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Häıkel Skhiri (Corresponding author)
haikel.skhiri@gmail.com, haikel.skhiri@fsm.rnu.tn
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Abstract

For a given space X of holomorphic functions in the open unit disc,
we determine which self-maps Φ of L(X) preserve the family FC(X) of
composition operators leaving X invariant. We show that their surjective
multiplicative restrictions to FC(X) are exactly of the form Φ(T ) =
A−1TA with A a bijective member of FC(X). We characterize the norm-
preserving ones by the same form with A induced by a rotation. We
generalize these results to the semi-multiplicative maps.
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Let H(D) be the algebra of holomorphic functions in the open unit disc D
and H(D, D) its subset consisting of all self-maps of D. For a given ϕ ∈ H(D, D),
the composition operator with symbol ϕ is the linear map Cϕ sending every
f ∈ H(D) into f ◦ ϕ : z 7−→ f

(
ϕ(z)

)
. In the special case where ϕ takes only

one value z ∈ D, the operator Cϕ is simply the evaluation functional δz at the
point z. For any subspace X of H(D), we denote by X∗ the algebraic dual space
of X and by Fe(X) the subset of X∗ consisting of all evaluation functionals.
On the other hand, we denote by L(X) the space of all operators from X into
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itself (not necessarily continuous) and by FC(X) the family of all composition
operators leaving X invariant.

The diversity of spaces X has generated a lot of works, many of them re-
late operator-theoretic properties of Cϕ to function-theoretic ones of ϕ (see
e.g. [2] and [9]). As far as we are concerned, we give a new direction by rather
considering the whole set FC(X) and looking for the self-maps of L(X) that
leave it invariant. Such maps will be called FC(X)-preservers. By this con-
tribution, we intend to provide an extension to our recent work [6], where we
have worked out the same problem for the set Fe(X) which can be considered
as a part of FC(X). Another source of motivation to our work is the striking
similarity between the main results on specific linear preservers given in [5],
[14] and second author’s recent works (see [10, 11, 12, 13]). In this work, we
provide a non-linear version of the problem, due to the non-linear structure of
the set FC(X). Actually, the stability of this family, under composition, makes
the problem treatable with maps either preserving or reversing the order of
composition. The first ones will be said multiplicative and the last ones anti-
multiplicative.
In Section 2, we give a sufficient condition for any map to preserve FC(X). For
multiplicative or anti-multiplicative maps, we provide a complete characteri-
zation relying on our basic result in [6]. In Section 3 dealing with surjective
multiplicative maps, we obtain an analogous version, for the class FC(X), of
the main theorems given in [5] and [14]. In Section 4, we determine the multi-
plicative preservers of FC(X) that preserve the norm (respectively, the reduced
minimum modulus). In each of the last two sections, we generalize the basic
results to the semi-multiplicative maps, defined by perturbation of the multi-
plicative ones with a member of FC(X).
Throughout this paper, p0 and p1 denote respectively the functions z 7−→ 1
and z 7−→ z. In addition, X is supposed to satisfy, as several well-known spaces,
the following conditions in which p0 denotes the constant function z 7−→ 1 and
p1 the identity function z 7−→ z.

① X is invariant under the multiplication by p1 and the maps Ta (a ∈ D) :

f 7−→ fa where fa(z) = f(z)−f(a)
z−a

if z ∈ D\{a} and fa(a) = f ′(a).

② For all a ∈ C\D, X contains an N th root (N ≥ 1) of 1
p1−ap0

.

③ X contains the space H∞ of all bounded holomorphic functions in D.

As common examples of such spaces, one can think about the entire space
H(D), Hardy spaces and weighted Bergman spaces. For details, see [6].
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1 Composition-operator-preserving maps

The next lemma provides a linear equation in L(X) which solutions, if they
exist, are necessarily in FC(X).

Lemma 1.1 Let Cϕ, Cψ ∈ FC(X) such that ϕ is not identically constant.
If T ∈ L(X) satisfies CϕT = Cψ, then T is a composition operator.

Proof. According to the characterization of FC(X) we have given in [6, The-
orem 2.3], it would be sufficient to check for T the multiplicativity property.
For all ω := ϕ(z) ∈ Ω := ϕ(D), it follows

(Tp0)(ω) =
(
Cϕ(Tp0)

)
(z) = (Cψp0)(z) = 1.

As Tp0 is holomorphic in D and Ω is open, one gets Tp0 = p0. On the other
hand, for all f, g ∈ X such that fg ∈ X, the holomorphic functions T (fg) and
(Tf)(Tg) agree on Ω (and then on D). Indeed, for all ω = ϕ(z) ∈ Ω, one has

T (fg)(ω) = [CϕT ] (fg)(z) = [CϕT ] f(z) [CϕT ] g(z) = (Tf)(Tg)(ω).

The conclusion follows from Theorem 2.3 in [6]. ¤

Remarks.
➊ In the previous lemma, if the identity holds with ϕ ≡ a ∈ D, then ψ is
constant and Tp0(a) = 1. But T does not necessarily fix p0.

➋ The conclusion of Lemma 1.1 fails to occur if we exchange Cϕ and T in the
given identity.

The following theorem gives a sufficient condition for a map Φ : L(X) −→
L(X) to preserve both FC(X) and Fe(X).

Theorem 1.2 Let Φ : L(X) −→ L(X) and ϕ ∈ H(D, D), non-constant such
that Cϕ(X) ⊆ X. Assume that
either

(i) CϕΦ(T ) = CϕT, for all T ∈ FC(X);

or

(ii) CϕΦ(T ) = TCϕ, for all T ∈ FC(X).

We have the following.

(1) Φ(FC(X)) ⊆ FC(X).
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(2) Φ(Fe(X)) ⊆ Fe(X). More precisely, for all z ∈ D, one has

Φ(δz) =

{
δz if (i) holds
δϕ(z) if (ii) holds.

Proof. (1) In both identities (i) and (ii), ϕ is not constant and the second
member is in FC(X). So, by Lemma 1.1, Φ(T ) is necessarily in FC(X) whenever
T ∈ FC(X).
(2) For all z ∈ D, set Cβ = Φ(δz). Under the assumption of (i), one has

Cβ◦ϕ = CϕCβ = CϕΦ(δz) = Cϕδz = δz.

Thus, β agrees with the constant function zp0 on the open set ϕ(D) and then
on D. This means that Φ(δz) = Cβ = δz.
Assume now that (ii) holds. One can write

Cβ◦ϕ = CϕΦ(δz) = δzCϕ = δϕ(z).

By the same argument as before, this gives Φ(δz) = Cβ = δϕ(z), and we are
done. ¤

Remark.
According to the second remark following Lemma 1.1, exchanging Cϕ and Φ(T )
in (i) and (ii) cannot ensure the conclusion of Theorem 1.2.

In the sequel, we say that Φ : L(X) −→ L(X) is multiplicative (anti-multipli-
cative) on FC(X) if Φ(ST ) = Φ(S)Φ(T ) (respectively, Φ(ST ) = Φ(T )Φ(S)) for
all S, T ∈ FC(X).

Theorem 1.3 Let Φ : L(X) −→ L(X) be either multiplicative or anti-
multiplicative on FC(X) such that Φ|FC(X) is not constant. If Φ(Fe(X)) ⊆
FC(X) then

Φ(Fe(X)) ⊆ Fe(X).

Proof. Given any z ∈ D, we denote by β the symbol of the composition
operator Φ(δz). We are going to show that β is constant, which means that
Φ(δz) ∈ Fe(X). We have

Cβ = Φ(δz) = Φ(δzδz) = Φ(δz)Φ(δz) = CβCβ = Cβ◦β.

So, β = β ◦ β. If β were not constant, then Ω := β(D) would be open and for
all ω ∈ Ω, β(ω) − ω = 0. As β − p1 is analytic in D, the last identity would
also hold in D, or equivalently, β = p1. On the other hand, for all T ∈ FC(X),
one would have

Φ(T ) =

{
Φ(T )Φ(δz) = Φ(Tδz) if Φ is multiplicative on FC(X)
Φ(δz)Φ(T ) = Φ(Tδz) if Φ is anti-multiplicative on FC(X).
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Consequently,
Φ(T ) = Φ(Tδz) = Φ(δz) = Cβ = I,

which would be in contradiction with the hypothesis. Hence, β is necessarily
constant. This completes the proof. ¤

For a given map Φ : L(X) −→ L(X) such that Φ(X∗) ⊆ X∗, we introduce
the associated operator TΦ on X by (TΦf)(z) = Φ(δz)f for all z ∈ D. Note
that TΦ may not send X into itself. When Φ is only defined on FC(X) such

that Φ
(Fe(X)

) ⊆ X∗, we also denote by TΦ the operator TΦ̃, where Φ̃ is the
trivial extension of Φ to L(X) taking L(X)\FC(X) into {0}. In the sequel, any
self-map Φ of L(X)

(
resp. FC(X)

)
is assumed to satisfy the following stability

condition : Φ(X∗) ⊆ X∗ and TΦ(X) ⊆ X
(
resp. TΦ(X) ⊆ X

)
. This will be

needed to apply our result [6, Theorem 3.3] describing all the self-maps of X∗

preserving Fe(X).

In the following theorem, we give a necessary condition for a self-map of
L(X) to preserve FC(X).

Theorem 1.4 Let Φ : L(X) −→ L(X) be either multiplicative or anti-
multiplicative on FC(X) such that Φ|FC(X) is not constant. If Φ(FC(X)) ⊆
FC(X) then there is a unique ϕ ∈ H(D, D) such that Cϕ(X) ⊆ X and

CϕΦ(T ) = TCϕ for all T ∈ FC(X).

Moreover, if Φ|Fe(X) is not constant, then neither is ϕ.

Proof. Taking Theorem 1.3 into account, our result [6, Theorem 3.3] ensures
the existence of a unique ϕ ∈ H(D, D) such that Cϕ(X) ⊆ X and

Φ(δz) = δϕ(z) for all z ∈ D.

Given any T ∈ FC(X), there exist α, β ∈ H(D, D) such that T = Cα and
Φ(T ) = Cβ. If Φ is multiplicative on FC(X), then one has

δϕ◦α(z) = Φ(δα(z)) = Φ(δzCα) = δϕ(z)Cβ = δβ◦ϕ(z),

from which it follows that β ◦ ϕ = ϕ ◦ α. This gives

CϕΦ(T ) = CϕCβ = Cβ◦ϕ = Cϕ◦α = CαCϕ = TCϕ.

Now, if Φ is anti-multiplicative, a similar argument leads to the identity β◦ϕ =
ϕ which implies that CϕΦ(T ) = Cϕ and to the equality ϕ ◦ α = ϕ which gives
TCϕ = Cϕ. Hence, CϕΦ(T ) = TCϕ. Finally, to get the uniqueness of ϕ, take
any ψ satisfying the same property as ϕ in Theorem 1.4. In particular, for
every T = δz, it follows that

δϕ(z) = Cψδϕ(z) = CψΦ(δz) = δzCψ = δψ(z).
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This means ψ = ϕ. The end of the statement is due to the action of Φ on
Fe(X), described above. ¤

Remark.
Actually, the further assumption that Φ is not constant on Fe(X) provides a
more precise information on ϕ. Indeed, we will see in the next section that ϕ
is necessarily one-to-one.

One can deduce the following corollary immediately from Theorem 1.4 and
Theorem 1.2.

Corollary 1.5 Let Φ : L(X) −→ L(X) be multiplicative on FC(X) such that
Φ|Fe(X) is not constant. The following are equivalent.

(1) Φ(FC(X)) ⊆ FC(X);

(2) there is a unique ϕ ∈ H(D, D), non-constant such that Cϕ(X) ⊆ X and

CϕΦ(T ) = TCϕ, for all T ∈ FC(X).

Corollary 1.6 Let Φ : L(X) −→ L(X) be anti-multiplicative on FC(X) such
that Φ|FC(X) is not constant. The following are equivalent.

(1) Φ(FC(X)) ⊆ FC(X);

(2) there is a unique a ∈ D such that

Φ(FC(X)) ⊆ {Cβ ∈ FC(X); β(a) = a}.

Proof. We only need to show the direction ‘(1) =⇒ (2)’. According to the
proof of Theorem 1.4, there is a unique ϕ ∈ H(D, D) with Cϕ(X) ⊆ X such that
Φ|Fe(X)

= Cϕ
∗
|Fe(X)

and for all T ∈ FC(X), we have

(?) TCϕ = Cϕ and (??) CϕΦ(T ) = Cϕ.

Taking T ∈ Fe(X) in (?) forces Cϕ to be in Fe(X) and then ϕ to be constant.
Let a be this constant. For all z ∈ D, one gets

Φ(δz) = Cϕ
∗(δz) = δϕ(z) = δa.

On the other hand, by writing Φ(T ) = Cβ ∈ FC(X) and ϕ = ap0 in (??), it
follows that δβ(a) = δa which gives β(a) = a. The uniqueness of a follows from
the fact that Φ(δz) = δa. This achieves the proof. ¤

From the previous corollary, one can easily deduce the following.

Corollary 1.7 There is no surjective anti-multiplicative self-map of FC(X).
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2 Surjective multiplicative self-maps of FC(X)

Next, we are going to set up the main ingredients we need to determine all
surjective multiplicative self-maps of FC(X). We denote by Aut(D) the group
of the automorphisms of D; i.e. the set of all bijective ϕ ∈ H(D, D). For any
r > 0, the open disk centered at 0 with radius r will be denoted by D(0, r) and
its boundary by ∂D(0, r).

Lemma 2.1 Let ϕ be non constant in H(D, D). If, for all α ∈ Aut(D), there
is β ∈ H(D, D) such that β ◦ ϕ = ϕ ◦ α, then ϕ is injective.

Proof. First, we claim that

ϕ(D\{0}) ⊆ ϕ(D)\{ϕ(0)}.
Indeed, suppose the contrary; i. e., there exists u ∈ D\{0} such that ϕ(u) =
ϕ(0). Set r = |u| and call v a point at which the continuous function |ϕ| on
the closure of D(0, r) reaches its maximum on the compact subset ∂D(0, r).
Consider the rotation α of D sending u into v. Since α ∈ Aut(D), there exists
β ∈ H(D, D) such that β ◦ ϕ = ϕ ◦ α. Thus

ϕ(0) = ϕ ◦ α(0) = β ◦ ϕ(0) = β ◦ ϕ(u) = β ◦ ϕ ◦ α−1(v) = ϕ(v).

From this, it follows that ϕ(0) = sup|z|=r |ϕ(z)|. Therefore, ϕ has to be con-
stant, according to the maximum principle. But this is not allowed according
to the hypothesis. Hence, the inclusion above is true.
Now, to get the conclusion of this lemma, let a, b ∈ D such that a 6= b. Con-
sider the Mbius transform ϕa defined by ϕa(z) = a−z

1−az
. It is well known that

ϕa ∈ Aut(D) and ϕ−1
a = ϕa. So, for all α ∈ Aut(D), the hypothesis on ϕ,

applied with the automorphism ϕa ◦ α ◦ ϕa, gives one β ∈ H(D, D) such that
β ◦ϕ = ϕ ◦ (ϕa ◦α ◦ϕa). Composing with ϕa at the right of each side, one gets
β ◦ ψ = ψ ◦ α where ψ = ϕ ◦ ϕa. As ϕa(b) 6= 0 and ψ satisfies the hypothesis
of this lemma, one can use the inclusion above with ψ instead of ϕ to get
ψ(0) 6= ψ(ϕa(b)). Therefore, ϕ(a) 6= ϕ(b). This achieves the proof. ¤

The following result is a consequence of the previous lemma.

Corollary 2.2 If ϕ ∈ H(D, D) is surjective and for all α ∈ Aut(D), there is
β ∈ H(D, D) such that β ◦ ϕ = ϕ ◦ α, then ϕ ∈ Aut(D).

According to a non-trivial result from [3, Corollary], a bijective member of
FC(X) is automatically induced by one ϕ ∈ Aut(D).

We reach now our target result, describing any surjective multiplicative
self-map of FC(X), by a similarity property involving a bijective member of
this family. Here, X is supposed to be invariant under rotations of D.
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Theorem 2.3 Let Φ : L(X) −→ L(X) be multiplicative. The following are
equivalent.

(1) Φ(FC(X)) = FC(X);

(2) Fe(X) ⊆ Φ(FC(X)) ⊆ FC(X);

(3) there exist a unique bijection A ∈ FC(X) and Ψ : L(X) −→ L(X) with
Ψ|FC (X)

≡ 0 such that

Φ(T ) = A−1TA + Ψ(T ), for all T ∈ L(X);

(4) there exists a unique ϕ ∈ Aut(D) with Cϕ(X) ⊆ X such that

Φ(Cα) = Cϕ◦α◦ϕ−1 ,

for all α ∈ H(D, D) with Cα(X) ⊆ X.

Proof. (1) =⇒ (2) and (4) =⇒ (1) are obvious.
(3) =⇒ (4). By [3, Corollary], there exists a unique ϕ ∈ Aut(D) with Cϕ(X) ⊆
X, Cϕ−1(X) ⊆ X and A−1 = C−1

ϕ = Cϕ−1 . Taking T = Cα in (3) leads to (4).
(2) =⇒ (3). Φ satisfies the hypothesis of Theorem 1.4 ensuring therefore the
existence and uniqueness of one ϕ ∈ H(D, D) with Cϕ(X) ⊆ X such that

CϕCβ = CαCϕ for all Cα ∈ FC(X),

where Cβ = Φ(Cα). Therefore, Cβ◦ϕ = Cα◦ϕ, or equivalently

(?) β ◦ ϕ = ϕ ◦ α.

In particular, for any non-constant α, this forces β to be non-constant too.
Indeed, suppose the contrary; i.e. there exist Cα0 ∈ FC(X) and a ∈ D such
that β0 = ap0, where Cβ0 = Φ(Cα0). Then, from (?) applied with α0 and
β0, it follows that ϕ coincides with ap0 on the open set α0(D) and then on
D. Therefore, thanks to (?), Φ sends each member of FC(X) into a member
with symbol fixing a. But this makes a contradiction with (2). Hence, Φ leaves
FC(X)\Fe(X) invariant. Taking (2) into account, this gives Fe(X) ⊆ Φ(Fe(X)).
As we also have the reverse inclusion by Theorem 1.3, we get Φ(Fe(X)) = Fe(X)
and this, together with (?), leads to the surjectivity of ϕ. Now that ϕ satisfies
the hypothesis of Corollary 2.2, we deduce that ϕ ∈ Aut(D) and then A = Cϕ

is a bijective member of FC(X), according to [3, Corollary]. One can therefore
define the map Ψ on L(X) by

Ψ(T ) = Φ(T )− A−1TA.
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Clearly, for all T ∈ FC(X), one has AΨ(T ) ≡ 0, or equivalently Ψ(T ) ≡ 0.
Thus, Φ has the form given in (3). Finally, by restricting Φ to FC(X), one can
deduce the uniqueness of A from that of ϕ. ¤

From the previous theorem and by applying Theorem 1.3 to Φ̃, one can
easily derive the following, in which the assumption that Φ is not constant will
be useful to ensure the stability of X∗ under Φ̃.

Corollary 2.4 Let Φ : FC(X) −→ FC(X) be multiplicative and non-constant.
The following are equivalent.

(1) Φ is surjective;

(2) Fe(X) ⊆ Φ(FC(X));

(3) Fe(X) = Φ(Fe(X));

(4) there exists a unique bijection A ∈ FC(X) such that

Φ(T ) = A−1TA for all T ∈ FC(X);

(5) Φ is bijective.

As application of this corollary, we will show that the set of all bijective mul-
tiplicative self-maps of FC(X) can be identified with Aut(D). Indeed, observe
that the set Mul(FC(X)) of all multiplicative self-maps of FC(X) is stable under

the composition giving therefore a group structure to its subset M̃ul(FC(X)),
consisting of its bijective members. One can also note that, for any space X as
in [3, Corollary], the bijective members of FC(X) form a group for the compo-

sition. We denote this group by F̃C(X). Here is a statement of this application
where ‘≈’ (resp. ‘³’) means ‘isomorphic to’ (resp. ‘anti-isomorphic to’).

Corollary 2.5 Let X be invariant under Aut(D). We have the following.

(i) Aut(D) ³ F̃C(X) and F̃C(X) ³ M̃ul(FC(X)).

(ii) M̃ul(FC(X)) ≈ Aut(D).

Proof. (i) Consider the maps Λ and Θ defined respectively on Aut(D) and

F̃C(X) by Λ(ϕ) = Cϕ and Θ(A) = ΦA where ΦA(T ) = A−1TA for all T ∈
FC(X). It is not difficult to see that Λ takes Aut(D) into F̃C(X) and Θ sends

F̃C(X) into M̃ul(FC(X)). Now, respectively by ‘(1) =⇒ (2)’ of [3, Corollary]
and ‘(4) =⇒ (5)’ of Corollary 2.4, one can see that Λ and Θ are respectively
bijective. Eventually, since they are anti-homomorphisms, it follows that Λ
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and Θ are group anti-isomorphisms.
(ii) This follows immediately from (i). ¤

By applying Corollary 2.5 with the entire space H(D), one can easily deduce
the following.

Corollary 2.6 Let X be invariant under Aut(D). We have

F̃C(X) ≈ F̃C(H(D)) and M̃ul(FC(X)) ≈ M̃ul(FC(H(D))).

Next, we present another application of Theorem 2.3 giving an extension of
it to a family of maps larger than Mul(FC(X)). Given any bijective members A
and B in FC(X), one can observe that the operator ΦA,B : T 7−→ ATB sends
FC(X) surjectively (in fact bijectively) into itself. On the other hand, note

that the map UΦA,B : T 7−→ UΦA,B(T ), with U = (AB)−1, is in M̃ul(FC(X)),
as it is exactly the map ΦB := ΦB,B. It follows therefore that ΦA,B satisfies
the following :

~ ∃U ∈ FC(X); ∀S, T ∈ FC(X), ΦA,B(ST ) = ΦA,B(S)UΦA,B(T ).

More generally, any map Φ : L(X) −→ L(X) satisfying ~ instead of ΦA,B is
said to be semi-multiplicative on FC(X). Remark that any multiplicative map
on FC(X) is semi-multiplicative. The following result ensures the converse of
what has been said above by giving a more general version of Theorem 2.3.
Also here, X is supposed to be invariant under rotations of D.

Theorem 2.7 Let Φ : L(X) −→ L(X) be semi-multiplicative on FC(X). The
following are equivalent.

(1) Φ(FC(X)) = FC(X);

(2) Fe(X) ⊆ Φ(FC(X)) ⊆ FC(X) and Φ(FC(X)) ∩ F̃C(X) 6= ∅;

(3) there exists a unique (A,B) ∈ (F̃C(X))2 and Ψ : L(X) −→ L(X) with
Ψ|FC (X)

≡ 0 such that

Φ(T ) = ATB + Ψ(T ), for all T ∈ L(X);

(4) there exists a unique (ϕ, ψ) ∈ (Aut(D))2 with Cϕ(X) ⊆ X and Cψ(X) ⊆ X
such that

Φ(Cα) = Cψ◦α◦ϕ

for all α ∈ H(D, D) with Cα(X) ⊆ X.
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Proof. It is clear that (3) =⇒ (4) =⇒ (1) =⇒ (2).
(2) =⇒ (3). First, remark that if Φ is semi-multiplicative, then there exists
U ∈ FC(X) such that

(?) Φ(T ) = Φ(T )UΦ(I) = Φ(I)UΦ(T ),

(??) UΦ is multiplicative on FC(X).

It follows from (2) and (?) that

UΦ(I) = Φ(I)U = I.

So U ∈ F̃C(X) and this gives (2) of Theorem 2.3 with UΦ instead of Φ.

Taking (??) into account, Theorem 2.3 ensures that there exist B ∈ F̃C(X)
and Ψ1 : L(X) −→ L(X) with Ψ1|FC (X)

≡ 0 such that UΦ = ΦB + Ψ1, or

equivalently, Φ = U−1ΦB + U−1Ψ1. Hence, by setting A = (BU)−1 which is

in F̃C(X) according to [3, Corollary] and by taking Ψ = U−1Ψ1, one clearly
gets the desired form of Φ. For the uniqueness of A and B, one can verify that
B = TΦ and A = Φ(I)B−1. This achieves the proof. ¤

From Theorem 2.7, we deduce the following result as analogous version of
Corollary 2.4.

Corollary 2.8 Let Φ : FC(X) −→ FC(X) be semi-multiplicative and non-
constant. The following are equivalent.

(1) Φ is surjective;

(2) Fe(X) ⊆ Φ(FC(X)) and Φ(FC(X)) ∩ F̃C(X) 6= ∅;
(3) Fe(X) = Φ(Fe(X)) and Φ(FC(X)) ∩ F̃C(X) 6= ∅;
(4) there exists a unique (A,B) ∈ (F̃C(X))2 such that

Φ(T ) = ATB for all T ∈ FC(X);

(5) Φ is bijective.

Remarks.
➊ The semi-multiplicative maps leaving FC(X) invariant can be characterized
by a slight modification of Corollary 1.5. By applying this corollary with the
map UΦ, one can easily get the following generalization.

Proposition 2.9 Let Φ : L(X) −→ L(X) be semi-multiplicative on FC(X)
such that Φ|Fe(X) is not constant. The following are equivalent.
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(1) Φ(FC(X)) ⊆ FC(X);

(2) there is a unique (A,B) ∈ (FC(X)\Fe(X))2 such that

AΦ(T ) = TB for all T ∈ FC(X).

➋ From Theorem 2.3 or Corollary 2.4, one can deduce for FC(X), an analogous
version of the main theorem in each of papers [5] and [14], where the authors
have obtained the maps ΦA (A invertible) as surjective linear self-maps of the
space B(Y) of all bounded operators on a given Banach space Y, which preserve
the spectrum in [5] and the invertibility in [14]. In contrast with B(Y), the set
FC(X) is not a linear space. That is why we have determined the maps ΦA

among the multiplicative maps rather than the linear ones.

3 Maps preserving the norm of bounded com-

position operators

In [6], we have characterized the maps that preserve the norm of any bounded
δz with norm depending injectively on |z|. In order to study the same question
for the maps acting on FC(X), we will consider any normed space X as before
such that FC(X) ⊂ B(X), where B(X) denotes the space of all bounded op-
erators on X. In particular, we assume that there exists a one-to-one positive
function h on [0, 1) such that ‖δz‖ = h(|z|) for all z ∈ D. Moreover, any rota-
tion of D is supposed to induce an isometric composition operator on X. Notice
that the Hardy spaces and the Bergman ones satisfy all of these conditions.
Here is how one can describe the multiplicative norm-preserving self-maps of
FC(X).

Theorem 3.1 Let Φ : FC(X) −→ FC(X) be multiplicative and non-constant.
The following are equivalent.

(1) ‖Φ(T )‖ = ‖T‖, for all T ∈ FC(X);

(2) ‖Φ(δz)‖ = ‖δz‖, for all z ∈ D;

(3) there exists a unique rotation ρ of D such that

Φ(T ) = Cρ−1TCρ, for all T ∈ FC(X).

Proof. ‘(1) =⇒ (2)’ is obvious and ‘(3) =⇒ (1)’ holds thanks to the rotations
property for the space X.
(2) =⇒ (3) From the assumption on the norm of any δz, it is clear that Φ is not
constant (this is useless, according to the hypothesis). Hence, by Theorems
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1.3 and 1.4 applied to the extension Φ̃ of Φ (given in Section 3), there is a
unique ϕ ∈ H(D, D) with Cϕ ∈ FC(X) such that

Φ(δz) = δϕ(z) and CϕΦ(T ) = TCϕ,

for all z ∈ D and T ∈ FC(X). Now, according to Theorem 4.3 in [6] applied
with the map Cϕ

∗ which agrees with Φ on Fe(X), we deduce that ϕ is a rotation
and we are done. ¤

From the previous theorem, one can easily derive the following.

Corollary 3.2 Let Φ : FC(X) −→ FC(X) be multiplicative and non-constant.
If ‖Φ(δz)‖ = ‖δz‖, for all z ∈ D, then Φ is bijective.

Remark.
There is no anti-multiplicative norm-preserving self-map of FC(X). Indeed, if
there were such a map, then, according to the proof of Corollary 1.6, Φ would
be constant on Fe(X), giving therefore a contradiction with the assumption
made on the norm in this set.

Moving to the the semi-multiplicative maps, we need the following result
giving a necessary condition for the contractivity of any member of FC(X).

Proposition 3.3 Assume that h is strictly increasing. Let Cϕ ∈ FC(X). If
‖Cϕ‖ ≤ 1, then ϕ(0) = 0.

Proof. The hypothesis on Cϕ implies that ‖Cϕ
∗‖ ≤ 1. Thus, one has

h(|ϕ(0)|) = ‖δϕ(0)‖ = ‖Cϕ
∗(δ0)‖ ≤ ‖δ0‖ = h(0).

As h is strictly increasing, this gives the desired condition. ¤

Theorem 3.4 Assume that h is strictly increasing. Let Φ : FC(X) −→
FC(X) be semi-multiplicative and non-constant such that Φ(I) is bijective. The
following are equivalent.

(1) ‖Φ(T )‖ = ‖T‖, for all T ∈ FC(X);

(2) ‖Φ(I)‖ = 1 and ‖Φ(δz)‖ = ‖δz‖, for all z ∈ D;

(3) there exists a unique couple of rotations ρ and θ of D such that

Φ(T ) = CθTCρ, for all T ∈ FC(X).
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Proof. As in the proof of Theorem 3.1, we only need to show ‘(2) =⇒ (3)’.
By hypothesis, there is U ∈ FC(X) such that UΦ is multiplicative. The latter
map cannot be constant, otherwise h would be so. On the other hand, since

Φ(I) = Φ(I2) = Φ(I)UΦ(I),

from the bijectivity of Φ(I), it follows that U is bijective too and U−1 = Φ(I).
According to [3, Corollary], U is necessarily induced by an automorphism σ of
D and U−1 by σ−1. Moreover,

‖Cσ−1‖ = ‖U−1‖ = ‖Φ(I)‖ = 1.

Hence, by Proposition 3.3, σ−1(0) = 0. Consequently, σ is a rotation of D
so that U = Cσ is an isometry, according to the rotations property for the
space X. This makes the map UΦ preserve the norm of any δz. Therefore, by
Theorem 3.1, it is given by: UΦ(T ) = Cρ−1TCρ, where ρ is a rotation of D.
Now, by setting θ = ρ−1 ◦ σ−1, one clearly gets a rotation of D and from the
second identity satisfied by the map UΦ, one can deduce the desired expression
of Φ(T ). The uniqueness of (ρ, θ) can be shown the same way as for Theorem
3.1. ¤

From the previous theorem, one can easily derive the following.

Corollary 3.5 Under the same hypothesis as in Theorem 3.4, if ‖Φ(I)‖ = 1
and ‖Φ(δz)‖ = ‖δz‖, for all z ∈ D, then Φ is bijective.

Next, we recall that for a bounded operator T on a Banach space with
T 6= 0, the reduced minimum modulus of T is defined by

γ(T ) = inf
{
‖T (x)‖ : x ∈ X, dist

(
x, Ker(T )

)
= 1

}
.

For more details about the reduced minimum modulus see [4, 7, 8]. In the
special case where T is of rank one, it is not difficult to see that γ(T ) = ‖T‖.
So, one can get analogous versions of Theorems 3.1 and 3.4, for the reduced
minimum modulus, provided that X is a Banach space. Here is how they can
be stated.

Proposition 3.6 Under the same hypothesis as in Theorem 3.1, the fol-
lowing are equivalent.

(1) γ(Φ(T ) = γ(T ), for all T ∈ FC(X);

(2) γ(Φ(δz)) = γ(δz), for all z ∈ D;
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(3) there exists a unique rotation ρ of D such that

Φ(T ) = Cρ−1TCρ, ∀T ∈ FC(X).

Proposition 3.7 Under the same hypothesis as in Theorem 3.4, the fol-
lowing are equivalent.

(1) γ(Φ(T )) = γ(T ), ∀T ∈ FC(X);

(2) γ(Φ(I)) = 1 and γ(Φ(δz)) = γ(δz), ∀z ∈ D;

(3) there exist a unique couple of rotations ρ and θ of D such that

Φ(T ) = CθTCρ, ∀T ∈ FC(X).

Proof. We only need to show ‘(2) =⇒ (3)’. Using the same argument as in
the proof of Theorem 3.4 and taking into account Theorems 1.3 and 1.4, one
obtains

UΦ(δz) = δρ(z) and CρUΦ(T ) = TCρ,

for all z ∈ D and T ∈ FC(X), with ρ and U given as in that proof. As

U ∈ F̃C(X), it follows that UΦ(δz) = Φ(δz) = δρ(z) for all z ∈ D. This gives

γ(UΦ(δz)) = γ(Φ(δz)) = γ(δz), for all z ∈ D.

Therefore, according to Proposition 3.6, applied with the multiplicative map
UΦ, ρ is forced to be a rotation of D and then

UΦ(T ) = Cρ−1TCρ, for all T ∈ FC(X).

On the other hand, one has

‖U‖−1 = γ(U−1) = γ(Φ(I)) = 1.

Thus, ‖U‖ = 1 and then, by Proposition 3.3, the symbol of U is a rotation.
We end the proof the same way as that of Theorem 3.4. (Note that U is in
fact an onto isometry. To see this, one can also show that γ(U) = 1). ¤

Remark.
We recall that in the case where h is strictly increasing, we have determined
the preservers of Fe(X) contracting the norm by symbols fixing 0 (see [6]).
For the set FC(X), it is not difficult to see (by following the main ideas of the
previous proofs) that the norm-contracting non-constant multiplicative (semi-
multiplicative) preservers are necessarily among those given in Corollary 1.5
(Proposition 2.9) with ϕ vanishing at 0 (A and B induced by symbols vanishing
at 0). However, the converse may not occur. To see this, one can consider the
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symbols λp1 (λ ∈ D\{0}) and the Hardy spaces Hp (1 ≤ p < ∞). From
the non-trivial result in [1] giving the exact value of ‖Csp1+t‖ on Hp, one can
observe the strict decrease of this norm as a function of |t|2 to get

‖Φ(Csp1+t)‖ = ‖Csp1+λt‖ > ‖Csp1+t‖
for all s, t ∈ D\{0}, such that |s| + |t| ≤ 1, where Φ is the multiplicative
preserver of FC(Hp) related to the symbol ϕ = λp1. Nevertheless, in the gen-
eral case where no topology is required on X, one can verify that the nullity
condition at 0, for the symbols, characterizes all the corresponding preservers
leaving invariant the set of all composition operators with symbols fixing 0.
Back to the space Hp, such a set is also the subclass of FC(Hp) consisting of
all contractions (consequence of the Littlewood subordination principle). All
of this naturally leads to the following questions :

Question 1 : How can one strengthen the nullity condition at 0 to characterize
the norm-contracting preservers of FC(X) ?

Question 2 : Do contractive members of FC(X) determine, as in the spe-
cial case of Hp, all its multiplicative (semi-multiplicative) preservers leaving
invariant its subset of all contractions ?
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