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Complex in a Simple Delayed Discrete Neural Network
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Abstract

In this paper, we show that a delayed discrete Hopfield neural net-
work of two identical neurons with no self-connections can demonstrate
chaotic behavior away from the origin. To this end, we first trans-
form the model, by a novel way, into an equivalent system which enjoys
some nice properties, and construct chaotic invariant sets of this sys-
tem such that the dynamics is conjugate to the shift with two symbols.
This is complementary to the results in Huang and Zou (J. Nonlinear
Sci.,15(2005), 291-303), where it was shown that the same system can
have chaotic behavior near the origin.
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1 Introduction

Research on chaotic behavior in neural networks has attracted more and more
attentions due to its potential applications to various practical problem[1, 2,
4, 7]. For example, in[1], the non-periodic associative dynamics of the chaotic
neural networks was studied by Adcachi and Aihara. In[4], Freeman proved
that chaos dynamics exists in real neurons and neural networks play an im-
portant role in neural activity.
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Among the most frequently used and studied neural networks is the con-
tinuous Hopfield neural network which was first considered in [5]. Its various
discrete versions have also been intensively and extensively studied in litera-
ture. In particular, for the following simple discrete version

{

x(n + 1) = βx(n) + αf(y(n− k))
y(n+ 1) = βy(n) + αf(x(n− k))

(1)

where α > 0, β ∈ (0, 1) and the delay k ≥ 1, Wu and Zhang [10] showed
that under some conditions on the activation function f(x), for every positive
integer p with p|2k, System 1 has several distinct asymptotically stable p-
periodic solutions in a region of the x-y plane away from the origin (0, 0). In
a recent work, Huang and Zou [6] further showed that under certain technical
conditions on the nonlinear function f(x), System (1) actually demonstrates
Li-York type chaotic behavior in a neighborhood of the origin.

Model (1) is for a network consisting of two identical neurons with a uniform
connection between the two neurons. In a more recent work, Kaslik and Balint
[7] considered the following generalization of (1):

{

x(n+ 1) = β1x(n) + α12f2(y(n− k2))
y(n+ 1) = β2y(n) + α21f1(x(n− k1))

(2)

where n ∈ N, β1 ∈ (0, 1) for i = 1, 2, and α12 and α21 are constants representing
connection strengths, and the delays ki ≥ 0, i = 1, 2, are fixed integers. The
activation functions fi : R → R, i = 1, 2, are continuously differentiable. In
addition to the stability and bifurcation analysis by central manifold theory,
Kaslik and Balint [7] also showed that under some conditions, (1) may exhibit
chaos in the vicinity of the origin as well, generalizing the result reported in
[6].

Notice that the chaotic behaviors obtained in [6] and [7] all occur in neigh-
borhoods of the origin (0, 0) in the x-y plane. Thus, one naturally wonders
whether the system (1) would have chaotic behaviors in the other region. In
this paper we will investigate the possibility of chaos for the system (1) out-
side the a neighborhood of the origin. Our method is motivated by the idea of
establishing the horseshoe structure in families of generalized Henon-like maps
in [8],[9].

The rest of this paper is organized as follows. In Section 2, we construct
a map Φ(λ, ·) from l∞ to l∞; and by applying the implicit function theorem
in Banach spaces to this parameterized map, we obtain a uniform result of
the implicit functions on infinitely many branches. This result will be used in
Section 3 to construct a conjugacy map from the full shift at certain values of
the parameter to solutions of (1). To achieve this, we rewrite the model (1) as a
system of difference equations by a novel way which enjoys some nice properties
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that the rewritings in [6] and [7] do not have. In particular, we are able to
obtain an invariant set away from the origin for the transformed system, and
show that on this invariant set the map representing the transformed system is
topologically conjugate to the full shift on the symbolic dynamical system with
two symbols. This conjugacy implies chaos for (1) in the sense of Devaney.
The is complementary to the results in[6]. At the end, we present a particular
example and its numeric simulations, which verify the theoretical prediction.

2 Preliminaries and Lemmas

First let us introduce some notations. Let l∞ be the space of bounded real
sequences endowed with the norm ‖y‖ = sup{|yn| : n ∈ Z} for y = (yn), yn ∈ R

and let σ : l∞ → l∞ be the shift map, i.e. (σy)n = yn+1. Let l
2
∞ be the direct

product of 2 copies of l∞ and σ×σ : l2∞ → l2∞ be the direct product of 2 copies
of the shift map σ. Now we define a map Φ(λ, ·) from l2∞ to l2∞ as follows:

Φ(λ, Z)n = λ(−zn+1 + βzn) + φ(zn−k+1), ∀Z = (zn) ∈ l2∞, λ > 0, (3)

where zn = (x(n), y(n))T ∈ R2, φ(z) = (f(y), f(x))T , z = (x, y)T ∈ R2,.

Lemma 2.1 [3] Let (Λ, d) be a metric space, Y, Z be Banach spaces, and
U ⊂ Λ × Y be open. Suppose F : U → Z is a continuous map and there
exists a point (λ0, y0) ∈ U with the following conditions:

(1) DFy(λ, y) is continuous at (λ0, y0), where DFy(λ, y) is Fréchet partial
derivative of F (λ, y) with respect to y;

(2) DFy(λ0, y0) : Y → Z is an invertible linear map;

(3) F (λ0, y0) = 0.

Then there exist open ball Br1(y0) = {y | ‖y − y0‖ < r1} and Bδ(λ0) =
{d(λ, λ0) < δ where r1 > 0, δ > 0, such that for any λ ∈ Bδ(λ0), the function
F (λ, y) = 0 exists the unique continuous solution y = h(λ) ∈ Br1(y0) and
y0 = h(λ0).

Theorem 2.1 Suppose f : R → R is continuously differentiable and there
exist two distinct points x′, x′′ in R2 such that f(x′) = f(x′′) = 0 with f ′(x′) 6=
0, f ′(x′′) 6= 0. We have

(i) there are 0 < λ0 and 0 < δ0 such that for every Z̄ ∈ Γ = {Z = (zn =
(xn, yn)

T )|xn, yn = x′, orx′′, n ∈ Z}, for every λ ∈ Bλ0
(0), there is a

unique Z(λ) ∈ Bδ0(Z̄) with Φ(λ, Z(λ)) = 0;
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(ii) for every 0 < δ < δ0, there is 0 < λ′ < λ0 such that for every λ ∈
B̄λ1

(0) = {λ : d(λ, 0) ≤ λ′} and for every Z̄ ∈ Γ there is a unique Z(λ)
satisfying ||Z(λ)− Z̄|| ≤ δ and Φ(λ, Z(λ)) = 0.

Proof. Firstly, for any Z̄ ∈ Γ, one may easily check that Φ(0, Z) = 0. This
verify (i) in Lemma 2.1. The differentiability (ii) in Lemma 2.1 is ensured by
the differentiability of f . One has that f(x′) = f(x′′) = 0 with f ′(x′) 6= 0,
f ′(x′′) 6= 0, so for each Z ∈ Γ, by calculating, we have

Dφ(z̄n) =

(

0 f ′(x′) or f ′(x′′)
f ′(x′) or f ′(x′′) 0

)

.

DΦZ(0, Z) = (σ×σ)−k ·diag(· · · , Dφ(z1), Dφ(z2), · · ·). Therefore DΦZ(0, Z) is
a invertible linear operator, verifying condition (iii) of Lemma 2.1. By Lemma
2.1, for each Z ∈ Γ, there exist λ0 > 0, δ > 0 and for any λ < λ0, there exists
a unique Z(λ) satisfying Φ(λ, Z(λ)) = 0 and ‖Z(λ)− Z‖ ≤ δ.

To prove (i), it suffices to show that there exist the constants 0 < λ0 and
0 < δ0 are independent of Z̄ ∈ Γ. For every Z̄ ∈ Γ, the constants 0 < rZ̄
and 0 < δZ̄ in the implicit function theorem are determined as follows. Giving
the estimation of the norm ‖(DΦZ(0, Z̄))

−1‖, say ‖(DΦZ(0, Z̄))
−1‖ ≤ MZ̄ ,

choose 0 < λZ̄ and 0 < δZ̄ such that ‖(DΦZ(λ, Z))− (DΦZ(0, Z̄))‖ ≤ 1
2MZ̄

for

λ ∈ BλZ̄
(0),W ∈ BδZ̄

(Z̄). Furthermore, ‖Φ(λ, Z̄)‖ ≤ δZ̄
2MZ̄

for λ ∈ BλZ̄
(0).

For showing that there exist the constants 0 < r0 and 0 < δ0 are indepen-
dent of W̄ . Let us assume

1

M
= min{|f ′(x′)|, |f ′(x′′)|}, b = β

in which M, b > 0; then for any W̄ ∈ Γ, one has that ‖(DΦW (0, W̄ ))−1‖ ≤ M .
Since f ′(x) is continuous at x = x′orx′′ , there exists δ1 such that |f ′(x) −
f ′(x′)| ≤ 1

4M
for x ∈ Bδ1(x

′) , |f ′(x)− f ′(x′′)| ≤ 1
4M

for x ∈ Bδ1(x
′′). Note that

(DΦZ(λ, Z)−DΦZ(0, Z̄)W )2n+1 = λ(−wn+1 + βwn) +Bwn−1,

where

B =

(

0 f ′(yn−1)− f ′(ȳn−1)
f ′(xn−1)− f ′(x̄n−1) 0

)

,

x̄n, ȳn = x′ or x′′, ∀n ∈ Z, ∀Z̄ = (z̄n) ∈ Γ. Therefore one chooses δ0 = δ1, λ1 =
1

4M(1+b)
, for every Z̄ ∈ Γ, for any Z ∈ l∞× l∞ with ‖Z− Z̄‖ ≤ δ0 and |λ| ≤ λ1,

we have

‖DΦZ(λ, Z)−DΦZ(0, Z̄)‖ ≤ |λ|(1 + b) +
1

4M
≤

1

2M
.
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Furthermore, we choose λ2 = δ0
2M(1+b)

, then for |λ| ≤ λ2, by the definition of

Φ(λ, ·), we have

‖Φ(λ, Z̄)‖ ≤ |λ|(1 + b) ≤
δ0
2M

.

Let λ0 = min{λ1, λ2}, then the constants λ0 and δ0 satisfy the conditions of
(i). Therefore (i) is proved.

For (ii), for every δ < δ0, we choose r = min{ 1
4M(1+b)

, δ
2M(1+b)

} < λ0, then

the conclusion of (ii) holds on by the proof of (i).

3 Main Results

In this section, we consider the following system of a simple discrete network
of two identical neurons with excitatory interactions:

{

x(n) = βx(n− 1) + αf(y(n− k))
y(n) = βy(n− 1) + αf(x(n− k))

where n ∈ N, α > 0, β ∈ (0, 1) and k ≥ 1 is a fixed integer. f : R → R is a
map. Letting ωj(n) = (x(n − j + 1), y(n − j + 1))T ∈ R2 for j = 1, 2, · · · , k,
we then rewrite the system (1) as the following discrete dynamical system on
R2k:

ω(n+ 1) = Fα(ω(n)),

where ω(n) = {ω1(n), ω2(n), · · ·ωk(n)}, Fα : Rk ×Rk → Rk ×Rk is given by

Fα













ω1(n)
ω2(n)

...
ωk−1(n)ωk(n)













=













ω2(n)
ω3(n)

...
βωk(n) + α(f(yk(n− k + 1), f(xk(n− k + 1))T













.

The following assumption on the nonlinear activation function f will be needed
in our main results.

H1 : f : R → R is continuous differentiable, and there exist two distinct
points x′, x′′ ∈ R such that f(x′) = f(x′′) = 0, f ′(x′) 6= 0 and f ′(x′′) 6= 0.

By the above assumption we construct, based on Theorem 2.1, an invariant
set Λα of Fα for α ≥ 1

λ0

, on which is topologically conjugate to the shift map
σ × σ on Σ2 × Σ2 endowed with the product topology on Σ2. Therefore Fα is
chaotic on Λα according to Devaney’s definition.

According to Theorem 2.1, we may well define a continuous map Tα:

Tα(Z) = Z(
1

α
).
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where Z( 1
α
) is a unique solution that satisfying Φ( 1

α
, Z( 1

α
)) = 0.

Let Σα × Σα ⊂ l2∞ denote the image of Γ under Tα, i.e. Σα × Σα = Tα(Γ).
For any α ≥ 1

λ0

, we have the following lemma.

Lemma 3.1 Tα commutes with the shift map σ × σ, i.e.

σ × σ ◦ Tα = Tα ◦ σ × σ.

Therefore σ × σ(Σα × Σα) = Σα × Σα.

Proof. Note that if Z is a zero point of Φ(1/α, ·), so is σ × σ(Z). Then for
any Z ∈ Γ, σ × σ ◦ Tα(Z) = σ × σ(Z( 1

α
)) is a zero point of Φ(1/α, Z). From

Theorem 2.1 it follows that ‖Z( 1
α
)−Z‖ ≤ δ; hence‖σ×σ(Z( 1

α
))−σ×σ(Z)‖ =

‖Z( 1
α
) − Z‖ ≤ δ. Hence by the uniqueness of Z(λ) in Theorem 2.1, we have

σ × σ(Tα(Z)) = Tα(σ × σ(Z)). Note that σ × σ(Γ) = Σ2 × Σ2, it follow that
σ × σ(Σα × Σα) = Σα × Σα.

Let ωi(n) = zn−k+i, i = 1, 2, · · · , k, then {ω(n)}n∈Z is a bounded global
orbit of Fα if only if Z = (zn) ∈ l2∞ is a zero point of Φ(1/α, Z). We define a
projection map from Σα × Σα to Rk ×Rk as follows:

Π(Z) = ω(k), ∀Z ∈ Σα × Σα.

Lemma 3.2 Let Λα = Π(Z), ∀Z ∈ Σα × Σα, then Λα is invariant for Fα.

Proof. By Lemma 3.1, we have σ×σ(Σα×Σα) = Σα×Σα. On the other hand
∀Z ∈ Σα × Σα,Π(σ × σ(Z)) = ω(k + 1) = Fα(ω(k)). Therefore Fα(Λα) = Λα.

In Section 2, the set Γ is a subset of l2∞. Now we treat it as Σ2 × Σ2 and
endow with the product topology on Σ2 . We are now state and prove our
main result.

Theorem 3.1 Suppose that f : R → R is continuous differentiable and satisfy
the condition of H1 in the system (1), then Fα on Λα is topologically conjugate
to the shift map σ × σ on Σ2 ×Σ2. Therefore the system (1) is chaotic in the
sense of Devaney.

Proof. Let Σ2×Σ2 be equipped with the usual metric: d(Z,Z) = max{2−|n||zn 6=
zn, n ∈ Z}. We define the map from Σ2 × Σ2 to Λα is dented by h = Π ◦ Tα.
Let ‖ω − ω‖Rk×Rk = sup1≤i≤k{|xi − xi|, |yi − yi|} for ω = (ω1, · · · , ωk)

T , ω =
(ω1, · · · , ωk)

T , ωi = (xi, yi)
T , ωi = (xi, yi), i = 1, 2, · · · , k. Note that the metric

on Rk ×Rk defined above is equivalent to the Euclidean metric.
Let Ω = {ξi|i = 1, · · · , 22k} denote the distinct points in Rk×Rk with com-

ponents either (x′, x′′)T , (x′, x′)T , (x′′, x′)T or (x′′, x′′)T . Let Ai be the closed
neighborhood of ξi with radius δ. For any Z = (zn) ∈ Σ2 × Σ2, let ω1(n) =
zn+1, · · · , ωk(n) = zn+k, n ∈ Z; then ω(n) ∈ Ω. Let s = (· · · , s−1, s0, s1, · · ·)
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be a sequence with si ∈ {1, · · · , 22k} having the property ω(n) = ξsn. Obvi-
ously, the sequence s associated to Z by ω(n) = ξsn is unique. Let {ω(n)}n∈Z
be a bounded global orbit of Fα associated to Tα(z) by ωi(n) = zn−k+i, i =
1, 2, · · · , k; then ‖ω(n) − ω(n)‖Rk×Rk = ‖ω(n) − ξsn‖Rk×Rk ≤ δ by Theorem
2.1, i.e., ω(n) ∈ Asn.

Let s = (· · · , s−1, s0, s1, · · ·) be a sequence with si ∈ {1, · · · , 22k} associated
to a given Z = (zn) ∈ Σ2 × Σ2. Define

ωs
−i···s0···sj

= F−j
α (Asj ) ∩ · · · ∩As0 ∩ · · · ∩ F i

α(Asj)

for i > 0 and j > 0. Note that ωs
−i···s0···sj

may by rewritten as

ωs
−i···s0···sj

= {Z = F−i
α (Z) ∈ Asi, · · · , Z ∈ As0 , · · · , F

j
α(Z) ∈ Asj .

It follows that {ωs
−i···s0···sj

} forms a nested sequence of nonempty closed sets
as i → +∞ and j → +∞. By the uniqueness of continuation in Theo-
rem 2.1 we have that

⋂

i>0,j>0 ωs
−i···s0···sj

consists of a unique point and thus

diam(ωs
−i···s0···sj

) → 0 as i → +∞ and j → +∞. Therefore
⋂

i>0,j>0 ωs
−i···s0···sj

=

h(Z) = Π ◦Tα(Z). Because Fα is invertible, one has Π is one-to-one and onto.
Note that Tα is bijective, and so is h. Next we show that h is continuous.
Choose Z ∈ Σ2×Σ2, then there is an unique sequence s = (· · · , s−1, s0, s1, · · ·)
corresponding to Z. For any ε > 0, there exists an integer n such that
diam(ωs

−i···s0···sj
) < ε. Pick δ1 = 1/2n+k+1. Then for any Z ∈ Σ2 × Σ2 with

d(Z,Z) < δ1, Y agrees with Y in the terms with index i = −n−k to i = n+k,
which implies that the sequence s corresponding to Y agrees with s in the terms
with index from i = −n to i = n. We deduce that h(Z), h(Z) ∈ ωs

−n···s0···sn;
hence ‖h(Z) − h(Z)‖ < ε. It follows that h is continuous. Therefore h is a
homeomorphism.

Let Tα(Z) = Z = (zn). Then we have h(Z) = Π◦Tα(Z) = (z1, z2, · · · , zk)
T ,

and Fα(h(Z)) = (z2, z3, · · · , zk+1)
T . On the other hand, h◦σ×σ(Z) = Π◦Tα ◦

σ×σ(Z) = Π◦σ×σ◦Tα(Z) = (z2, z3, · · · , zk+1)
T = Fα(h(Z)). Consequently Fα

on Λα is topologically conjugate to the shift map σ× σ on Σ2 ×Σ2. Therefore
the system (1) is chaotic in the sense of Devaney.

Remark 3.1 This is complementary to the result reported in Huang and Zou[6],
where it was shown that the same system can have chaotic behavior near the
origin.

Remark 3.2 One can show that , a more general case , if f have m > 2
simple zeros respectively, then there exists α0 > 0 such that for any α > α0,
Fα on Λα is topologically conjugate to the full shift map σ× σ on Σm ×Σm in
the system (1).
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Remark 3.3 One can check that theorem 3.1 still hold for small C1 pertur-
bations of f .
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