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Abstract

The aim of this paper is to study concircular curvature tensor on
generalized Sasakian space forms. Here we describe the ¢-concircular
flat, pseudo-concircular flat, quasi-concircular flat, ¢-concircular semi-
symmetric and concircular pseudo-symmetric conditions on generalized
Sasakian space forms and obtained interesting results.
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1 Introduction

In 2004, Alegre, Blair and Carriazo [1] introduced the notion of generalized
Sasakian space forms. A Sasakian manifold with constant ¢-sectional curvature
is a Sasakian space-form and it has a specific form of its curvature tensor. An
almost contact metric manifold (M?" ™! ¢ £ n,g) is said to be a generalized
Sasakian-space-form if there exists differentiable functions fi, fa, f3 such that
the curvature tensor R of M?"*lis given by

RX,Y)Z = fi{g(Y,2)X —g(X, 2)Y} + f2{9(X, 0Z)dY (1)
—g(Y, 0Z2)pX + 29(X, ¢Y)pZ} + fa{n(X)n(Z)Y
—n(Y)n(Z)X + g(X, Z)n(Y)E — g(Y, Z)n(X)E},

for any vector fields X, Y, Z on M?"*!1. In such cases the manifold will be writ-
ten as M?""Y(f1, fa, f3). This nature of manifold appears in the generalization
of Sasakian space form by taking f; = % and fo = f3 = %1, where ¢ denotes
constant ¢-sectional curvature. In [8], Kim studied conformally flat and locally
symmetric generalized Sasakian space forms. Also Avijit Sarkar and Ali Akbar
[10] studied projective curvature tensor on generalized Sasakian space forms.
In [4], De studied generalized Sasakian space forms satisfying certain condi-
tions on the concircular curvature tensor. The notion of generalized Sasakian
space forms have been weakened by many geometers such as [5, 11, 12, 13] and
many others with different curvature tensors.

Further the concircular curvature tensor C' in an (2n+ 1)-dimensional Rie-
mannian manifold (M?*"*1 g) is defined by [14, 15]:

~ r

C(X,Y)Z = R(X,Y)Z — m[g(Y, 2)X — g(X, Z)Y], (2)

for all X,Y,Z ¢ M?"+!,

The present paper is organized as follows: In Section 2, we have provided
some preliminary results that will be needed throughout the paper. In section
3, we describe ¢-concircular flat generalized Sasakian space forms. In Sections
4 and 5 we study pseudo-concircular flat and quasi concircular flat generalized
Sasakian space forms and it is shown that the manifold reduces to n-Einstein.
In Section 6, we proved that a (2n+ 1)-dimensional generalized Sasakian space
form is concircular pseudo-symmetric, then either Lz = fi — f3 or the manifold
is n-Einstein. Finally section 7 is devoted to the study of ¢-concircular semi-
symmetric generalized sasakian space forms.
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2 Preliminaries

In an almost contact metric manifold M?""1(¢, £, n, g), we have [2, 3]

@X = —X+n(X)§ ¢ =0, (3)
n€) = 1, g(X,8) = n(X), n(¢X) =0, (4)
9(¢X,9Y) = g(X,Y) —n(X)n(Y), ()
9(@X,Y) = —g(X,9Y), g(¢X,X) =0, (6)

where ¢ is a (1,1) tensor field, £ is a vector field, 7 is a 1-form ,V is the levi-
civita connection and ¢ is a Riemannian metric.

In a (2n + 1)-dimensional generalized Sasakian space form, the following rela-
tions hold [1]:

R(X,Y)E = (fi— fa){n(X)E - X}, (7)
n(R(X,Y)Z) = (fi = fs){g(Y, Z)n(X) — g(X, Z)n(Y)}, (8)
QX = (2nfi+3fa— )X =@+ 2n—1)f)n(X)E  (9)
Q¢ = 2n(fi — f3)¢, (10)
S(X,Y) = (@2nfi+3f,— f3)9(X,Y) (11)
— (3fa+ (2n = 1) f3) n(X)n(Y),
S(X,€) = 2n(fi — f3) n(X), (12)
r = 2n(2n+1)f; +6nfy —4nfs, (13)
S(@X,¢0Y) = S(X,W)=2n(f1 — fs)n(X)n(W), (14)

for any vector fields X,Y,Z on M** ™! where R,Q,S and r are the Rieman-
nian curvature tensor, Ricci operator, Ricci tensor and scalar curvature of
M TY(f1, fa, f3) respectively. Also in a generalized Sasakian space form, con-
circular curvature tensor satisfies the following:

CHYE = [fi-fim g X —nCOYE (19)
CEX) = |\h=fi= 5y | W E—NX) (19
HCE X)) = |hi=fo= gom s [ {n(0E = X}, (17)

Definition 2.1 A (2n + 1)-dimensional generalized sasakian space form is
said to be n-FEinstein if its Ricci tensor S is of the form

S(X,Y) = ag(X,Y) + n(X)n(Y),

for any vector fields X and Y, where a and b are constants. If b = 0 then
the manifold is Finstein and if a = 0 then the manifold is special type of
n-Finstein.
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3 ¢-concircular flat generalized Sasakian space
forms

Definition 3.1 A (2n+ 1)-dimensional (n > 1) generalized Sasakian space

form is called ¢-concircular flat if it satisfies $*(C(¢pX, dY)pZ) = 0, for every
vector fields X, Y and Z.

Let us consider a ¢-concircular flat generalized Sasakian space form i.e.,
0} (C(0X,0Y)9Z) = 0. (18)

In view of (2) in (18), we get

r

m¢2(9(¢5/’ ¢Z)pX — g(¢X,0Z)pY) = 0. (19)

*(R(¢X, Y )pZ) —
By using (1), (4) and (11) in (19), we obtain
?*[f1(g(Y, Z2)pX —n(Y)n(Z2)pX — g(X, Z)oY +n(X)n(Z)pY) (20)
+f2(9(X,02)0*Y — g(Y, 02)¢* X + 29(X, ¢Y )¢ Z)]
——?g(Y, 2)0X — (Y )n(2) X

T m(2n+ 1)
—9(X, Z2)¢Y +n(X)n(Z)¢Y].
By virtue of (3) and (4) in (20), gives
(Y, 2)oX —n(Y)n(Z2)¢X — g(X, Z)¢Y +n(X)n(Z)eY} (21)
+2{9(X,02)0Y — g(Y,02)¢*X + 29(X, ¢Y )¢*Z}
= S T 200X — 0 n(2)6X
—9(X, 2)6Y +n(X)n(Z)¢Y].

Taking inner product of the above equation with respect to W, we have

fi{g(Y, Z)g(o X, W) —n(Y)n(Z2)g(¢o X, W) — g(X, Z)g(oY, W) (22)
+n(X)n(Z2)g(oY, W)} + fo{g(X,¢2)g(4*Y, W)
—9(Y,0Z)g(¢* X, W) +29(X, ¢Y )g(¢°Z, W)}

= S T D9OX W) =0 )0l Z)g (60X, W)
—9(X, 2)g(¢Y, W) + n(X)n(Z)g(¢Y, W)].
On plugging Y = Z = ¢; in (22), we get

3f29(X,oW) = f3(1 — 2n)g(X, W), (23)
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which implies

35
fo= 12 (21)

Hence we can state the following:

Theorem 3.2 A (2n + 1)-dimensional generalized Sasakian space form is

¢-concircular flat, then f3 = %

4 Pseudo-concircular flat generalized Sasakian
space forms

Definition 4.1 A generalized Sasakian space form M?*™! is said to be
pseudo concircular flat if

g(C(pX,Y)Z,oW) =0, ¥ XY, Z, W € TM* !, (25)

Let us consider a (2n + 1)-dimensional pseudo concircular flat generalized
Sasakian space form. Then it follows from (25) that

9(C(6X,Y)Z,¢W) = R(¢X,Y, Z,¢W) (26)
o 19 D9(0X, 6) = g(6X. Z2)g Y, oW

Let ey, eq, ..., e2,41 be an orthonormal basis of the tangent space at each point
of the manifold. Putting Y = Z = ¢; in (26) and taking summation over i,
(1 <i<2n+1), then using (1), (2), (5) and (11), we obtain

S(¢X, W) =

,
90X, o). 1)

Replacing X by ¢X and W by ¢W in (27), we get

S(X, W) = Ag(X, W) + Bn(X)n(W), (28)
where A = 505 and B = 555 — 2n(f1 — f3).
On contracting (28), we get
r=2n2n+1)(f1 — f3)- (29)

Thus we can state the following:

Theorem 4.2 A (2n + 1)- dimensional pseudo-concircular flat generalized
Sasakian space form is an n-Einstein manifold with a scalar curvature r =
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5 Quasi-concircular flat generalized Sasakian
space form

Definition 5.1 A generalized Sasakian space form is said to be Quasi-
concircular flat if it satisfies g(C(X,Y)Z,oW) = 0 for every vector fields
XY, Z,W € M¥+!,

Now consider a Quasi-concircular flat generalized Sasakian space form, then it
can be easily seen that

g(C(X,Y)Z,oW) = R(X,Y, Z, oW) (30)

”
———[g(Y, 2)g(X, oW ) — g(X, Z)g(Y, dW)].
otz Ty 9 2)9(X, 6W) = g(X, Z)g (Y, 6W)]

Let ey, s, ..., €9,11 be an orthonormal basis of the tangent space at each point

of the manifold. Putting Y = Z = ¢; in (30) and taking summation over i,
(1 <i<2n+1), then using (1), (2), (5) and (11) gives

T
Replacing W by ¢W in (31) and then using (3), we get
S(X, W) = Ag(X, W) + Bn(X)n(W), (32)
where A = 5= and B = 2n(f1 — f3) — 5,7
On contracting (32), we get

Thus we can state the following:

Theorem 5.2 A (2n + 1)- dimensional Quasi-concircular flat generalized
Sasakian space form is an n-Finstein manifold with a scalar curvature r =

2n(2n +1)(f1 — f3).

6 Concircular pseudo-symmetric generalized
Sasakian space forms

Definition 6.1 A (2n + 1)-dimensional generalized Sasakian space form
M?"+1 s said to be concircular pseudo-symmetric if R-C = La Q(g,C). i.e.,

(R(X,Y)C)U, VYW = La[(X AY)C) U, V, W), (34)

where

(Mg X)Y = g(X,Y)E —g(§, V)X (35)
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Now consider concircular pseudo-symmetric generalized Sasakian space form.
Then from (34), we have

(R(E,Y)ONU,VIW = Le[((§ AY)E)U, V, W) (36)
Now left hand side of (36) gives

(f1 = B)(CUVIWY)E = (CUVIW)Y = Clg(Y,U)§  (37)
—n(U)Y, V)W — C(U, (g(Y. V)€ = n(V)Y))W
—CU,V)(g(Y, W)€ —n(W)Y)].

Similarly right hand side of (36) yields

Lelg(Y,C(U V)W) = n(C(U VW)Y — C((g(Y,U)¢ (38)
—n(U)Y),VIW = C(U, (g(Y. V)€ = n(V)Y))W
—C(U,V)(g(Y, W), =n(W)Y)].

By using (37) and (38) in (36) and then taking inner product with £, we get

[Le — (fL = f)CUV,WY) = n(C(U,V)W)p(Y) (39)
+n(U)n(CY,VIW) +n(V)n(C(U, Y)W)
+n(W)n(C(U,V)Y) = g(Y, U)n(C(E, V)W)
—g(Y,V)n(C(U, W) — g(Y,W)n(C(U, V)§)] = 0.

By putting U =Y in (39), we get either Ly = fi — f5 or

[CV.WY) +(V)n(CY, V)W) +a(W)n(C(Y,V)Y)  (40)
—g(Y.Y)n(C(E V)W) = g(¥. V)n(C(Y.E)W)
—g(Y. W)n(C(Y,V)§)] = 0.

On contracting Y in (40) and then using(1), (2), (4), (6), (11) and (17), we
get

SV, W) = Ag(V,W) + Bn(V)n(W), (41)

where A = 2n [fl fs = s

sraerr) and B = —dn [fi — f3 -
This leads us to the following:

2n(2n+1)}

Theorem 6.2 A (2n + 1)-dimensional generalized Sasakian space form is
concircular pseudo-symmetric, then either Ls = fi — fs or the manifold is
n-Finstein.
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7 ¢-concircular semi symmetric generalized
Sasakian space form

Definition 7.1 A (2n+ 1)-dimensional generalized Sasakian space form is
said to be ¢-concircular semi-symmetric if

C(X,Y)-¢=0. (42)
In view of (42), we have
(C(X,Y)-¢)Z =C(X,Y)pZ — ¢C(X,Y)Z = 0. (43)
By using (1), (2), (3), (4), (9) in (43), we get

U= o= gy o0 02)X = g(X62)Y = g(¥, 2)0X (44

+9(X, 2)oY] = {fo — fs}9(X, 0Z)n(Y)§ — g(Y, ¢ Z)n(X)E
+n(Y)n(Z2)pX — n(X)n(Z)eY].

On plugging Y = ¢ in (44) and then taking inner product with respect to &,
we get

r

{fl—f?,—m}g()(aﬁbz) = 0. (45)
Since g(X, ¢Z) # 0, we have

Hence we can state the following:

Theorem 7.2 A (2n+1)-dimensional generalized Sasakian space form is ¢-
concircular semi-symmetric, then the scalar curvature is given by r = 2n(2n +

D(f1— f3).
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