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Abstract

In this paper, we prove the existence and uniqueness of the solution
involving the conformable fractional integral equation and give error
estimates of the approximations using the contraction principle.
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1 Introduction

The concepts of fractional integral assume various forms not always equivalent
and also not compatible with each other and play a vital role in the theory of
the most of the scientific areas such as physics and applied sciences.

Fractional integral equations are studied in various fields of physics and
engineering, specifically in signal processing, control engineering, biosciences,
fluid mechanics, diffusion processes and dynamic of viscoelastic material, as
shown in [1, 2, 3, 4, 5, 6, 7, 8, 9].

These types of integral equations naturally appear in certain modeling and
theoretical problems, for example, porous medium equations [10], and numer-
ical analysis [11], among other applications. Moreover the theory of integral
equations is rapidly developing using the tools of functional analysis, topology
and fixed point theory. The theory of such integral equations is developed
intensively in recent years together with the theory of differential equations of
fractional order
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The Banach contraction principle [12] provides the most simple and efficient
tools in fixed point theory. In this paper, we considerer a fractional integral
equation of the type

x(t) = a(t)

∫ t

0

b(u)x(u)dαu+ f(t), t ∈ [0, T ], (1)

where 1
2
< α < 1 and a, b, f : [0, T ]→ R are continuous functions.

To solve (1), we employ fixed point theory. We recall the main result for
fixed points of an operator on a Banach space.

2 Basic definitions and tools

Conformable fractional integral was first introduced by Khalil et al. (2015)
[13] as a generalization of n-fold integral and developed by Abdeljawad [14];
their definition is presented below.

Definition 2.1 (Fractional Integral). The (left) conformable fractional integral
of order 0 < α ≤ 1 starting from a ∈ R of a function f ∈ L1

α[a, b] is defined by

Iaαf(t) =

∫ t

a

f(u) daαu =

∫ t

a

f(u)(u− a)α−1 du, (2)

if the Riemann improper integral exists.

When a = 0 we write Iα and dαu. The operator Iaα is called conformable (left)
fractional integral of order α ∈ (0, 1).

Remark 2.1. Note that the relation between the Riemann integral and the
conformable fractional integral is given by

Iaαf(t) = Ia1
(
tα−1f(t)

)
=

∫ t

a

f(u)uα−1 du. (3)

Remark 2.2. When α → 1 in Eq. (2), the conformable fractional integrals
reduce to ordinary first order integrals.

Definition 2.2 (Contraction mapping). Let (X, || � ||) be a Banach space and
let T : X → X be a self-mapping. Then T is said to be k-contraction if there
exists a constant k ∈ [0, 1) such that

||Tx− Ty|| ≤ k||x− y||, for all x, y ∈ X. (4)

We normally refer to the infimum of all k values satisfying Eq. (4) as the
contraction factor of T .

The existence results will be based on the following fixed-point theorems
and definitions.
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Theorem 2.1 (Banach Fixed Point Theorem [12]). Let (X, || � ||) be a Banach
space and let T : X → X be a k-contraction. Then

(a) Tx = x has exactly one solution, that is, T has exactly one fixed point
x∗ ∈ X.

(b) The sequence xn+1 = Txn, ∀n ∈ N, is convergent to x∗, for any arbitrary
choice of initial point x0 ∈ X. In other words, the fixed point x∗ is
globally attractive.

(c) The error estimate

||xn − x∗|| ≤
kn

1− k
||x1 − x0|| (5)

holds for every n ∈ N.

Lemma 2.2. Let T : X → X be a contraction mapping on a Banach space
and M ⊆ X be a closed subset such that f(M) ⊆ M . Then, the unique fixed
point of f is in M .

Let || � ||B,s : C[0, T ]→ R+ be the Bielecki norm,

||x||B,s = max
t∈[0,T ]

|x(t)|e−st, (6)

for some suitable s > 0, and let || � ||C be the Chebyshev norm on C[0, T ],
defined by ||x||C = maxt∈[0,T ] |x(t)|. It is easy to show that || � ||B,s and || � ||C
are a norms of C[0, T ]. Moreover, (X, || � ||B,s) and (X, || � ||C) are Banach
spaces.

3 Main Results

In this section, we discuss th existence and uniqueness of the solutions of
conformable fractional integral equations.

For Eq. (1), we define the associated integral operator T by

Tx(t) = a(t)

∫ t

0

b(u)x(u) dαu+ f(t), t ∈ [0, T ], (7)

where a, b, f ∈ X = C[0, T ].
By this construction, T

(
X
)
⊂ X, so T : X → X is well defined [15, 16, 17].

Observe that problem (1) has solution if the operator (7) has fixed point. We
have:
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Theorem 3.1. Let T : (X, || � ||B,s)→ (X, || � ||B,s) be defined by Eq. (7), with
the constant s chosen so that

s ≥
(

2T 2α−1||a||C · ||b||C
2α− 1

) 1
1−α

, α ∈
(1

2
, 1
)
. (8)

Choose R satisfying R ≥ max{−R1, R2}, where R1 = mint∈[0,T ] f(t), R2 =
maxt∈[0,T ] f(t). Then

(a) Tx = x has exactly one solution x∗ ∈ BR(f) :=
{
x ∈ X

∣∣||x− f ||B,s ≤ R
}

;

(b) for any arbitrary initial point x0 ∈ BR(f), the sequence xn+1 = Txn,
∀n ∈ N, converges to solution x∗;

(c) for every n ∈ N, the error estimate

||xn − x∗|| ≤
kn

1− k
||x1 − x0|| (9)

holds for every n ∈ N.

Proof. First, let us show that T
(
BR(f)

)
⊆ BR(f) ⊆ X. Let x ∈ BR(f). Since

||x− f ||B,s ≤ R, we have, for every t ∈ [0, T ],

R1 −Rest ≤ f(t)−Rest ≤ x(t) ≤ f(t) +Rest ≤ R2 +Rest. (10)

Multiplying by e−st, using fact that e−sT ≤ e−st ≤ 1, it follows that

− 2R ≤ x(t)e−st ≤ 2R, (11)

so ||x||B,s ≤ 2R. Now, fix t ∈ [0, t]. We have

|Tx(t)− f(t)| ≤ |a(t)|
∫ t

0

|b(u)| |x(u)| |uα−1| du (12)

≤ ||a||C · ||b||C · ||x||B,s
∫ t

0

uα−1esu du (13)

Making the change of variables w = su, 0 ≤ w ≤ st, we get

|Tx(t)− f(t)| ≤ ||a||C · ||b||C · ||x||B,s
1

sα

∫ st

0

wα−1ew dw. (14)

Note that, by the well-known Hölder’s inequality, for α ∈ (1
2
, 1) we have

∫ st

0

wα−1ew dw ≤
(∫ st

0

w2(α−1) dw

) 1
2
(∫ st

0

e2w dw

) 1
2

≤ (sT )2α−1

2α− 1
est. (15)
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Then

|Tx(t)− f(t)| ≤ ||a||C · ||b||C · 2R
T 2α−1

2α− 1
estsα−1 (16)

≤ Rest, (17)

by Eqs. (8) and (11). Then ||Tx− f ||B,s ≤ R and T
(
BR(f)

)
⊆ BR(f).

Next, for every fixed x, y ∈ X, similar computations lead to

|Tx(t)− Ty(t)| ≤ ||a||C · ||b||C
∣∣∣∣∫ t

0

|x(u)− y(u)| |uα−1| du
∣∣∣∣ (18)

≤ ||a||C · ||b||C · ||x− y||B,s
T 2α−1

2α− 1
estsα−1 (19)

So, again, by (8), T is a contraction with constant

k = ||a||C · ||b||C
T 2α−1

2α− 1
sα−1 < 1. (20)

It easily shows that all the hypotheses of Theorem (2.1) and Lemma (2.2)
are satisfied and hence the mapping has a fixed point that is a solution in
closed ball M = BR(f) of the integral equation (1).

Remark 3.1. The above proof gives a constructive method to find a sequence of
Picard iterations that converges to the exact solution of the fractional integral
equation (1).

Theorem 3.2. Assume the conditions of Theorem (3.1) are satisfied. If, in
addition, a, b, f ∈ C2[0, T ], then x∗ ∈ C2[0, T ], also.

4 Concluding Remark

There are many results devoted to the well-known integral equation that in
most cases extremely difficult. In this paper, we give results for integral equa-
tion containing conformable fractional integral. We used Picard iteration for
finding fixed points of a singular integral operator (Banachs fixed point the-
orem). The presented idea may stimulate further research in the theory of
conformable fractional integrals.
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