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Abstract

The solution of coupled system of equations governing the
diffusion-deformation of a poroelastic media for the plane
strain case is used to obtain the settlement of a clay layer
overlying a smooth-rigid permeable or impermeable base.
Both the fluid as well as solid constituents are compressible
and the permeability is taken to be anisotropic. The solution
is obtained in the Laplace-Fourier transform domain. Explicit
expressions for the displacements, stresses and the pore
pressure have been obtained for the normal strip and normal
line loading. For numerical computations, we assume the
poroelastic layer is of Indiana Limestone. The consolidation
of the layer is computed in the space time domain for the
normal strip loading. Numerical results reveal that
permeability of the base has a significant effect on the
surface settlement for a thin layer. Contour maps showing
the diffusion of pore pressure in the layer have been plotted
for the normal strip and normal line loading. The pore
pressure vanishes more rapidly for the permeable base as
compared to the impermeable base.
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1. Introduction

Biot’s theory of linear poroelasticity has been used extensively to study
the consolidation of poroelastic layer e.g. Gibson et al.[1], Booker [2],
Booker and Small [3], Yue & Selvadurai [4], Barry et al. [5], Chen [6],
Chen et al.[7,8], Ai & Wang [9], Singh et al.[10], Ai et al. [11], Rani et al.
[12], Ai et al. [13], Rani et al. [14] etc.. In most of these studies, the layer
rests on a rough rigid pervious or impervious base. There are very few
studies in the literature in which the layer rests upon a smooth rigid base
e.g. Gibson et al. [7], Rani and Rani [15].

Gibson et al. [1] obtained the plane strain and axially symmetric
consolidation of a clay layer resting upon a smooth rigid base due to
circular or strip loading assuming the fluid as well as solid constituents
incompressible. Booker [2] solved the problem of the consolidation of a
finite clay layer upon a rough-rigid base subjected to general surface
loading, assuming the pore fluid to be incompressible. Chen et al. [7,8]
discussed axisymmetric consolidation of soil layer on a rough
impermeable base subjected to a uniform circular pressure at the ground
surface. The layer is transversely isotropic in its elastic and hydraulic
properties. Ai and Wang [9] studied the axisymmetric deformation of a
finite soil stratum with incompressible solid and fluid components using
Laplace and Hankel transforms in terms of elements of Thomson Haskell
matrix. Rani et al. [12] obtained the deformation of a poroelastic clay
layer with anisotropic permeability overlying a rough-rigid impermeable
base due to axisymmetric normal loading. They assumed the fluid and
solid components compressible.  Rani et al. [14] extended the solution in
the Cartesian form assuming the layer overlying a rough rigid permeable
or impermeable base and showed that the permeability of the base
accelerates the consolidation process.

In the present paper, we generalize the solution obtained by Gibson
et al. [1] for the plane strain consolidation of a clay layer overlying a
smooth rigid base subjected to normal strip and normal line loading
assuming the fluid as well as solid constituents compressible and the
hydraulic permeability to be anisotropic. We formulate the plane strain
deformation of a clay layer resting on a smooth rigid permeable or
impermeable base due to surface loads using the Biot’s stress function
approach. The expressions for the displacements, stresses and the pore
pressure are obtained in the Laplace Fourier domain by applying the
suitable boundary conditions. Explicit expressions for the consolidation
and the pore pressure have been obtained at any arbitrary point of the
layer for the normal strip loading. The double integral is evaluated
numerically to obtain the solution in the space-time domain. The Laplace
inversion has been solved by using Talbot’s algorithm and the Fourier
integral by extended Simpson’s formula. The effect of anisotropic in
permeability and the compressibilities of solid/fluid constituents on the
consolidation has been studied numerically. Contour maps showing the
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pore pressure in the saturated clay layer in the time domain have been
plotted for the normal strip and normal line loading.

2. Theory

A homogeneous, isotropic, poroelastic medium with compressible
fluid and solid constituents can be characterized by four poroelastic
constants: the shear modulus (G), the drained Poisson’s ratio ( ), the
undrained Poisson’s ratio (u ) and the Biot-Willis coefficient ( ) as the
basic set (Detournay and Cheng [16]). For plane strain deformation of a
poroelastic medium in the 1 3x x -plane, the displacement components in
the solid skeleton are of the form

     1 1 1 3 2 3 3 1 3, , , 0, , ,u u x x t u u u x x t . (1)
Let  ij  denote the total stress tensor in the fluid-infiltrated porous elastic
material, ij  the corresponding strain tensor and p  the excess fluid pore
pressure. We take  ij and p as the basic state variables. For plane strain
case, a suitable solution for the deformation of a homogeneous
poroelastic clay stratum  0 z h is (Rani et. al.[14])
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where now  1 3, ,p x x s  and  1 3, ,F x x s  denote the Laplace transforms of

 1 3, ,p x x t and  1 3, ,F x x t , respectively and s denotes the Laplace
transform variable and the arbitrary constants 1 2,A A , etc. may be
functions of k,  1 3,x x z x ,
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By Darcy’s law, the fluid flux q  1 2 3, ,q q q  is given in a poroelastic medium
with anisotropic permeability

         1 1 1 2 3 3 3/ , 0, /q p x q q p x , (6)
Using equation (2) and (6), we obtain
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The stresses in term of Biot’s stress function F are given by (Wang [17])
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Using equation (3) and (9), we obtain
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Corresponding to the stresses given by equations (10)-(12) and
integrating the constitutive equations

        11 11 33 02 1G p ,

        33 33 11 02 1G p ,
 13 132 ,G  (13)

the displacements are found by
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Equations (2), (7), (8), (10) to (12), (14) and (15) are the integral
expressions for the deformation of a homogeneous poroelastic clay layer
possessing anisotropic permeability and compressible constituents. The
constants 1 2 1 2, , ,A A B B  etc. are to be determined from the boundary
conditions.

3. Surface loads

A normal load  33 0
 is applied on the surface z = 0 of the

poroelastic clay stratum  0 z h  overlying a smooth-rigid base (Figure
1). We assume that the boundary z = 0 is permeable, but the lower
boundary z = h may be permeable or impermeable. We consider both the
cases: Case I, when the base z = h is permeable and Case II, when the
base z = h is impermeable. The boundary conditions yield

      13 33 33 0
0, , 0 at 0p z , (16)

and
    13 3 0 atu p z h (17)

Figure 1. A poroelastic clay layer of thickness h with permeable surface
overlying a smooth-rigid permeable or impermeable base.

for case I, and
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    13 3 3 0 atu q z h (18)
for case II. Let
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Applying the boundary conditions we obtain six equations in six
unknowns  1 2 3 4 2 5, , , , ,A A A A B B  which are solved by Cramer’s rule.
Explicit expressions for these unknowns are given in Appendix A and B
for Case I: Permeable base and Case II: Impermeable base, respectively.

Inserting the values of 1 2,A A , etc. in equations (2), (7), (8), (10) to
(12), (14) and (15), we get the integral expressions for the pore pressure,
fluid flux, stresses and the displacements.

3.1 Normal strip loading

Consider a strip   L x L of infinite length in the y-direction on
the surface. Let a normal load 0  per unit length acting in the positive
z-direction be uniformly distributed over this strip. We have (Singh and
Rani [18])
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for z = 0. Comparing equation (19) and (20), we have
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and the lower solution in equations (2), (7), (8), (10) to (12), (14) and (15)
is to be chosen. Inserting the values of constants, 1 2,A A , etc. from
Appendix A and B into equations (2), (7), (8), (10) to (12), (14) and (15), we
get the expressions for the pore pressure, fluid flux, stresses and
displacements at any point of the stratum caused by strip loading for
Case I: Permeable base and Case II: Impermeable base, respectively. We
have verified that, as the depth h of stratum tends to  , the integral
expressions coincide with the corresponding results of a poroelastic half-
space with anisotropic permeability and compressible constituents given
by Singh et al. [19]. Explicit expressions for the pore pressure p (x, z, s)
and the vertical (down) displacement  3 , ,u x z s  are as follows:
Case I: Permeable base
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Case II: Impermeable base
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3.2   Normal Line Loading

Suppose a normal line load 0  per unit length is applied at the
origin on the surface z = 0 acting in the positive z-direction. Therefore
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at z = 0. Comparing equation (19) and (26), we have
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and the lower solution in equation (2), (7), (8), (10) to (12), (14) and (15) is
to be chosen. The expressions for the pore pressure and vertical
displacements can be obtained from the equation (22)-(25) by
substituting the term   sin / 1kL kL

4. Numerical Results and Discussion

Equations (22)-(25) give the solution in the Fourier-Laplace
transform domain. The double integral is evaluated numerically to obtain
the solution in the space-time domain. We have used fixed Talbot
Algorithm [20] for the Laplace inversion and the Fourier transform
inversion has been evaluated by using the extended Simpson’s rule.

We have computed the surface settlement 3u  and the pore
pressure p at various points lying on the z-axis vertically below the
origin. We define the following dimensionless quantities:
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        The petroleum deposits are found in structural traps between
porous and non-porous rocks and the porous rocks are generally of Lime
sandstone. Therefore, for numerical computations, we assume the
poroelastic layer to be Indiana Limestone in which (Wang [17])
  0 26 0 33u. , . , . .  0 71 Also, the horizontal permeability is greater
then the vertical permeability. Therefore, r > 1 and we take r = 2.
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Figure 2. Effect of permeability of the base on the time settlement of the
layer, taking the thickness of the layer (a) h = L/10 (b) h = L (c) h = 10L.
For a thin layer, the permeability of the base accelerates the
consolidation, but for thick layer such behavior is not found.
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In Figure 2, we compare the surface settlement W for permeable and
impermeable base. Figure 2 displays the effect of permeability of the base
on the surface settlement with time for r = 2 (a) h = L/10, (b) h = L (c) h =
10L. The surface settlement is accelerated by the permeability of the
base, without affecting the initial and the final settlement. For a thin
layer, there is a significant effect of permeability of the base on the
surface settlement.
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Figure 3. Effect of the compressibility of the pore fluid  u  on the time-
settlement W (0, 0, t) at origin for 0 26 0 71. , .   and 2r   for the layer
thickness h=L/10.

Next, we compute the surface settlement W for permeable smooth-
rigid base. The effect of undrained Poisson’s ratio  u u .     1 0 5  on
the surface settlement is shown in Figure 3 for   0 26. ,
  0 71 2. and r  for h = L/10. We observe that the fluid constituent’s
compressibility decreases the initial undrained settlement but has no
effect on the final drained settlement. Figure 4 shows the effect of
Skempton’s coefficient B   0 1B  given by

 
  

u

u

B ,
 

  



 
3

1 2 1
on the time-settlement at the mid point (x = z = 0) of the strip
   L x L for   0 26 0 33u. , . ,  2r  for the stratum thickness
h=L/10. The Skempton’s coefficient B=1 is for a poroelastic material with
incompressible solid skeleton. We observe that the compressibility of the
solid skeleton increases the surface consolidation.
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Figure 4. Effect of the compressibility of the solid skeleton (B) on the
time-settlement W (0, 0, t) at origin for   0 26 0 33u. , . and 2r   for the
layer thickness h=L/10.
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Figure 5. Effect of anisotropic permeability  r  on the surface settlement
with time for permeable base. We observe that the settlement is faster for
large value of anisotropic permeability  r .
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Figure 6. Time settlement of the layer for various values of ν for the layer
thickness h = L/10 for permeable base.
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(b)

Figure 7. Diffusion of pore pressure P in the layer  0 z h with time at
origin for normal strip loading for (a) Impermeable base (b) Permeable
Base.

(a)
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(b)

Figure 8. Diffusion of pore pressure P in the layer  0 z h with time at
origin for normal line loading for (a) Impermeable base (b) Permeable
Base. We observe that the magnitude of the pore pressure is increased
due to line loading.

Figure 5 displays the effect of anisotropic permeability r for
permeable base on the surface settlement with time. The settlement is
faster for large value of anisotropic permeability (r). Figure 6 shows the
effect of the Poisson’s ratio ν with time on the time settlement of the layer
for various values of ν. The negative Poisson’s ratio increases the
magnitude of surface settlement.

Contour maps showing the diffusion of pore pressure at origin in
the poroelastic layer have been plotted with time. The pore pressure P is
computed in units of  210P .The contour values for the isolines are
indicated. The nodal lines are also drawn. Figure 7a exhibits the contour
map of P for normal strip loading at the mid point of the strip for
permeable base. Figure 7b is for impermeable base. We observe that the
pore pressure vanishes more rapidly for the permeable base as compared
to the impermeable base. Figure 8a shows the contour map of P for
normal line loading for permeable base. Figure 8b is for impermeable
base. The magnitude of the pore pressure is increased due to line
loading. Diffusion of pore pressure with time is shown in figure 9a for
various values of Poisson’s ratio  near the upper surface z = L/10.
Figure 9b is for the diffusion of pore pressure at the mid-point of the
layer z = L/2. The pore pressure increases from its initial value before
decaying to zero for the negative Poisson’s ratio.
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Figure 9. Diffusion of pore pressure P with time for various values of
Poisson’s ratio ν for h = L for (a) z = L/10 (b) z = L/2. The Mandel Cryer
effect is observed for negative value of ν.

C onsol id ationof acl ay l ay e rov e rl y ing asmooth - rig id b ase d ue tosurf ace l oad s   811



5. Conclusions

1. The permeability of the base accelerate the consolidation of the
layer. For a thin layer, there is a significant effect of permeability of
the base on the surface settlement. However, the initial and final
surface settlement has no effect.

2. The compressibility of the solid skelton may accelerate the
consolidation process without affecting the initial and final values
of surface settlement.

3. The initial settlement is increased by the compressibility of the
fluid constituents but there is no effect on the final settlement.

4. The pore pressure at origin vanishes more rapidly for the
permeable base as compared to the impermeable base.

5. The pore pressure increases from its initial value before decaying to
zero for the negative Poisson’s ratio, which is Mandal Cryer effect.
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Appendix A

Case I: Permeable base
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Appendix B

Case II: Impermeable base
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