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Abstract

System of powers with degenerate coefficients is considered. Com-

pleteness criterion for this system in the weighted Lebesgue spaces is

found.
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1 Introduction

Let us consider the following system of powers
{

A+ (t)ω+ (t)ϕn (t) ; A− (t)ω− (t) ϕ̄n (t)
}

n≥0
, (1)

where A± (t) ≡ |A± (t)| eia
±(t) and ϕ (t) are complex-valued functions on [a, b]

with the degenerate coefficients ω± (·):

ω± (t) ≡
r̃±
∏

k=1

∣

∣t− t̃±k
∣

∣

β̃±

k ,
{

t̃±k
}r̃±

1
⊂ [a, b) .
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Basis properties (completeness, minimality, basicity) of the systems like (1)
have been previously studied by many mathematicians (see, e.g., [1-4;11-13]).
These systems are the natural generalizations of the classical exponential sys-
tems. For ϕ (t) ≡ eit, the basicity (including completeness and minimality) of
the system (1) in Lp (−π, π) was studied in [4]. In case of no degeneration, the
necessary and sufficient condition for the completeness and minimality of the
system (1) in Lp(a, b) was found in [3].

In this work, we present the completeness criterion for the system (1) in the
weighted space Lp,ρ ≡ Lp,ρ (a, b) , 1 < p < +∞, with the weight function ρ :
[a, b] → (0,+∞). Let us note that in unweighted case this question previously
were studied in [14].

2 Assumptions and necessary information

We make the following assumptions
1) [A+ (t)]

±1
; [A− (t)]

±1
; [ϕ′ (t)]±1 ∈ L∞;

2) Γ = ϕ {[a, b]} is a simple closed (ϕ (a) = ϕ (b)) rectifiable Jordan curve.
Γ is either a Radon curve (i.e. the angle θ0 (ϕ (t)) between the tangent line to
Γ at the point ϕ = ϕ (t) and the real axis is a function of bounded variation
on [a, b]), or a piecewise Lyapunov curve. Γ has a finite number of corner
points and no cusps. Denote by ϕk the points of discontinuity of the function
argϕ′ (t) on [a, b], k = 1, r.

For definiteness, we will assume that when the point ϕ = ϕ (t) moves across
the curve Γ as t increases, the internal domain D ≡ intΓ stays on the left side.

We define the function argϕ′ (t) as follows. At the every initial point ϕk we
define the branch argϕ′ (ϕk + 0), where (ϕk, ϕk+1) is the interval of continuity
of the function argϕ′ (t). And, at the endpoint ϕk+1 the value argϕ

′ (ϕk+1 − 0)
is obtained from the chosen branch argϕ′ (ϕk + 0) by continuously changing
argϕ′ (t). Without loss of generality, we define the values argϕ′ (ϕk + 0) at
the points ϕk by the following conditions

0 ≤ argϕ′ (a+ 0) < 2π;

|argϕ′ (ϕk + 0)− arg (ϕk − 0)| < π.

We will need weighted Sobolev classes and the Riemann problem in them.
Let E1 (D) be a usual Smirnov class and ν (τ) , τ ∈ Γ , be some weight

function. Denote

Ep,ν (D) ≡

{

f ∈ E1 (D) :

∫

Γ

∣

∣f+ (τ)
∣

∣

p
ν (τ) |dτ | < +∞

}

,

where f+ (τ)’s are non-tangential boundary values of the function f (z) on Γ.
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Consider the following conjugation problem

F+
1 (τ) +G (τ)F+

2 (τ) = g (τ) , τ ∈ Γ, (2)

where g (τ) ∈ Lp,ν (Γ) is the right-hand side, G (τ) is the coefficient of the
problem, and Lp,ν (Γ) is a weighted Lebesgue class equipped with the norm

‖f‖p,ν =

(
∫

Γ

|f (τ)|p ν (τ) |dτ |

)
1

p

.

We seek a pair of analytic functions in D :

(F1 (z) ; F2 (z)) : Fi ∈ Ep,ν (D) , i = 1, 2 ,

whose non-tangential boundary values satisfy the equality (2) almost every-
where on Γ.

It should be noted that the Riemann problem in the Smirnov classes Ep (D)
has been studied in detail by I.I. Danilyuk [5]. Generally, in case of no weight
the problem (2) can be reduced to the Riemann problem by means of a con-
formal mapping. But this is not necessary for accomplishing our goals in this
paper. We will take a different way. Namely, we will use a lemma that can be
proved similar to [6].

Lemma 2.1 Let ρ : [a, b] → (0,+∞) be some weight function, the functions
A± (t), ϕ (t) and curve Γ satisfy the conditions 1), 2). If ω± ∈ Lp,ρ, p ∈
(1,+∞), then the system (1) is complete in Lp,ρ only when the homogeneous
conjugation problem

F+
1 (τ)−G (τ)F+

1 (τ) = 0 , τ ∈ Γ, (3)

has only the trivial solution in the classes Eq,ρ± (D) : F1 ∈ Eq,ρ± (D); F2 ∈
Eq,ρ− (D) , 1

p
+ 1

q
= 1, where ρ± (ϕ (t)) ≡ |ω± (t)|−q

ρ1−q (t), and the coefficient

G (τ) is defined as

G (ϕ (t)) =
A+ (t)ω+ (t) ϕ̄′ (t)

A− (t)ω− (t)ϕ′ (t)
, t ∈ (a, b) .

3 Main Results

We will study the trivial solvability of the conjugation problem (3) in the
classes Eq,ρ± (D).

Denote by z = ω (ξ) , ω′ (0) > 0 , ω (−π) = ϕ (a), the function that per-
forms the univalent conformal mapping of the unit circle {ξ : |ξ| < 1} onto the
domain. Introduce the following analytic functions in the unit circle

Φi (ξ) ≡ Fi [ω (ξ)] ω′ (ξ) , i = 1, 2.
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As is known, Fi belongs to the class E1 (D) only when Φi belongs to H1,
where H1 is a usual Hardy class. Let Fi ∈ Ep,ν (D), i.e. Fi ∈ E1 (D) and
F+
i ∈ Lp,ν (Γ). Obviously, Φi ∈ H1. We have

∫

Γ

∣

∣F+
i (τ)

∣

∣

p
ν (τ) |dτ | =

∫

|ξ|=1

∣

∣F+
i [ω (ξ)]

∣

∣

p
ν [ω (ξ)] |ω′ (ξ)| |dξ| =

=

∫

|ξ|=1

∣

∣Φ+
i (ξ)

∣

∣

p ν [ω (ξ)]

|ω′ (ξ)|p−1 |dξ| =

∫

|ξ|=1

∣

∣Φ+
i (ξ)

∣

∣

p
µ (ξ) |dξ| < +∞. (4)

It follows that Φi ∈ Hp,µ, where

µ (ξ) ≡
ν [ω (ξ)]

|ω′ (ξ)|p−1 ,

and the weighted class Hp,µ is defined by the norm

Hp,µ ≡

{

Φ ∈ H1 :

∫

|ξ|=1

∣

∣Φ+ (ξ)
∣

∣

p
µ (ξ) |dξ| < +∞

}

.

Thus, if Fi ∈ Ep,ν (D), then Φi ∈ Hp,µ. It follows immediately from (4) that
the contrary is also true, i.e. if Φi ∈ Hp,µ , then Fi ∈ Ep,ν (D). Consequently,
Fi ∈ Ep,ν (D) only when Φi ∈ Hp,µ. Based on this conclusion, from (3) we
obtain

Φ+
1 (ξ)−D (ξ)Φ+

2 (ξ) = 0 , |ξ| = 1, (5)

where D (ξ) = G (ω (ξ)).
So we get the validity of the following lemma.

Lemma 3.1 The homogeneous problem (3) is trivially solvable in the class
Eq,ρ+ (D) × Eq,ρ− (D) (i.e. F1 ∈ Eq,ρ+ (D), F2 ∈ Eq,ρ− (D)) only when the
problem (5) is trivially solvable in the class Hq,µ+ × Hq,µ− (i.e. Φ1 ∈ Hq,µ+;

Φ2 ∈ Hq,µ−), where µ± (ξ) = ρ±[ω(ξ)]

|ω′(ξ)|q−1 .

Now we will proceed with the solving of the problem (5). Denote by ξ =
ω−1 (z) the inverse function of z = ω (ξ) that performs a univalent conformal
mapping of the domain D onto the unit circle. Let ξk = ω−1 [ϕk], k = 1, r;
where ϕk is a corner point of the curve Γ\ {ϕ (a)}. It is known that ω′ (ξ)
is discontinuous at the points ξk, and the following relations are true in the
neighborhood of these points (see, e.g., [8]):

|ω′ (ξ)| ∼ |ξ − ξk|
νk−1

, ξ → ξk;

(

|ϕ (ξ)| ∼ |ψ (ξ)| ⇔ 0 < δ ≤
|ϕ (ξ)|

|ψ (ξ)|
≤ δ−1 < +∞ , δ > 0

)

,
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where νkπ are the internal angles of the curve Γat the points ϕ (ϕk). Therefore

|ω′ (ξ)| ∼
r
∏

k=1

|ξ − ξk|
νk−1

, |ξ| = 1.

Let

A+
1 (t) ≡ A+ (t)ϕ′ (t);A−

1 (t) ≡ A− (t)ϕ′ (t) ;

Ã (ξ) ≡ ξ−1A+
1 [ϕ−1 (ω (ξ))]

ω+ [ϕ−1 (ω (ξ))]

|ω′ (ξ)|−
1

p

;

B̃ (ξ) ≡ ξ−1A−
1 [ϕ−1 (ω (ξ))]

ω− [ϕ−1 (ω (ξ))]

|ω′ (ξ)|−
1

p

ω′ (ξ)

ω′ (ξ)
,

where ϕ−1 : Γ\ {ϕ (a)} → (a, b) is the inverse function of ϕ = ϕ (t). Consider
the system

{

Ã
(

eix
)

einx; B̃
(

eix
)

e−inx
}

n≥0
. (6)

Absolutely similar to Lemma 2.1, we can prove the validity of the following
one.

Lemma 3.2 System (6) is complete in Lp (−π, π) only when the homo-
geneous conjugation problem (5) has only the trivial solution in the classes
Hq,µ+ ×Hq,µ−.

In fact, assuming the existence of the function f ∈ Lq (−π, π) that annihi-
lates the system (6), we have

∫ π

−π

Ã
(

eix
)

einxf (x) dx = 0,

∫ π

−π

B̃
(

eix
)

e−inxf (x) dx = 0 , ∀n ≥ 0.

From the first equality above we obtain

∫ π

−π

Ã
(

eix
)

e−ixf (x) einxdeix =

∫

|ξ|=1

Ã (ξ) ξf (arg ξ)ξndξ =

=

∫

|ξ|=1

f1 (ξ) ξ
ndξ = 0, (7)

where

f1 (ξ) = Ã (ξ) ξ̄ f (arg ξ).
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It follows from our assumptions that f1 ∈ L1 (γ), where γ ≡ {ξ : |ξ| = 1}. It
is known (see, e.g., [7]) that the equalities (7) are equivalent to the existence
of Φ1 ∈ H1 : Φ

+
1 (ξ) = f1 (ξ) a.e. on γ. Thus, we have

Φ+
1 (ξ) = Ã (ξ) ξ̄ f (arg ξ) = A+

1 [ϕ−1 (ω (ξ))]
ω− [ϕ−1 (ω (ξ))]

|ω′ (ξ)|−
1

p

f (arg ξ).

From the last relation we immediately obtain that
Φ+

1
(ξ)

ω+[ϕ−1(ω(ξ))] |ω′(ξ)|
− 1

p
∈ Lq (γ), i.e. Φ1 ∈ Hq,µ+ .

In a similar way, we can establish that

∃Φ2 ∈ Hq,µ− : Φ+
2 (ξ) = B̃ (ξ) ξ̄ f (arg ξ) a.e. on γ.

Consequently

f (arg ξ) =
Φ+

2 (ξ)

B̃ (ξ) ξ
=

Φ+
2 (ξ)

A−
1 [ϕ−1 (ω (ξ))] ω

−[ϕ−1(ω(ξ))]

|ω′(ξ)|
−

1
p

ω′(ξ)
ω′(ξ)

≡ g (ξ) .

From the above relations we obtain

Φ+
1 (ξ)

A+ [ϕ−1 (ω (ξ))] ω
+[ϕ−1(ω(ξ))]

|ω′(ξ)|
− 1

p

= g (ξ) ,

i.e.

Φ+
1 (ξ)−

A+
1 [ϕ−1 (ω (ξ))]ω+ [ϕ−1 (ω (ξ))]

A−
1 [ϕ−1 (ω (ξ))]ω− [ϕ−1 (ω (ξ))]

ω′ (ξ)

ω′ (ξ)
Φ+

2 (ξ) = 0;

Φ+
1 (ξ)−D (ξ)Φ+

2 (ξ) = 0 a.e. on γ.

Thus, we get the relation (5). The contrary can be proved in a similar way
as Lemma 2.1.

So the following theorem is true.

Theorem 3.3 Let the conditions 1), 2) be satisfied and ω± ∈ Lp,ρ , p ∈
(1,+∞). The system (1) is complete in Lp,ρ (a, b) only when the system (6) is
complete in Lp (−π, π).

In the sequel, we will use the results of [9;10]. First, we make some addi-
tional assumptions.

We assume that the weight ρ (·) has the power form

ρ (t) =

l
∏

k=1

|t− τk|
αk ,
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where {τk}
l

1 ⊂ [a, b) and {αk}
l

1 ⊂ R. Let’s represent the product ω±ρ
1

p in the
following form

ω± (t) ρ
1

p (t) =

r±
∏

k=1

∣

∣t− t±k
∣

∣

β±

k .

3) α± (t)’s are piecewise Hölder on [−π, π]; {τi}
n

1 ’s are the points of discon-
tinuity of the function θ (t) ≡ α− (t)− α+ (t), and αi = ω−1 [ϕ (τi)].

4)−
1

p
< β±

k <
1

q
, k = 1, r±.

Let ξk = ω−1 [ϕ (ϕk)] , k = 1, r; ξ±k = ω−1

[

ϕ
(

t±k
)]

, k = 1, r±. Assume

{σk}
m

1 ≡ {αi}
n

1

⋃

{ξk}
r

1

⋃

{

ξ+k
}r+

1

⋃

{

ξ−k
}r−

1
: σ1 < σ2 < ... < σm.

To apply the results of [9; 10], we need to represent the functions Ã (ξ) and
B̃ (ξ) in the forms they have been considered in the above-mentioned works.
Let t = ϕ−1 [ω (ξ)], |ξ| = 1. We have

∣

∣t− t±k
∣

∣ =
∣

∣ϕ−1 [ω (ξ)]− ϕ−1

[

ω
(

ξ±k
)]

∣

∣ .

It follows from the condition 1) that

∣

∣ϕ−1 [ω (ξ)]− ϕ−1

[

ω
(

ξ±k
)]

∣

∣ ∼
∣

∣ω (ξ)− ω
(

ξ±k
)
∣

∣ .

Moreover (see, e.g., [8, p. 25]), the following relation is true

∣

∣ω (ξ)− ω
(

ξ±k
)
∣

∣ ∼
∣

∣ξ − ξ±k
∣

∣

ν±
k ,

where ν±k π is the internal angle of the curve Γat the point ω
(

ξ±k
)

. In particular,
if ω

(

ξ±k
)

is the point of smoothness of Γ, then ν±k = 1. Thus

∣

∣t− t±k
∣

∣ ∼
∣

∣ξ − ξ±k
∣

∣

ν±
k ,

r±
∏

k=1

∣

∣t− t±k
∣

∣

β±

k ∼
r±
∏

k=1

∣

∣ξ − ξ±k
∣

∣

β±

k
ν±
k ≡ ω̃± (ξ) .

Let

Ã+ (ξ) ≡ ξ A+
1 ϕ−1 [ω (ξ)] ; Ã− (ξ) ≡

ω′ (ξ)

ω′ (ξ)
A−

1 [ϕ−1 (ω (ξ))] , |ξ| = 1.

Denote
ν± (ξ) ≡ ω̃± (ξ) |ω′ (ξ)|

1

p , |ξ| = 1.
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Consider the system

{

Ã+
(

eix
)

ν+
(

eix
)

einx ; Ã−
(

eix
)

ν−
(

eix
)

e−i(n+1)x
}

n≥0
. (8)

To make it easier, we introduce some notations. Let θ̃ (arg ξ) ≡ arg Ã− (ξ) −
arg Ã+ (ξ). Then

θ̃ (arg ξ) = −2 arg ω′ (ξ) + α− [ϕ−1 (ω (ξ))] +

+ arg ϕ′ [ϕ−1 (ω (ξ))]−
[

arg ξ + α+ [ϕ−1 (ω (ξ))]
]

−

− arg ϕ′ [ϕ−1 (ω (ξ))] = α− [ϕ−1 (ω (ξ))]− α+ [ϕ−1 (ω (ξ))] +

+ argω′ (ξ) + argϕ′ [ϕ−1 (ω (ξ))] .

According to the results of [5], the function argω′ (ξ) can be represented in
the following form

arg ω′
(

eiσ
)

= θ (s (θ))− σ −
π

2
, −π < σ ≤ π,

where θ (s (θ)) is the angle between the tangent line to Γ at the point ω (eiσ)
and the real axis; s (σ) is the arc distance between the points ϕ = ϕ (a)
and ω (eiσ), −π < σ ≤ π, in the positive direction. Therefore, the points of
discontinuity for the function argω′ (ξ) are {τk}

r

1’s. It is not difficult to see that
the system (6) is complete in Lp (−π, π) only when the system (8) is complete
in Lp (−π, π). Let

{

σ±
k

}m±

1
≡ {αk}

n

1

⋃

{

ξ±k
}r±

1
.

We need the following set function

χ (A) ≡

{

1 , A 6= ∅,
0 , A = ∅.

Let Ωk

(

Ω±
k

)

be a set with one element σk (σ±
k ), i.e. Ωk ≡ {σk} (Ω±

k ≡
{

σ±
k

}

).
{

σ±
k

}

’s are the points of degeneration of the functions ν± (ξ), respectively. The
orders of degeneracy at these points are defined by the following relations

α±
k ≡

r±
∑

i=1

β±
i ν

±
i χ

(

Ω±
k

⋂

{

ξ±i
}

)

+

r
∑

i=1

νi − 1

p
χ
(

Ω±
k

⋂

{ϕi}
)

,

where {ξ} is a set with one element ξ.
It is absolutely clear that the points of discontinuity of the function on

γ\ {−1} are {σk}
m

1 ’s. Denote by {hk}
m

1 the jumps at these points

hk = θ̃ (arg σk + 0)− θ̃ (arg σk − 0) , k = 1, m.
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Introduce the following correspondences

σ±
k → α±

k ; σk →
hk

2π
.

Define

λ±i =

{

α±

k

2
, if {σi}

⋂

Ω± = σ±
k ,

0, if {σi}
⋂

Ω± = ∅ ,

λi =

{

−hk

2π
, if {σi}

⋂

Ω = σk,

0, if {σi}
⋂

Ω = ∅ ,

ωi = −
(

λ+i + λ−i + λi
)

, i = 1, m.

Following [9; 10], we define the integers ni , i = 1, m by the inequalities

−1
q
< ωi + ni−1 − ni ≤

1
p
,

n0 = 0 , i = 1, m .

}

(9)

Let
ω = θ̃ (−π + 0)− θ̃ (π − 0) + 2nmπ. (10)

The following theorem is true.

Theorem 3.4 Let the functions A± (t), ω± (t) satisfy the conditions 1)-4),
and ω be defined by (9), (10). The system (1) is complete in Lp,ρ (a, b) , 1 <
p < +∞, only when ω ≤ 2π

p
.

In fact, according to the results of [9; 10], if all the conditions of Theorem
3.4 are satisfied, then the validity of the inequality ω ≤ 2π

p
is a necessary and

sufficient condition for the completeness of the system (8) in Lp (−π, π). The
rest follows from Lemma 3.2.

In particular, if we consider ϕ (t) ≡ eit , t ∈ [−π, π], then it is clear that
ν±k = 1 , ∀k. In this case we obtain the known results of [9;10].
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