V, \mu, i d)$ is the Jordan algebra V itself. More applications of the Jordan algebras and Hom-algebras can be found in [1, 3].

In section 2 we give the definition of Hom-Jordan algebras and some examples about Hom-Jordan algebra. We also show that the direct sum of two Hom-Jordan algebras is still a Hom-Jordan algebra. And we have proved that a linear map between Hom-Jordan algebras is a morphism if and only if its graph is a Hom subalgebra.

2 Preliminary Notes

Definition 2.1 [5] A linear space J over a field \mathbb{F} is called a Jordan algebra when we define a bilinear operation satisfying for any $x, y \in J$

$$
\begin{gather*}
x \cdot y=y \cdot x \tag{1}\\
\left(x^{2} \cdot y\right) \cdot x=x^{2} \cdot(y \cdot x), \quad x^{2}=x \cdot x \tag{2}
\end{gather*}
$$

Definition 2.2 [2] (1) A Hom-Jordan algebra is a triple (V, μ, α) consisting of a linear space V, a multiplication $\mu: V \times V \rightarrow V$ which is commutative and a homomorphism $\alpha: V \rightarrow V$ satisfying for any $x, y \in V$

$$
\begin{equation*}
\mu\left(\alpha^{2}, \mu(y, \mu(x, x))\right)=\mu(\mu(\alpha(x), y), \alpha(\mu(x, x))) \tag{3}
\end{equation*}
$$

where $\alpha^{2}=\alpha \circ \alpha$.
(2) A Hom-Jordan algebra is multiplicative if α is an algebra morphism, i.e. for any $x, y, \in V$, we have $\alpha(\mu(x, y))=\mu(\alpha(x), \alpha(y))$.
(3) A Hom-Jordan algebra is regular if α is an algebra automorphism.
(4) A subvector space $W \subseteq V$ is a Hom subalgebra of (V, μ, α) if $\alpha(W) \subseteq W$ and

$$
\mu(x, y) \in W, \forall x, y \in W
$$

(5) A subvector space $W \subseteq V$ is a Hom ideal of (V, μ, α) if $\alpha(W) \subseteq W$ and

$$
\mu(x, y) \in W, \forall x \in W, y \in V
$$

Remark 2.3 Since the multiplication is commutative, one may write the identity (3) as

$$
\begin{equation*}
\mu\left(\mu(y, \mu(x, x)), \alpha^{2}(x)\right)=\mu(\mu(y, \alpha(x)), \alpha(\mu(x, x))) \tag{4}
\end{equation*}
$$

When the twisting map α is the identity map, we recover the classical notion of Jordan algebra.

Definition 2.4 Let (V, μ, α) and $\left(V^{\prime}, \mu^{\prime}, \beta\right)$ be two Hom-Jordan algebras. A linear map $\phi: V \rightarrow V^{\prime}$ is said to be a morphism of Hom-Jordan algebra if

$$
\begin{gather*}
\phi(\mu(x, y))=\mu^{\prime}(\phi(x), \phi(y)), \forall x, y \in V, \tag{5}\\
\phi \circ \alpha=\beta \circ \phi . \tag{6}
\end{gather*}
$$

Denote by $\mathfrak{G}_{\phi} \subset V \oplus V^{\prime}$ is the graph of a linear map $\phi: V \rightarrow V^{\prime}$.
Definition 2.5 [4] A Hom-associative algebra is a triple (V, m, α) consisting of a linear space V, a bilinear map $m: V \times V \rightarrow V$ and a homomophism $\alpha: V \rightarrow V$, satisfying

$$
\begin{equation*}
m(\alpha(x), m(y, z))=m(m(x, y), \alpha(z)) . \tag{7}
\end{equation*}
$$

Definition 2.6 [5] Let V_{1}, V_{2} be two rings, a linear map $f: V_{1} \rightarrow V_{2}$ is called an anti-homomorphism if the linear map f is satisfying for any $a, b \in V$

$$
\begin{aligned}
f(a+b) & =f(a)+f(b), \\
f(a b) & =f(b) f(a) .
\end{aligned}
$$

If the anti-homomorphism f is a bijection, we called the linear map f is an anti-isomorphism. When we have $V_{1}=V_{2}$, we called the linear map f is an anti-automorphism.

3 Main Results

Example 3.1 [2] Let (V, m, α) be a Hom-associative algebra. Then the Hom-algebra (V, μ, α), where the multiplication μ is defined for $x, y \in V$ by

$$
\mu(x, y)=\frac{1}{2}(m(x, y)+m(y, x))
$$

is a Hom-Jordan algebra, which is denoted V^{+}. The Hom-algebra $(V,[\cdot, \cdot], \alpha)$, where the bracket $[\cdot, \cdot]$ is defined for $x, y \in V$ by

$$
[x, y]=m(x, y)-m(y, x),
$$

is a Hom-Lie algebra, which is denoted V^{-}.
Example 3.2 Let (V, m, α) be a Hom-Jordan algebra, we define the subspace W of $\operatorname{End}(V)$ where $W=\{\omega \in \operatorname{End}(V) \mid \omega \alpha=\alpha \omega\}, \sigma: W \rightarrow W$ is a map satisfying $\sigma(\omega)=\alpha \omega$.
(1)The (W, ν, σ), where the multiplication $\nu: W \rightarrow W$ is defined for $\omega_{1}, \omega_{2} \in W$ by

$$
\nu\left(\omega_{1}, \omega_{2}\right)=\omega_{1} \omega_{2}+\omega_{2} \omega_{1},
$$

is a Hom-Jordan algebra.
(2)The $\left(W, \nu^{\prime}, \sigma\right)$, where the multiplication $\nu^{\prime}: W \rightarrow W$ is defined for $\omega_{1}, \omega_{2} \in W$ by

$$
\nu^{\prime}\left(\omega_{1}, \omega_{2}\right)=\omega_{1} \omega_{2}-\omega_{2} \omega_{1}
$$

is a Hom-Lie algebra over \mathbb{F}.
Proof. (1)For any $\omega_{1}, \omega_{2} \in W$, we have

$$
\begin{aligned}
& \nu\left(\omega_{1}, \omega_{2}\right)=\omega_{1} \omega_{2}+\omega_{2} \omega_{1}=\omega_{2} \omega_{1}+\omega_{1} \omega_{2}=\nu\left(\omega_{2}, \omega_{1}\right), \\
& \nu\left(\sigma^{2}\left(\omega_{1}\right), \nu\left(\omega_{2}, \nu\left(\omega_{1}, \omega_{1}\right)\right)\right) \\
= & \nu\left(\alpha^{2} \omega_{1}, \nu\left(\omega_{2}, 2 \omega_{1}^{2}\right)\right) \\
= & \nu\left(\alpha^{2} \omega_{1}, 2 \omega_{2} \omega_{1}^{2}+2 \omega_{1}^{2} \omega_{2}\right) \\
= & 2 \alpha^{2} \omega_{1} \omega_{2} \omega_{1}^{2}+2 \alpha^{2} \omega_{1}^{3} \omega_{2}+2 \omega_{2} \omega_{1}^{2} \alpha^{2} \omega_{1}+2 \omega_{1}^{2} \omega_{2} \alpha^{2} \omega_{1} \\
= & 2 \alpha^{2} \omega_{1} \omega_{2} \omega_{1}^{2}+2 \alpha^{2} \omega_{1}^{3} \omega_{2}+2 \alpha^{2} \omega_{2} \omega_{1}^{3}+2 \alpha^{2} \omega_{1}^{2} \omega_{2} \omega_{1}, \\
& \nu\left(\nu\left(\sigma\left(\omega_{1}\right), \omega_{2}\right), \sigma\left(\nu\left(\omega_{1}, \omega_{1}\right)\right)\right) \\
= & \nu\left(\nu\left(\alpha \omega_{1}, \omega_{2}\right), \sigma\left(2 \omega_{1}^{2}\right)\right) \\
= & \nu\left(\alpha \omega_{1} \omega_{2}+\omega_{2} \alpha \omega_{1}, 2 \alpha \omega_{1}^{2}\right) \\
= & 2 \alpha \omega_{1} \omega_{2} \alpha \omega_{1}^{2}+2 \omega_{2} \alpha \omega_{1} \alpha \omega_{1}^{2}+2 \alpha \omega_{1}^{2} \alpha \omega_{1} \omega_{2}+2 \alpha \omega_{1}^{2} \omega_{2} \alpha \omega_{1} \\
= & 2 \alpha^{2} \omega_{1} \omega_{2} \omega_{1}^{2}+2 \alpha^{2} \omega_{2} \omega_{1}^{3}+2 \alpha^{2} \omega_{1}^{3} \omega_{2}+2 \alpha^{2} \omega_{1}^{2} \omega_{2} \omega_{1} .
\end{aligned}
$$

We find that

$$
\nu\left(\sigma^{2}\left(\omega_{1}\right), \nu\left(\omega_{2}, \nu\left(\omega_{1}, \omega_{1}\right)\right)\right)=\nu\left(\nu\left(\sigma\left(\omega_{1}\right), \omega_{2}\right), \sigma\left(\nu\left(\omega_{1}, \omega_{1}\right)\right)\right) .
$$

Therefore, (W, ν, σ) is a Hom-Jordan algebra.
(2)For any $\omega_{1}, \omega_{2}, \omega_{3} \in W, k_{1}, k_{2} \in \mathbb{F}$, we have

$$
\begin{aligned}
& \nu^{\prime}\left(\omega_{1}, \omega_{1}\right)=\omega_{1} \omega_{1}-\omega_{1} \omega_{1}=0, \\
& \nu^{\prime}\left(k_{1} \omega_{1}+k_{2} \omega_{2}, \omega_{3}\right) \\
= & \left(k_{1} \omega_{1}+k_{2} \omega_{2}\right) \omega_{3}-\omega_{3}\left(k_{1} \omega_{1}+k_{2} \omega_{2}\right) \\
= & k_{1}\left(\omega_{1} \omega_{3}-\omega_{3} \omega_{1}\right)+k_{2}\left(\omega_{2} \omega_{3}-\omega_{3} \omega_{2}\right) \\
= & k_{1} \nu^{\prime}\left(\omega_{1}, \omega_{3}\right)+k_{2} \nu^{\prime}\left(\omega_{2}, \omega_{3}\right) . \\
& \nu^{\prime}\left(\sigma\left(\omega_{1}\right), \nu^{\prime}\left(\omega_{2}, \omega_{3}\right)\right)+\nu^{\prime}\left(\sigma\left(\omega_{2}\right), \nu^{\prime}\left(\omega_{3}, \omega_{1}\right)\right)+\nu^{\prime}\left(\sigma\left(\omega_{3}\right), \nu^{\prime}\left(\omega_{1}, \omega_{2}\right)\right) \\
= & \alpha \omega_{1} \omega_{2} \omega_{3}-\alpha \omega_{1} \omega_{3} \omega_{2}-\alpha \omega_{2} \omega_{3} \omega_{1}+\alpha \omega_{3} \omega_{2} \omega_{1} \\
& +\alpha \omega_{2} \omega_{3} \omega_{1}-\alpha \omega_{2} \omega_{1} \omega_{3}-\alpha \omega_{3} \omega_{1} \omega_{2}+\alpha \omega_{1} \omega_{3} \omega_{2} \\
& +\alpha \omega_{3} \omega_{1} \omega_{2}-\alpha \omega_{3} \omega_{2} \omega_{1}-\alpha \omega_{1} \omega_{2} \omega_{3}+\alpha \omega_{2} \omega_{1} \omega_{3}
\end{aligned}
$$

$$
=0 .
$$

Therefore, $\left(W, \nu^{\prime}, \sigma\right)$ is a Hom-Lie algebra.
Example 3.3 Let (V, m, α) be a Hom-associative algebra over a field \mathbb{F}, is an anti-automorphism of V and $\iota^{2}=i d_{V}$, then the characteristic subspace $E_{1}(\iota)=\{x \mid \iota(x)=x\}$ of V is a Hom subalgebra of the Hom-Jordan algebra ($V, \mu, \alpha)$, which is structured by Ex 3.1.

Proof. First, $E_{1}(\iota)$ is a subspace of V. For any $x, y \in E_{1}(\iota)$, we have

$$
\begin{aligned}
\iota(\mu(x, y)) & =\iota\left(\frac{1}{2}(m(x, y)+m(y, x))\right) \\
& =\frac{1}{2}(\iota(m(x, y))+\iota(m(y, x))) \\
& =\frac{1}{2}(m(\iota(y), \iota(x))+m(\iota(x), \iota(y))) \\
& =\frac{1}{2}(m(y, x)+m(x, y)) \\
& =\mu(x, y)
\end{aligned}
$$

For any $x \in E_{1}(\iota)$, since ι is a morphism of Hom-Jordan algebra, we have

$$
\iota \circ \alpha=\alpha \circ \iota,
$$

then

$$
\iota(\alpha(x))=\alpha(\iota(x))=\alpha(x) \in E_{1}(\iota) .
$$

Therefore, $E_{1}(\iota)$ is a Hom subalgebra of V^{+}.

Theorem 3.4 Given two Hom-Jordan algebras (V, μ, α) and $\left(V^{\prime}, \mu^{\prime}, \beta\right)$, there is a Hom-Jordan algebra $\left(V \oplus V^{\prime}, \mu^{\prime \prime}, \alpha+\beta\right)$, where the multiplication $\mu^{\prime \prime}$: $\left(V \oplus V^{\prime}\right) \times\left(V \oplus V^{\prime}\right) \rightarrow V \oplus V^{\prime}$ is given by

$$
\mu^{\prime \prime}\left(x+x^{\prime}, y+y^{\prime}\right)=\mu(x, y)+\mu^{\prime}\left(x^{\prime}+y^{\prime}\right), \forall x \in V, y \in V, x^{\prime} \in V^{\prime}, y^{\prime} \in V^{\prime}
$$

and the linear map $(\alpha+\beta): V \oplus V^{\prime} \rightarrow V \oplus V^{\prime}$ is given by

$$
(\alpha+\beta)\left(x+x^{\prime}\right)=\alpha(x)+\beta\left(x^{\prime}\right), \forall x \in V, x^{\prime} \in V^{\prime} .
$$

Proof. First, for any $x, y \in V, x^{\prime}, y^{\prime} \in V^{\prime}$, we have

$$
\begin{gathered}
\mu^{\prime \prime}\left(x+x^{\prime}, y+y^{\prime}\right)=\mu(x, y)+\mu^{\prime}\left(x^{\prime}+y^{\prime}\right), \\
\mu^{\prime \prime}\left(y+y^{\prime}, x+x^{\prime}\right)=\mu(y, x)+\mu^{\prime}\left(y^{\prime}+x^{\prime}\right)=\mu(x, y)+\mu^{\prime}\left(x^{\prime}+y^{\prime}\right) .
\end{gathered}
$$

Since (V, μ, α) and $\left(V^{\prime}, \mu^{\prime}, \beta\right)$ are Hom-Jordan algebras, we have

$$
\begin{aligned}
\mu\left(\alpha^{2}(x), \mu(y, \mu(x, x))\right) & =\mu(\mu(\alpha(x), y), \alpha(\mu(x, x))), \\
\mu^{\prime}\left(\beta^{2}\left(x^{\prime}\right), \mu^{\prime}\left(y^{\prime}, \mu^{\prime}\left(x^{\prime}, x^{\prime}\right)\right)\right) & =\mu^{\prime}\left(\mu^{\prime}\left(\beta\left(x^{\prime}\right), y^{\prime}\right), \beta\left(\mu^{\prime}\left(x^{\prime}, x^{\prime}\right)\right)\right) .
\end{aligned}
$$

By a direct computation, for any $x+x^{\prime}, y+y^{\prime} \in V \oplus V^{\prime}$ we have

$$
\begin{aligned}
& \mu^{\prime \prime}\left((\alpha+\beta)^{2}\left(x+x^{\prime}\right), \mu^{\prime \prime}\left(y+y^{\prime}, \mu^{\prime \prime}\left(x+x^{\prime}, x+x^{\prime}\right)\right)\right) \\
= & \mu^{\prime \prime}\left((\alpha+\beta)\left(\alpha(x)+\beta\left(x^{\prime}\right)\right), \mu^{\prime \prime}\left(y+y^{\prime}, \mu(x, x)+\mu^{\prime}\left(x^{\prime}, x^{\prime}\right)\right)\right) \\
= & \mu^{\prime \prime}\left(\alpha^{2}(x)+\beta^{2}\left(x^{\prime}\right), \mu(y, \mu(x, x))+\mu^{\prime}\left(y^{\prime}, \mu^{\prime}\left(x^{\prime}, x^{\prime}\right)\right)\right) \\
= & \mu\left(\alpha^{2}(x), \mu(y, \mu(x, x))\right)+\mu^{\prime}\left(\beta^{2}\left(x^{\prime}\right), \mu^{\prime}\left(y^{\prime}, \mu^{\prime}\left(x^{\prime}, x^{\prime}\right)\right)\right) \\
= & \mu(\mu(\alpha(x), y), \alpha(\mu(x, x)))+\mu^{\prime}\left(\mu^{\prime}\left(\beta\left(x^{\prime}\right), y^{\prime}\right), \beta\left(\mu^{\prime}\left(x^{\prime}, x^{\prime}\right)\right)\right) \\
= & \mu^{\prime \prime}\left(\mu(\alpha(x), y)+\mu^{\prime}\left(\beta\left(x^{\prime}\right), y^{\prime}\right), \alpha(\mu(x, x))+\beta\left(\mu^{\prime}\left(x^{\prime}, x^{\prime}\right)\right)\right) \\
= & \mu^{\prime \prime}\left(\mu^{\prime \prime}\left(\alpha(x)+\beta\left(x^{\prime}\right), y+y^{\prime}\right),(\alpha+\beta)\left(\mu(x, x)+\mu^{\prime}\left(x^{\prime}, x^{\prime}\right)\right)\right) \\
= & \mu^{\prime \prime}\left(\mu^{\prime \prime}\left((\alpha+\beta)\left(x+x^{\prime}\right), y+y^{\prime}\right),(\alpha+\beta)\left(\mu^{\prime \prime}\left(x+x^{\prime}, x+x^{\prime}\right)\right)\right) .
\end{aligned}
$$

Thus $\left(V \oplus V^{\prime}, \mu^{\prime \prime}, \alpha+\beta\right)$ is a Hom-Jordan algebra.
Theorem 3.5 A map $\phi:(V, \mu, \alpha) \rightarrow\left(V^{\prime}, \mu^{\prime}, \beta\right)$ is a morphism of HomJordan algebras if and only if the graph $\mathfrak{G}_{\phi} \subset V \oplus V^{\prime}$ is a Hom subalgebra of $\left(V \oplus V^{\prime}, \mu^{\prime \prime}, \alpha+\beta\right)$.

Proof. Let $\phi:(V, \mu, \alpha) \rightarrow\left(V, \mu^{\prime}, \beta\right)$ be a morphism of Hom-Jordan algebras, then for any $x, y \in V$, we have

$$
\mu^{\prime \prime}(x+\phi(x), y+\phi(y))=\mu(x, y)+\mu^{\prime}(\phi(x), \phi(y))=\mu(x, y)+\phi(\mu(x, y)) \in \mathfrak{G}_{\phi} .
$$

Thus the graph \mathfrak{G}_{ϕ} is closed under the multiplication $\mu^{\prime \prime}$. By (6), we have

$$
(\alpha+\beta)(x+\phi(x))=\alpha(x)+\beta \circ \phi(x)=\alpha(x)+\phi \circ \alpha(x),
$$

which implies that $(\alpha+\beta)\left(\mathfrak{G}_{\phi}\right) \subset \mathfrak{G}_{\phi}$. Thus \mathfrak{G}_{ϕ} is a Hom subalgebra of $(V \oplus$ $\left.V^{\prime}, \mu^{\prime \prime}, \alpha+\beta\right)$.

Conversely, if the graph $\mathfrak{G}_{\phi} \subset V \oplus V^{\prime}$ is a Hom subalgebra of $\left(V \oplus V^{\prime}, \mu^{\prime \prime}, \alpha+\right.$ β), then we have

$$
\mu^{\prime \prime}(x+\phi(x), y+\phi(y))=\mu(x, y)+\mu^{\prime}(\phi(x), \phi(y)) \in \mathfrak{G}_{\phi},
$$

which implies that

$$
\phi(\mu(x, y))=\mu^{\prime}(\phi(x), \phi(y)) .
$$

Furthermore, $(\alpha+\beta)\left(\mathfrak{G}_{\phi}\right) \subset \mathfrak{G}_{\phi}$ yields that

$$
(\alpha+\beta)(x+\phi(x))=\alpha(x)+\beta \circ \phi(x) \in \mathfrak{G}_{\phi},
$$

which is equivalent to the condition $\beta \circ \phi(x)=\phi \circ \alpha(x)$, i.e. $\beta \circ \phi=\phi \circ \alpha$. Therefore, ϕ is a morphism of Hom-Jordan algebras.

ACKNOWLEDGEMENTS. The author thanks Professor Liangyun Chen for his helpful comments and suggestions. The author also give her special thanks to referees for many helpful suggestions.

References

[1] A. A. Albert, A structure theory for Jordan algebras, Ann. of Math. 48(3), 1947, 546-567.
[2] A. Makhlouf, Hom-alternative and Hom-Jordan algebras, Int. Electron. J. Algebra. 8, 2010, 177-190.
[3] A. Makhlouf; S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9(4), 2010, 553-589.
[4] A. Makhlouf; S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2(2), 2008, 51-64.
[5] D. J. Meng, Abstract algebra.II, Associative algebra(in Chinese), Beijing:Science Press, 2011.
[6] Jun Zhao; L. Y. Chen; L. L. Ma, Representations and T^{*}-extension of δ-hom-Jordan-Lie algebras, Comm Algebra, 2016(44), 2786-2812.
[7] D. Yau, Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras, Int. Electron. J. Algebra. 11, 2012, 177-217.

Received: July, 2016

