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Abstract

The modified (G
′

G
)-expansion method is one of the effective methods

to find exact travelling wave of nonlinear evolution equations. In this
paper, we look for exact solutions of the Huxley equation by the modi-
fied (G

′

G
)-expansion method.
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1 Introduction

In this paper, we will find exact solutions of the Huxley equation, in the form

ut = uxx + u(k − u)(u− 1)

which is a core mathematical framework for modern biophysically based neu-
ral modeling. There are many methods to solve nonlinear partial differential
equations (NLPDEs), such as tanh-sech method [1−4], extended tanh method
[5 − 8], hyperbolic function method [9], sine-cosine method [10 − 12], Jacobi
elliptic function expansion method [13], F-expansion method [14], and the
transformed rational function method [15].
Very recently, Wang et al. [16] introduced a new method called the (G

′

G
)-

expansion method to look for traveling wave solutions of nonlinear evolution
equations. The (G

′

G
)-expansion method is based on the assumptions that the

travelling wave solutions can be expressed by a polynomial in (G
′

G
), and that

G = G(ξ) satisfies a second order linear ordinary differential equation(LODE).
By using the (G

′

G
)-expansion method, Wang et al. successfully obtain more

traveling wave solutions of four nonlinear evolution equations.
Lately, work has been done on the extensions of the (G

′

G
)-expansion method.

For example, in [17], the method was modified to deal with the mKdV equa-
tion with variable coefficients. In [18], the method was modified to find more
types of non-traveling wave and coefficient function solutions.

2 Modified (G
′

G
)-expansion method

Considering the nonlinear partial differential in the form

P (u, ut, ux, utt, uxt, uxx, ...) = 0, (1)

where u = u(x, t) is an unknown function, P is a polynomial in u = u(x, t)
and its various partial derivatives, in which the highest order derivatives and
nonlinear terms are involved. In the following we give the main steps of the
(G

′

G
)-expansion method.

Step 1. Combining the independent variables x and t into one variable ξ =
x− vt, we suppose that

u(x, t) = u(ξ), ξ = x− vt, (2)

the traveling wave variable (2) permits us reducing Eq.(1) to an ordinary dif-
ferential equation(ODE) for u = u(ξ)

P (u,−vu′, u′, v2u′′,−vu′′, u′′, ...) = 0, (3)
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Step 2. Suppose that the solution of ODE (3) can be expressed by a polyno-
mial in (G

′

G
) as follows:

u(ξ) =
m
∑

i=0

αi(
G′

G
)i +

m
∑

i=1

βi(
G′

G
)−i, (4)

where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0, (5)

α0, α1, ..., αm, β1, ..., βm, λ and µ are constants to be determined later, αm 6= 0,
or βm 6= 0. The positive integer m can be determined by considering the ho-
mogeneous balance between the highest order derivatives and nonlinear terms
appearing in ODE (3).
Step 3. By substituting (4) into (3) and using second order LODE (5),collecting
all terms with the same order of (G

′

G
) together, the left-hand side of Eq.(3)

is converted into another polynomial in (G
′

G
). Equating each coefficient of this

polynomial to zero,yields a set of algebraic equations for α0, α1, ..., αm, β1, ..., βm, λ

and µ.

Step4. Assuming that the constants α0, α1, ..., αm, β1, ..., βm, λ and µ can be
obtained by solving the algebraic equations in Step 3, since the general solu-
tions of the second order LODE (5) have been well known for us, then sub-
stituting α0, α1, ..., αm, β1, ..., βm, v and the general solutions of Eq.(5) into (4)
we have more travelling wave solutions of the nonlinear evolution equation (1).

3 Huxley equation

We consider the Huxley equation

ut = uxx + u(k − u)(u− 1), (6)

where k 6= 0.
By making the transformation

u(x, t) = u(ξ), ξ = x− vt,

the Eq.(6) becomes

−vu′ − u′′ + u3 − (k + 1)u2 + ku = 0. (7)

Suppose that the solution of ODE (7) can be expressed by a polynomial in
(G

′

G
) as follows:

u(ξ) =
m
∑

i=0

αi(
G′

G
)i +

m
∑

i=1

βi(
G′

G
)−i, (8)
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where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0. (9)

Considering the homogeneous balance between u′′(ξ) and u3(ξ) in Eq.(7), we
required that

m+ 2 = 3m

then m = 1, so we can write (8) as

u(ξ) = α1(
G′

G
) + α0 + β1(

G′

G
)−1, (10)

and therefore

u2(ξ) = α2
1(
G′

G
)2 + 2α0α1(

G′

G
) + (α2

0 + 2α1β1) + 2α0β1(
G′

G
)−1 + β2

1(
G′

G
)−2,(11)

u3(ξ) = α3
1(
G′

G
)3 + 3α0α

2
1(
G′

G
)2 + 3α1(α1β1 + α2

0)(
G′

G
) + α3

0 + 6α0α1β1

+ 3β1(α
2
0 + α1β1)(

G′

G
)−1 + 3α0β

2
1(
G′

G
)−2 + β3

1(
G′

G
)−3, (12)

u′(ξ) = −α1(
G′

G
)2 − α1λ(

G′

G
) + (β1 − µα1) + β1λ(

G′

G
)−1 + β1µ(

G′

G
)−2, (13)

u′′(ξ) = 2α1(
G′

G
)3 + 3α1λ(

G′

G
)2 + α1(λ

2 + 2µ)(
G′

G
) + α1µλ+ λβ1

+ β1(λ
2 + 2µ)(

G′

G
)−1 + 3λµβ1(

G′

G
)−2 + 2β1µ

2(
G′

G
)−3. (14)

By substituting (10)−(14) into ODE.(7) and collecting all terms with the same
power of (G

′

G
) together, the left-hand side of ODE.(7) is converted into another

polynomial in (G
′

G
). Equating each coefficient of this polynomial to zero, yields

a set of simultaneous algebraic equations for α0, α1, β1, k, v, µ and λ as follows:

(
G′

G
)3 : −2α1 + α3

1 = 0,

(
G′

G
)2 : vα1 − 3α1λ+ 3α0α

2
1 − (k + 1)α2

1 = 0,

(
G′

G
)1 : vα1λ− (λ2α1 + 2α1µ) + 3α2

0α1 + 3α2
1β1 − 2(k + 1)α0α1 + kα1 = 0,

(
G′

G
)0 : −vβ1 + vα1µ− α1λµ− β1λ+ α3

0 + 6α0α1β1 − (k + 1)α2
0 − 2(k + 1)α1β1 + kα0 = 0,

(
G′

G
)−1 : −vβ1λ− (2β1µ+ β1λ

2) + 3α2
0β1 + 3α1β

2
1 − 2(k + 1)α0β1 + kβ1 = 0,

(
G′

G
)−2 : −vβ1µ− 3β1µλ+ 3α0β

2
1 − (k + 1)β2

1 = 0,

(
G′

G
)−3 : −2β1µ

2 + β3
1 = 0.
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Solving the algebraic equations above with aid Maple, yields
Case I:

α1 =
√
2, α0 =

√
2(k + 1) + 3λ− v

3
√
2

, β1 = 0, µ =
2(−k2 + k − 1) + v2 + 3λ2

12
,

(15)
λ, v and k are arbitrary constants.
By using (15), expression (10) can be written as

u(ξ) =
√
2(
G′

G
) +

√
2(k + 1) + 3λ− v

3
√
2

, (16)

where ξ = x−vt and µ = 2(−k2+k−1)+v2+3λ2

12
. Eq.(16) is the formula of a solution

of Eq.(7).
Substituting the general solutions of Eq.(9) into Eq.(16) we have three types
of traveling wave solutions of the Huxley equation as follows:
When λ2 − 4µ > 0,

u1,1(ξ) =

√
2

2
(
c1 sinh

1
2

√
λ2 − 4µξ + c2 cosh

1
2

√
λ2 − 4µξ

c2 sinh
1
2

√
λ2 − 4µξ + c1 cosh

1
2

√
λ2 − 4µξ

) +
2(k + 1)− v

√
2

6
,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

In particular, if c1 > 0 and c21 > c22, then u1,1 = u1,1(ξ) can be written as:

u1,1(ξ) =

√
2

2
tanh(

1

2

√

λ2 − 4µξ + ξ0) +
2(k + 1)− v

√
2

6
,

where ξ0 = tanh−1( c2
c1
).

When λ2 − 4µ < 0,

u1,2(x, t) =

√
2

2
(
−c1 sin

1
2

√
4µ− λ2ξ + c2 cos

1
2

√
4µ− λ2ξ

c1 cos
1
2

√
4µ− λ2ξ + c2 sin

1
2

√
4µ− λ2ξ

) +
2(k + 1)− v

√
2

6
,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

When λ2 − 4µ = 0,

u1,3(x, t) =

√
2c2

c1 + c2ξ
+

2(k + 1)− v
√
2

6
,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

Case II:

α1 = −
√
2, α0 =

√
2(k + 1)− 3λ+ v

3
√
2

, β1 = 0, µ =
2(−k2 + k − 1) + v2 + 3λ2

12
,

(17)
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λ, v and k are arbitrary constants.
By using (17), expression (10) can be written as

u(ξ) = −
√
2(
G′

G
) +

√
2(k + 1)− 3λ+ v

3
√
2

, (18)

where ξ = x−vt and µ = 2(−k2+k−1)+v2+3λ2

12
. Eq.(18) is the formula of a solution

of Eq.(7).
Substituting the general solutions of Eq.(9) into Eq.(18) we have three types
of traveling wave solutions of the Huxley equation as follows:
When λ2 − 4µ > 0,

u2,1(ξ) = −
√
2

2
(
c1 sinh

1
2

√
λ2 − 4µξ + c2 cosh

1
2

√
λ2 − 4µξ

c2 sinh
1
2

√
λ2 − 4µξ + c1 cosh

1
2

√
λ2 − 4µξ

) +
2(k + 1) + v

√
2

6
,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

If c1 > 0 and c21 > c22, then u2,1 = u2,1(ξ) can be written as:

u2,1(ξ) = −
√
2

2
tanh(

1

2

√

λ2 − 4µξ + ξ0) +
2(k + 1) + v

√
2

6
,

where ξ0 = tanh−1( c2
c1
).

When λ2 − 4µ < 0,

u2,2(x, t) = −
√
2

2
(
−c1 sin

1
2

√
4µ− λ2ξ + c2 cos

1
2

√
4µ− λ2ξ

c1 cos
1
2

√
4µ− λ2ξ + c2 sin

1
2

√
4µ− λ2ξ

) +
2(k + 1) + v

√
2

6
,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

When λ2 − 4µ = 0,

u2,3(x, t) = −
√
2c2

c1 + c2ξ
+

2(k + 1) + v
√
2

6
,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

Case III:

α1 = 0, α0 =

√
2(k + 1) + 3λ+ v

3
√
2

, β1 =
√
2µ, µ =

2(−k2 + k − 1) + v2 + 3λ2

12
,

(19)
λ, v and k are arbitrary constants.
By using (19), expression (10) can be written as

u(ξ) =

√
2(k + 1) + 3λ+ v

3
√
2

+
√
2µ(

G′

G
)−1, (20)
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where ξ = x−vt and µ = 2(−k2+k−1)+v2+3λ2

12
. Eq.(20) is the formula of a solution

of Eq.(7).
Substituting the general solutions of Eq.(9) into Eq.(20) we have three types
of traveling wave solutions of the Huxley equation as follows:
When λ2 − 4µ > 0,

u3,1(ξ) =
2(k + 1) + 3λ+ v

3
√
2

+ 2
√
2µ(

c1 sinh
1
2

√
λ2 − 4µξ + c2 cosh

1
2

√
λ2 − 4µξ

c2 sinh
1
2

√
λ2 − 4µξ + c1 cosh

1
2

√
λ2 − 4µξ

− λ)−1,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

If c1 > 0 and c21 > c22, then u3,1 = u3,1(ξ) can be written as:

u3,1(ξ) =
2(k + 1) + 3λ+ v

3
√
2

+ 2
√
2µ(tanh(

1

2

√

λ2 − 4µξ + ξ0)− λ)−1,

where ξ0 = tanh−1( c2
c1
).

When λ2 − 4µ < 0,

u3,2(x, t) =
2(k + 1) + 3λ+ v

3
√
2

+ 2
√
2µ(

−c1 sin
1
2

√
4µ− λ2ξ + c2 cos

1
2

√
4µ− λ2ξ

c1 cos
1
2

√
4µ− λ2ξ + c2 sin

1
2

√
4µ− λ2ξ

− λ)−1,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

When λ2 − 4µ = 0,

u3,3(x, t) =
2(k + 1) + 3λ+ v

3
√
2

+
√
2µ(

c2

c1 + c2ξ
− 1

2
λ)−1,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

Case IV:

α1 = 0, α0 =

√
2(k + 1)− 3λ− v

3
√
2

, β1 = −
√
2µ, µ =

2(−k2 + k − 1) + v2 + 3λ2

12
,

(21)
λ, v and k are arbitrary constants.
By using (21), expression (10) can be written as

u(ξ) =

√
2(k + 1)− 3λ− v

3
√
2

−
√
2µ(

G′

G
)−1, (22)

where ξ = x−vt and µ = 2(−k2+k−1)+v2+3λ2

12
. Eq.(22) is the formula of a solution

of Eq.(7).
Substituting the general solutions of Eq.(9) into Eq.(22) we have three types
of traveling wave solutions of the Huxley equation as follows:
When λ2 − 4µ > 0,

u4,1(ξ) =
2(k + 1)− 3λ− v

3
√
2

− 2
√
2µ(

c1 sinh
1
2

√
λ2 − 4µξ + c2 cosh

1
2

√
λ2 − 4µξ

c2 sinh
1
2

√
λ2 − 4µξ + c1 cosh

1
2

√
λ2 − 4µξ

− λ)−1,
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where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

If c1 > 0 and c21 > c22, then u4,1 = u4,1(ξ) can be written as:

u4,1(ξ) =
2(k + 1)− 3λ− v

3
√
2

− 2
√
2µ(tanh(

1

2

√

λ2 − 4µξ + ξ0)− λ)−1,

where ξ0 = tanh−1( c2
c1
).

When λ2 − 4µ < 0,

u4,2(x, t) =
2(k + 1)− 3λ− v

3
√
2

− 2
√
2µ(

−c1 sin
1
2

√
4µ− λ2ξ + c2 cos

1
2

√
4µ− λ2ξ

c1 cos
1
2

√
4µ− λ2ξ + c2 sin

1
2

√
4µ− λ2ξ

− λ)−1,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

When λ2 − 4µ = 0,

u4,3(x, t) =
2(k + 1)− 3λ− v

3
√
2

−
√
2µ(

c2

c1 + c2ξ
− 1

2
λ)−1,

where ξ = x− vt, µ = 2(−k2+k−1)+v2+3λ2

12
and c1, c2 are arbitrary constants.

4 Conclusion

In this paper, the modified (G
′

G
)-expansion method was applied successfully for

solving the Huxley equation. Thus, we can say that the proposed method can
be extended to solve the problems of nonlinear partial differential equations
which arising in the theory of solitons and other areas.
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