Concircular Curvature Tensor on Generalized Sasakian Space Forms

Somashekhara P
Department of Mathematics, Kuvempu University, Shankaraghatta, Shivamogga-577451, Karnataka, INDIA. somumathrishi@gmail.com
Venkatesha
Department of Mathematics, Kuvempu University, Shankaraghatta, Shivamogga-577451, Karnataka, INDIA. vensmath@gmail.com
\section*{R.T. Naveen Kumar}
Department of Mathematics, Siddaganga Institute of Technology, B H Road, Tumakuru-572103, Karnataka, INDIA. rtnaveenkumar@gmail.com

Abstract

The aim of this paper is to study concircular curvature tensor on generalized Sasakian space forms. Here we describe the ϕ-concircular flat, pseudo-concircular flat, quasi-concircular flat, ϕ-concircular semisymmetric and concircular pseudo-symmetric conditions on generalized Sasakian space forms and obtained interesting results.

Mathematics Subject Classification: 53C25, 53D10, 53D15.

Keywords: generalized Sasakian space forms, ϕ-concircular flat, pseudoconcircular flat, quasi-concircular flat, concircular pseudo-symmetric, η-Einstein manifold.

1 Introduction

In 2004, Alegre, Blair and Carriazo [1] introduced the notion of generalized Sasakian space forms. A Sasakian manifold with constant ϕ-sectional curvature is a Sasakian space-form and it has a specific form of its curvature tensor. An almost contact metric manifold $\left(M^{2 n+1}, \phi, \xi, \eta, g\right)$ is said to be a generalized Sasakian-space-form if there exists differentiable functions f_{1}, f_{2}, f_{3} such that the curvature tensor R of $M^{2 n+1}$ is given by

$$
\begin{align*}
R(X, Y) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, \phi Z) \phi Y \tag{1}\\
& -g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+f_{3}\{\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
\end{align*}
$$

for any vector fields X, Y, Z on $M^{2 n+1}$. In such cases the manifold will be written as $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$. This nature of manifold appears in the generalization of Sasakian space form by taking $f_{1}=\frac{c+3}{4}$ and $f_{2}=f_{3}=\frac{c-1}{4}$, where c denotes constant ϕ-sectional curvature. In [8], Kim studied conformally flat and locally symmetric generalized Sasakian space forms. Also Avijit Sarkar and Ali Akbar [10] studied projective curvature tensor on generalized Sasakian space forms. In [4], De studied generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor. The notion of generalized Sasakian space forms have been weakened by many geometers such as $[5,11,12,13]$ and many others with different curvature tensors.

Further the concircular curvature tensor \tilde{C} in an $(2 n+1)$-dimensional Riemannian manifold $\left(M^{2 n+1}, g\right)$ is defined by $[14,15]$:

$$
\begin{equation*}
\tilde{C}(X, Y) Z=R(X, Y) Z-\frac{r}{2 n(2 n+1)}[g(Y, Z) X-g(X, Z) Y], \tag{2}
\end{equation*}
$$

for all $X, Y, Z \in M^{2 n+1}$.
The present paper is organized as follows: In Section 2, we have provided some preliminary results that will be needed throughout the paper. In section 3, we describe ϕ-concircular flat generalized Sasakian space forms. In Sections 4 and 5 we study pseudo-concircular flat and quasi concircular flat generalized Sasakian space forms and it is shown that the manifold reduces to η-Einstein. In Section 6, we proved that a $(2 n+1)$-dimensional generalized Sasakian space form is concircular pseudo-symmetric, then either $L_{\tilde{C}}=f_{1}-f_{3}$ or the manifold is η-Einstein. Finally section 7 is devoted to the study of ϕ-concircular semisymmetric generalized sasakian space forms.

2 Preliminaries

In an almost contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$, we have $[2,3]$

$$
\begin{align*}
\phi^{2} X & =-X+\eta(X) \xi, \phi \xi=0, \tag{3}\\
\eta(\xi) & =1, g(X, \xi)=\eta(X), \eta(\phi X)=0, \tag{4}\\
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y), \tag{5}\\
g(\phi X, Y) & =-g(X, \phi Y), g(\phi X, X)=0, \tag{6}
\end{align*}
$$

where ϕ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1 -form,∇ is the levicivita connection and g is a Riemannian metric.
In a $(2 n+1)$-dimensional generalized Sasakian space form, the following relations hold [1]:

$$
\begin{align*}
R(X, Y) \xi & =\left(f_{1}-f_{3}\right)\{\eta(X) \xi-X\} \tag{7}\\
\eta(R(X, Y) Z) & =\left(f_{1}-f_{3}\right)\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \tag{8}\\
Q X & =\left(2 n f_{1}+3 f_{2}-f_{3}\right) X-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \xi \tag{9}\\
Q \xi & =2 n\left(f_{1}-f_{3}\right) \xi \tag{10}\\
S(X, Y) & =\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y) \tag{11}\\
& -\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \eta(Y) \\
S(X, \xi) & =2 n\left(f_{1}-f_{3}\right) \eta(X) \tag{12}\\
r & =2 n(2 n+1) f_{1}+6 n f_{2}-4 n f_{3} \tag{13}\\
S(\phi X, \phi Y) & =S(X, W)-2 n\left(f_{1}-f_{3}\right) \eta(X) \eta(W) \tag{14}
\end{align*}
$$

for any vector fields X, Y, Z on $M^{2 n+1}$ where R, Q, S and r are the Riemannian curvature tensor, Ricci operator, Ricci tensor and scalar curvature of $M^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ respectively. Also in a generalized Sasakian space form, concircular curvature tensor satisfies the following:

$$
\begin{align*}
\tilde{C}(X, Y) \xi & =\left[f_{1}-f_{3}-\frac{r}{2 n(2 n+1)}\right]\{\eta(Y) X-\eta(X) Y\}, \tag{15}\\
\tilde{C}(\xi, X) Y & =\left[f_{1}-f_{3}-\frac{r}{2 n(2 n+1)}\right]\{g(X, Y) \xi-\eta(Y) X\}, \tag{16}\\
\eta(\tilde{C}(\xi, X) \xi) & =\left[f_{1}-f_{3}-\frac{r}{2 n(2 n+1)}\right]\{\eta(X) \xi-X\} . \tag{17}
\end{align*}
$$

Definition 2.1 $A(2 n+1)$-dimensional generalized sasakian space form is said to be η-Einstein if its Ricci tensor S is of the form

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y),
$$

for any vector fields X and Y, where a and b are constants. If $b=0$ then the manifold is Einstein and if $a=0$ then the manifold is special type of η-Einstein.

3ϕ-concircular flat generalized Sasakian space forms

Definition 3.1 $A(2 n+1)$-dimensional $(n \geq 1)$ generalized Sasakian space form is called ϕ-concircular flat if it satisfies $\phi^{2}(\tilde{C}(\phi X, \phi Y) \phi Z)=0$, for every vector fields X, Y and Z.

Let us consider a ϕ-concircular flat generalized Sasakian space form i.e.,

$$
\begin{equation*}
\phi^{2}(\tilde{C}(\phi X, \phi Y) \phi Z)=0 . \tag{18}
\end{equation*}
$$

In view of (2) in (18), we get

$$
\begin{equation*}
\phi^{2}(R(\phi X, \phi Y) \phi Z)-\frac{r}{2 n(2 n+1)} \phi^{2}(g(\phi Y, \phi Z) \phi X-g(\phi X, \phi Z) \phi Y)=0 \tag{19}
\end{equation*}
$$

By using (1), (4) and (11) in (19), we obtain

$$
\begin{align*}
& \phi^{2}\left[f_{1}(g(Y, Z) \phi X-\eta(Y) \eta(Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y)\right. \tag{20}\\
& \left.+f_{2}\left(g(X, \phi Z) \phi^{2} Y-g(Y, \phi Z) \phi^{2} X+2 g(X, \phi Y) \phi^{2} Z\right)\right] \\
& =\frac{r}{2 n(2 n+1)} \phi^{2}[g(Y, Z) \phi X-\eta(Y) \eta(Z) \phi X \\
& -g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y] .
\end{align*}
$$

By virtue of (3) and (4) in (20), gives

$$
\begin{align*}
& f_{1}\{g(Y, Z) \phi X-\eta(Y) \eta(Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y\} \tag{21}\\
& +f_{2}\left\{g(X, \phi Z) \phi^{2} Y-g(Y, \phi Z) \phi^{2} X+2 g(X, \phi Y) \phi^{2} Z\right\} \\
& =\frac{r}{2 n(2 n+1)}[g(Y, Z) \phi X-\eta(Y) \eta(Z) \phi X \\
& -g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y] .
\end{align*}
$$

Taking inner product of the above equation with respect to W, we have

$$
\begin{align*}
& f_{1}\{g(Y, Z) g(\phi X, W)-\eta(Y) \eta(Z) g(\phi X, W)-g(X, Z) g(\phi Y, W) \tag{22}\\
& +\eta(X) \eta(Z) g(\phi Y, W)\}+f_{2}\left\{g(X, \phi Z) g\left(\phi^{2} Y, W\right)\right. \\
& \left.-g(Y, \phi Z) g\left(\phi^{2} X, W\right)+2 g(X, \phi Y) g\left(\phi^{2} Z, W\right)\right\} \\
& =\frac{r}{2 n(2 n+1)}[g(Y, Z) g(\phi X, W)-\eta(Y) \eta(Z) g(\phi X, W) \\
& -g(X, Z) g(\phi Y, W)+\eta(X) \eta(Z) g(\phi Y, W)]
\end{align*}
$$

On plugging $Y=Z=e_{i}$ in (22), we get

$$
\begin{equation*}
3 f_{2} g(X, \phi W)=f_{3}(1-2 n) g(X, \phi W) \tag{23}
\end{equation*}
$$

which implies

$$
\begin{equation*}
f_{3}=\frac{3 f_{2}}{1-2 n} . \tag{24}
\end{equation*}
$$

Hence we can state the following:
Theorem 3.2 $A(2 n+1)$-dimensional generalized Sasakian space form is ϕ-concircular flat, then $f_{3}=\frac{3 f_{2}}{1-2 n}$.

4 Pseudo-concircular flat generalized Sasakian space forms

Definition 4.1 A generalized Sasakian space form $M^{2 n+1}$ is said to be pseudo concircular flat if

$$
\begin{equation*}
g(\tilde{C}(\phi X, Y) Z, \phi W)=0, \forall X, Y, Z, W \in T M^{2 n+1} \tag{25}
\end{equation*}
$$

Let us consider a $(2 n+1)$-dimensional pseudo concircular flat generalized Sasakian space form. Then it follows from (25) that

$$
\begin{align*}
& g(\tilde{C}(\phi X, Y) Z, \phi W)=R(\phi X, Y, Z, \phi W) \tag{26}\\
& -\frac{r}{2 n(2 n+1)}[g(Y, Z) g(\phi X, \phi W)-g(\phi X, Z) g(Y, \phi W)] .
\end{align*}
$$

Let $e_{1}, e_{2}, \ldots, e_{2 n+1}$ be an orthonormal basis of the tangent space at each point of the manifold. Putting $Y=Z=e_{i}$ in (26) and taking summation over i, ($1 \leq i \leq 2 n+1$), then using (1), (2), (5) and (11), we obtain

$$
\begin{equation*}
S(\phi X, \phi W)=\frac{r}{2 n+1} g(\phi X, \phi W) . \tag{27}
\end{equation*}
$$

Replacing X by ϕX and W by ϕW in (27), we get

$$
\begin{equation*}
S(X, W)=A g(X, W)+B \eta(X) \eta(W), \tag{28}
\end{equation*}
$$

where $A=\frac{r}{2 n+1}$ and $B=\frac{r}{2 n+1}-2 n\left(f_{1}-f_{3}\right)$.
On contracting (28), we get

$$
\begin{equation*}
r=2 n(2 n+1)\left(f_{1}-f_{3}\right) \tag{29}
\end{equation*}
$$

Thus we can state the following:
Theorem 4.2 $A(2 n+1)$ - dimensional pseudo-concircular flat generalized Sasakian space form is an η-Einstein manifold with a scalar curvature $r=$ $2 n(2 n+1)\left(f_{1}-f_{3}\right)$.

5 Quasi-concircular flat generalized Sasakian space form

Definition 5.1 A generalized Sasakian space form is said to be Quasiconcircular flat if it satisfies $g(\tilde{C}(X, Y) Z, \phi W)=0$ for every vector fields $X, Y, Z, W \in M^{2 n+1}$,

Now consider a Quasi-concircular flat generalized Sasakian space form, then it can be easily seen that

$$
\begin{align*}
& g(\tilde{C}(X, Y) Z, \phi W)=R(X, Y, Z, \phi W) \tag{30}\\
& -\frac{r}{2 n(2 n+1)}[g(Y, Z) g(X, \phi W)-g(X, Z) g(Y, \phi W)]
\end{align*}
$$

Let $e_{1}, e_{2}, \ldots, e_{2 n+1}$ be an orthonormal basis of the tangent space at each point of the manifold. Putting $Y=Z=e_{i}$ in (30) and taking summation over i, $(1 \leq i \leq 2 n+1)$, then using (1), (2), (5) and (11) gives

$$
\begin{equation*}
S(X, \phi W)=\frac{r}{2 n+1} g(X, \phi W) . \tag{31}
\end{equation*}
$$

Replacing W by ϕW in (31) and then using (3), we get

$$
\begin{equation*}
S(X, W)=A g(X, W)+B \eta(X) \eta(W), \tag{32}
\end{equation*}
$$

where $A=\frac{r}{2 n+1}$ and $B=2 n\left(f_{1}-f_{3}\right)-\frac{r}{2 n+1}$.
On contracting (32), we get

$$
\begin{equation*}
r=2 n(2 n+1)\left(f_{1}-f_{3}\right) \tag{33}
\end{equation*}
$$

Thus we can state the following:
Theorem 5.2 $A(2 n+1)$ - dimensional Quasi-concircular flat generalized Sasakian space form is an η-Einstein manifold with a scalar curvature $r=$ $2 n(2 n+1)\left(f_{1}-f_{3}\right)$.

6 Concircular pseudo-symmetric generalized Sasakian space forms

Definition 6.1 $A(2 n+1)$-dimensional generalized Sasakian space form $M^{2 n+1}$ is said to be concircular pseudo-symmetric if $R \cdot \tilde{C}=L_{\tilde{C}} Q(g, \tilde{C})$. i.e.,

$$
\begin{equation*}
(R(X, Y) \tilde{C})(U, V) W=L_{\tilde{C}}[((X \wedge Y) \tilde{C})(U, V, W)] \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\xi \wedge_{g} X\right) Y=g(X, Y) \xi-g(\xi, Y) X \tag{35}
\end{equation*}
$$

Now consider concircular pseudo-symmetric generalized Sasakian space form. Then from (34), we have

$$
\begin{equation*}
(R(\xi, Y) \tilde{C})(U, V) W=L_{\tilde{C}}[((\xi \wedge Y) \tilde{C})(U, V, W)] \tag{36}
\end{equation*}
$$

Now left hand side of (36) gives

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)[g(\tilde{C}(U, V) W, Y) \xi-\eta(\tilde{C}(U, V) W) Y-\tilde{C}(g(Y, U) \xi \tag{37}\\
& -\eta(U) Y, V) W-\tilde{C}(U,(g(Y, V) \xi-\eta(V) Y)) W \\
& -\tilde{C}(U, V)(g(Y, W) \xi-\eta(W) Y)]
\end{align*}
$$

Similarly right hand side of (36) yields

$$
\begin{align*}
& L_{\tilde{C}}[g(Y, \tilde{C}(U, V) W) \xi-\eta(\tilde{C}(U, V) W) Y-\tilde{C}((g(Y, U) \xi \tag{38}\\
& -\eta(U) Y), V) W-\tilde{C}(U,(g(Y, V) \xi-\eta(V) Y)) W \\
& -\tilde{C}(U, V)(g(Y, W) \xi-\eta(W) Y)]
\end{align*}
$$

By using (37) and (38) in (36) and then taking inner product with ξ, we get

$$
\begin{align*}
& {\left[L_{\tilde{C}}-\left(f_{1}-f_{3}\right)\right][\tilde{C}(U, V, W, Y)-\eta(\tilde{C}(U, V) W) \eta(Y)} \tag{39}\\
& +\eta(U) \eta(\tilde{C}(Y, V) W)+\eta(V) \eta(\tilde{C}(U, Y) W) \\
& +\eta(W) \eta(\tilde{C}(U, V) Y)-g(Y, U) \eta(\tilde{C}(\xi, V) W) \\
& -g(Y, V) \eta(\tilde{C}(U, \xi) W)-g(Y, W) \eta(\tilde{C}(U, V) \xi)]=0 .
\end{align*}
$$

By putting $U=Y$ in (39), we get either $L_{\tilde{C}}=f_{1}-f_{3}$ or

$$
\begin{align*}
& {[\tilde{C}(Y, V, W, Y)+\eta(V) \eta(\tilde{C}(Y, Y) W)+\eta(W) \eta(\tilde{C}(Y, V) Y)} \tag{40}\\
& -g(Y, Y) \eta(\tilde{C}(\xi, V) W)-g(Y, V) \eta(\tilde{C}(Y, \xi) W) \\
& -g(Y, W) \eta(\tilde{C}(Y, V) \xi)]=0
\end{align*}
$$

On contracting Y in (40) and then using(1), (2), (4), (6), (11) and (17), we get

$$
\begin{equation*}
S(V, W)=A g(V, W)+B \eta(V) \eta(W) \tag{41}
\end{equation*}
$$

where $A=2 n\left[f_{1}-f_{3}-\frac{r}{2 n(2 n+1)}\right]$ and $B=-4 n\left[f_{1}-f_{3}-\frac{r}{2 n(2 n+1)}\right]$.
This leads us to the following:
Theorem 6.2 A ($2 n+1$)-dimensional generalized Sasakian space form is concircular pseudo-symmetric, then either $L_{\tilde{C}}=f_{1}-f_{3}$ or the manifold is η-Einstein.

$7 \quad \phi$-concircular semi symmetric generalized Sasakian space form

Definition 7.1 $A(2 n+1)$-dimensional generalized Sasakian space form is said to be ϕ-concircular semi-symmetric if

$$
\begin{equation*}
\tilde{C}(X, Y) \cdot \phi=0 . \tag{42}
\end{equation*}
$$

In view of (42), we have

$$
\begin{equation*}
(\tilde{C}(X, Y) \cdot \phi) Z=\tilde{C}(X, Y) \phi Z-\phi \tilde{C}(X, Y) Z=0 \tag{43}
\end{equation*}
$$

By using (1), (2), (3), (4), (9) in (43), we get

$$
\begin{align*}
& \left\{f_{1}-f_{2}-\frac{r}{2 n(2 n+1)}\right\}[g(Y, \phi Z) X-g(X, \phi Z) Y-g(Y, Z) \phi X \tag{44}\\
& +g(X, Z) \phi Y]=\left\{f_{2}-f_{3}\right\}[g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \eta(X) \xi \\
& +\eta(Y) \eta(Z) \phi X-\eta(X) \eta(Z) \phi Y]
\end{align*}
$$

On plugging $Y=\xi$ in (44) and then taking inner product with respect to ξ, we get

$$
\begin{equation*}
\left\{f_{1}-f_{3}-\frac{r}{2 n(2 n+1)}\right\} g(X, \phi Z)=0 . \tag{45}
\end{equation*}
$$

Since $g(X, \phi Z) \neq 0$, we have

$$
\begin{equation*}
r=2 n(2 n+1)\left(f_{1}-f_{3}\right) \tag{46}
\end{equation*}
$$

Hence we can state the following:
Theorem 7.2 $A(2 n+1)$-dimensional generalized Sasakian space form is ϕ concircular semi-symmetric, then the scalar curvature is given by $r=2 n(2 n+$ 1) $\left(f_{1}-f_{3}\right)$.

References

[1] P. Alegre, D.E. Blair and A. Carriazo, Generalized Sasakian-space forms, Isrel. J. Math, 141 (2004), 157-183.
[2] D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin, (509) (1976).
[3] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Birkhauser Boston Inc. Boston, (2002).
[4] U.C. De, On generalized Sasakian space forms satisfying certain conditions on the Concircular curvature tensor, Bullitin of Mathematical Analysis and Applications, 6 (1), (2014), 1-8.
[5] U.C. De and Pradip Majhi, ϕ-semisymmetric generalized Sasakian space forms, Arab Journal of Math. Sci., 21 (2015), 170-178.
[6] U.C. De and A. Sarkar, On the projective curvature tensor of generalized Sasakian space forms, Quaestiones Mathematicae, 141 (2010), 245-252.
[7] U.C. De and A. Sarkar, Some results on generalized Sasakian space forms, Thai. J. Math, 8 (2010), 1-10.
[8] U.K. Kim, Conformally flat generalized Sasakian space forms and locally symmetric generalized Sasakian space forms, Note Math., 26 (2006), 5657.
[9] D.G. Prakasha, On Generalized Sasakian Space forms with WeylConformal Curvature Tensor, Lobachevskii Journal of Mathematics, 33 (3) (2012), 223-228.
[10] A. Sarkar and A. Akbar, Generlized Sasakian space forms with projective curvature tensor, Demonstratio Mathematica, 47 (3), (2014).
[11] A. Sarkar and U.C. De, Some curvature properties of generalized Sasakian space forms, Lobachevskii Journal of Mathematics, 33 (1), (2012), 22-27.
[12] N.V.C. Shukla and R.J. Shah, Generalized Sasakian space forms with Concircular curvature tensor, J. Rajasthan Acad. Phy. Sci, 10 (1), (2011), 11-24.
[13] Venkatesha and B. Sumangala, On M-projective curvature tensor of a generalized Sasakian space form, Acta. Math. Univ. Comenianae, 82 (2), (2013), 209-217.
[14] K. Yano, Concircular geometry 1, concircular transformation, Proc. Imp. Acad, Tokyo, 16 (1940), 195-200.
[15] K. Yano and S. Bouchner Curvature and Betti numbers, Annals of Mathematics studies, Princeton University press, 32 (1953).
[16] K. Yano and M. Kon, Structures of manifolds, World Scientific Publishing, Singapore, (1984).

Received: July 27, 2017

