Complementary Acyclic Chromatic Preserving Sets in Graphs

M.Valliammal

Department of Mathematics N.M.S.Sermathai Vasan College for Women Madurai-12 Email:valliambu@gmail.com

S.P.Subbiah

Department of Mathematics M.T.N.College Madurai-04 Email:drspsmtnc@gmail.com

V.Swaminathan

Ramanujan Research Centre Saraswathi Narayanan College Madurai-22 Email: sulanesri@yahoo.com

Abstract

Let G = (V, E) be a simple graph. A subset S of V(G) is called a complementary acyclic chromatic preserving set of G (c-acp set of G) if $\langle V - S \rangle$ is acyclic and $\chi(\langle S \rangle) = \chi(G)$. The minimum cardinality of a c-acp set in G is called the complementary acyclic chromatic preserving number of G and is denoted by c-acpn(G). A c-acp set of G of cardinality c-acpn(G) is called a c-acpn- set of G. A study of chromatic preserving sets has been made in detail in [5]. In this paper, a study of complementary acyclic chromatic preserving sets is initiated.Further chromatic complementary acyclic dominating sets are defined and studied.

Keywords: complementary acyclic chromatic preserving set, complementary acyclic

chromatic preserving number, chromatic complementary acyclic dominating set.

Mathematics Subject Classification : 05C15

1 Introduction

Let G = (V,E) be a simple graph. Let P be a graph property and let t be a parameter of G. Let S be a subset of V(G). S is said to be a P-set which is tpreserving if S satisfies P and $t(\langle S \rangle) = t(G)$. Depending on the nature of P, either minimum cardinality or maximum cardinality of such a set is taken as a new parameter. If P is the property that the set is complementary acyclic and t is the chromatic number, then the t-preserving P-set is called the complementary acyclic chromatic preserving set . A study of such sets is made in this paper.Further, a study of chromatic complementary acyclic dominating sets is also made.

2 Preliminaries

Definition 2.1 A subset S of V(G) is called a complementary acyclic chromatic preserving set of G (c-acp set of G) if $\langle V - S \rangle$ is acyclic and $\chi(\langle S \rangle) = \chi(G)$.

The minimum cardinality of a c-acp set in G is called the complementary acyclic chromatic preserving number of G and is denoted by c-acpn(G). A c-acp set of G of cardinality c-acpn(G) is called a c-acpn- set of G.

Remark 2.2 Since V(G) is a c-acp set, the existence of a c-acp sets is guaranteed in any graph.

Remark 2.3 The c-acp property is superhereditary, since any super set of a c-acp set is a c-acp set. Hence a c-acp set is minimal if and only if it is one minimal.

3 Main Results

c-acpn for standard graphs

- 1. $\operatorname{c-acpn}(K_n) = n$.
- 2. c-acpn $(K_{1,n}) = 2$.
- 3. c-acpn $(K_{m,n}) = min\{m,n\}, m,n \ge 2.$
- 4. c-acpn $(D_{r,s}) = 2$.
- 5. c-acpn $(P_n) = 2$.
- 6. c-acpn(C_n) = $\begin{cases} 2 & if \ n \ is \ even \\ n & if \ n \ is \ odd \end{cases}$
- 7. $c-acpn(nK_1) = 1.$

Observation 3.1 A c-acpn-set of a connected graph G need not induce a connected subgraph.

For: Consider the graph G :

In this graph c-acpn(G) = 4 and any c-acpn-set is disconnected. $S_1 = \{u_1, u_2, u_3, u_7\}$ is a c-acpn-set which is disconnected.

Observation 3.2 $\chi(G) = c \cdot acpn(G)$ if and only if any c-acpn-set induces a complete subgraph.

Proof: By hypothesis c-acpn(G) = $\chi(G)$.Let S be a c-acpn-set of G. c-acpn(G) = $|S| = \chi(G) = \chi(\langle S \rangle)$.

Therefore $\langle S \rangle$ is a complete subgraph.

Conversely, let any c-acpn-set induces a complete subgraph . Let S be a c-acpn-set of G. $|S| = \chi(\langle S \rangle) = \chi(G)$. That is c-acpn(G) = $\chi(G)$.

Illustration 3.3 Consider the graph G:

Remark 3.4 If $\chi(G) = \omega(G)$, then $cpn(G) = \chi(G)$. But c-acpn(G) may be greater than $\chi(G)$.

For example, consider the graph G:

Definition 3.5 A subset S of V(G) is called a minimal c-acp set of G if S is a c-acp set of G and no subset of S is a c-acp set of G.

Theorem 3.6 Let S be a c-acp set of G. S is minimal if and only if for any u in S, either $V - (S - \{u\})$ contains a cycle or $\chi(\langle S - \{u\} \rangle) \langle \chi(G)$. **Proof:** Obvious.

Definition 3.7 The maximum cardinality of a minimal c-acp set of G is called the upper c-acp number of G and is denoted by c-acpN(G).

Remark 3.8 There are graphs G with c-acpn(G)< c-acpN(G).

4 Fine c-acp Graphs

Definition 4.1 A graph G is a fine c-acp graph if all minimal c-acp sets have the same cardinality.

Example 4.2 (i) Every totally disconnected graph is a fine c-acp graph. (ii) $K_{n,n}$ is a fine c-acp graph. (iii) $K_{n_1,n_2,...,n_r}$ wher $n_1 = n_2 = ... = n_r = t$ is a fine c-acp graph.

(iv) Any acyclic graph $\neq \overline{K_n}$ is a fine c-acp graph. All minimal c-acp sets have cardinality two.

(v) All cycles are fine c-acp graphs.

Theorem 4.3 Let G_1 and G_2 be graphs. Suppose G_1 contains a cycle, G_2 is acyclic and $\chi(G_1) = \chi(G_2)$. Then $G_1 \cup G_2$ is a fine c-acp graph if and only if both G_1 and G_2 are fine c-acp graphs and the cardinality of any minimal c-acp set of G_1 is same as the sum of cardinalities of any minimal c-acp set of G_2 and a minimal c-a set of G_1 .

Proof: Suppose G_1 contains a cycle, G_2 is acyclic and $\chi(G_1) = \chi(G_2)$. Let S_1 be a minimal c-acp set of G_1 . Then S_1 is a c-a set of $G_1 \cup G_2$. $\chi(S_1) = \chi(G_1) = \max \{\chi(G_1), \chi(G_2)\} = \chi(G_1 \cup G_2)$. Therefore S_1 is c-acp set

of $G_1 \cup G_2$. Since S_1 is a minimal c-acp set of G_1 , S_1 is minimal c-acp set of $G_1 \cup G_2$. Any minimal c-acp set of G_2 is not a c-a set of $G_1 \cup G_2$. Let S_2 be a minimal c-acp set of G_2 and T_2 be a minimal c-a set of G_1 . Then $S_2 \cup T_2$ is a c-a set of $G_1 \cup G_2$. $\chi(S_2 \cup T_2) = \max \{\chi(S_2), \chi(T_2)\}$. Suppose $\chi(T_2) > \chi(S_2)$. Then $\chi(S_2 \cup T_2) = \chi(T_2) = \chi(G_1)$ if and only if T_2 is a c-a set of G_1 .

Therefore $\chi(S_2 \cup T_2) = \chi(G_1 \cup G_2)$ if and only if T_2 is a c-acp set of G_1 . Let S_1 be a minimal c-acp set of G_1 contained in T_2 . Then $S_1 \subset S_2 \cup T_2$. Therefore $S_2 \cup T_2$ is not a minimal c-acp set of $G_1 \cup G_2$. Suppose $\chi(T_2) \leq \chi(S_2)$. Then $\chi(S_2 \cup T_2) = \chi(S_2) = \chi(G_2) = \chi(G_1) = \chi(G_1 \cup G_2)$. $S_2 \cup T_2$ is a c-acp set of $G_1 \cup G_2$. $S_2 \cup T_2$ is a minimal c-acp set of $G_1 \cup G_2$ if and only if $\chi(T_2) < \chi(G_1)$. Conversely, let T be a minimal c-acp set of $G_1 \cup G_2$. Let $T = T_1 \cup T_2$, where $T_1 \subseteq V(G_1)$ and $T_2 \subseteq V(G_2)$. Since T is a c-a set of $G_1 \cup G_2$, T_1 is a c-a set of G_1 and T_2 is a c-a set of G_2 . $\chi(T) = \chi(T_1 \cup T_2) = \max{\{\chi(T_1), \chi(T_2)\}} = \chi(G_1 \cup G_2) =$ $\chi(G_1) = \chi(G_2)$. If $\chi(T_1) > \chi(T_2)$, then $\chi(T) = max \{\chi(T_1), \chi(T_2)\} = \chi(T_1) = \chi(G_1)$. Therefore T_1 is a c-acp set of G_1 and a c-acp set of $G_1 \cup G_2$. since T is minimal, $T_2 = \Phi$.

Thus a minimal c-acp set of $G_1 \cup G_2$ is a minimal c-acp set of G_1 if $\chi(T_1) > \chi(T_2).$ Suppose $\chi(T_2) > \chi(T_1)$, then $\chi(T) = \max \{\chi(T_1), \chi(T_2)\} = \chi(T_2) = \chi(G_1) = \chi(G_2)$. Therefore T_2 is a c-acp set of G_2 . That is T_2 is a cp of set of $G_1 \cup G_2$ but T_2 is not a c-a set of $G_1 \cup G_2$. Also T_1 is not a cp set of G_1 . Therefore $T = T_1 \cup T_2$, where T_1 is a minimal c-a set of G_1 and T_2 is a minimal c-acp set of G_2 . Thus if G_1 contains a cycle and G_2 is acyclic and $\chi(G_1) = \chi(G_2)$, then $G_1 \cup G_2$ is a fine c-acp graph if and only if both G_1 and G_2 are fine c-acp graphs and the cardinality of any minimal c-acp set of G_1 is same as the sum of cardinalities of any minimal c-acp set of G_2 and a minimal c-a set of G_1 .

Theorem 4.4 Let G_1 and G_2 be graphs. Suppose G_1 contains a cycle and G_2 is acyclic and $\chi(G_1) < \chi(G_2)$. Then $G_1 \cup G_2$ is a fine c-acp graph if and only if G_2 is a fine c-acp graph and all minimal c-a sets of G_1 have equal cardinality.

Proof: Suppose G_1 contains a cycle and G_2 is acyclic and $\chi(G_1) < \chi(G_2)$. Any c-acp set of G_1 is a c-a set of $G_1 \cup G_2$ but it is not a cp set $G_1 \cup G_2$. Let S_2 be a minimal cp set of G_2 and S_1 be a minimal c-a set of G_1 . Clearly $\chi(S_2) =$ $\chi(G_2) > \chi(G_1) \ge \chi(S_1)$. Therefore $S_1 \cup S_2$ is a minimal c-acp set of $G_1 \cup G_2$. Suppose T is a minimal c-acp set of $G_1 \cup G_2$. Let $T = T_1 \cup T_2$, where $T_1 \subseteq V(G_1)$ and $T_2 \subseteq V(G_2)$. Since T is a c-a set of $G_1 \cup G_2$, T_1 is a c-a set of G_1 and T_2 is a c-a set of G_2 . $\chi(T) = \chi(T_1 \cup T_2) = max \{\chi(T_1), \chi(T_2\} = \chi(G_1 \cup G_2) = \chi(G_2)$. If $\chi(T_1) > \chi(T_2)$, then $\chi(T_1) = \chi(G_2) > \chi(G_1)$, a contradiction, since T_1 is a subset of $V(G_1)$. Therefore $\chi(T_1) \leq \chi(T_2)$. Therefore $\chi(T) = \chi(T_2) = \chi(G_2)$. T_1 is a minimal c-a set of G_1 and T_2 is a minimal c-acp set of G_2 . Thus $G_1 \cup G_2$ is a fine c-acp graph if and only if G_2 is a fine c-acp graph and all minimal c-a sets of G_1 have equal cardinality.

Similar argument can be given if G_2 contains a cycle and G_1 is acyclic.

5 Chromatic Complementary Acyclic Dominating Set

Definition 5.1 Let G = (V, E) be a simple graph. A subset D of V(G) is called a complementary acyclic dominating set of G if D is a dominating set of G and $\langle V - D \rangle$ is acyclic.

Definition 5.2 Let G = (V, E) be a simple graph. A subset D of V(G) is called a chromatic complementary acyclic dominating set (chromatic c-a dominating set) of G if D is a complementary acyclic dominating set and $\chi(\langle D \rangle) = \chi(G)$.

Definition 5.3 The minimum cardinality of a chromatic c-a dominating set of G is called the chromatic c-a domination number of G and is denoted by $\gamma_{c-a}^{\chi}(G)$.

 $D = \{u_1, u_2, u_5\}$ is a chromatic c-a dominating set of G.

Here $\chi(\langle D \rangle) = \chi(G) = 3$ and $\gamma_{c-a}^{\chi}(G) = 3$

Theorem 5.5 Let G be a graph with $\Delta(G) = 1$. Then $\gamma_{c-a}^{\chi}(G) + \Delta(G) = n$ if and only if $G = 2K_2 \cup (n-4)K_1$.

Proof: Suppose G is a graph with $\Delta(G) = 1$ and $\gamma_{c-a}^{\chi}(G) + \Delta(G) = n$. Then each component of G is K_1 or K_2 . Let t be the number of components which are K_2 . Then $\gamma_{c-a}^{\chi}(G) = n - 2t + t + 1 = n - t + 1$. Therefore $\gamma_{c-a}^{\chi}(G) + \Delta(G) = n - t + 1 + 1 = n - t + 2$ which implies t=2. Therefore $G = 2K_2 \cup (n-4)K_1$. The converse is obvious.

Theorem 5.6 For any bipartite graph G, $\gamma_{c-a}(G) \leq \gamma_{c-a}^{\chi}(G) \leq \gamma_{c-a}(G) + 1$.

Proof: Since G is bipartite, $\chi(G) = 2$. Let D be a γ_{c-a} -set of G. If $\langle D \rangle$ contains an edge, then $\gamma_{c-a}^{\chi}(G) = |D| = \gamma_{c-a}(G)$. If $\langle D \rangle$ is totally disconnected for all γ_{c-a} - sets of G, then $D \cup \{v\}$ is a γ_{c-a}^{χ} -set of G, where $v \in V - D$. Then $\gamma_{c-a}^{\chi}(G) = |D| + 1 = \gamma_{c-a}(G) + 1$. Hence $\gamma_{c-a}(G) \leq \gamma_{c-a}\chi(G) \leq \gamma_{c-a}(G) + 1$

Example 5.7

 $D = \{u_2, u_6\}$ is a c-a dominating set, $\gamma_{c-a}(G) = 2$. But $D_1 = \{u_2, u_6, u_7\}$ is a chromatic c-a dominating set of G. Therefore $\gamma_{c-a}^{\chi}(G) = 3 = \gamma_{c-a}(G) + 1$.

Theorem 5.8 Let G be a graph without isolates. If G has a vertex u and $\chi(G) > \chi(G-v)$, for all $v \in V(G) - \{u\}$ and $\chi(G) = \chi(G-u)$, then $\gamma_{c-a}^{\chi}(G) = n-1$.

Proof: Let D be a γ_{c-a}^{χ} -set of G. Then $\chi(\langle D \rangle) = \chi(G)$.

Suppose |D| < n-1. Then D does not contain at least one vertex $v \neq u$. Therefore $D \subset V(G) - \{v\}$.

Therefore $\chi(\langle D \rangle) \leq \chi(\langle V(G) - \{v\} \rangle) < \chi(G)$, a contradiction. Therefore $|D| \geq n - 1$. Consider $S = V(G) - \{u\}$. Then S dominates u and $\chi(\langle S \rangle) = \chi(G)$. Therefore S is a c-a dominating set of G and so $\gamma_{c-a}^{\chi}(G) \leq |S| = n - 1$. Therefore $\gamma_{c-a}^{\chi}(G) = n - 1$.

Theorem 5.9 Let T be a tree. Then $\gamma_{c-a}^{\chi}(T) = 2$ if and only if T is either $K_{1,n}$ or $D_{r,s}$

Proof: Let $\gamma_{c-a}^{\chi}(T) = 2$. Let $D = \{u, v\}$ be a γ_{c-a}^{χ} -set of T. $\gamma_{c-a}^{\chi}(T) = \gamma_{c-a}(T)$ or $\gamma_{c-a}(T) + 1$ case (i): Let $\gamma_{c-a}^{\chi}(T) = \gamma_{c-a}(T)$

Therefore D is not independent and D is a γ_{c-a}^{χ} -set.

Since T is a tree, every point other than u and v is adjacent to exactly one of u and v. Also every point of T other than u and v is a pendent vertex.

Since u, v have private neighbour, $T = D_{r,s}$.

Case (ii): $\gamma_{c-a}^{\chi}(T) = \gamma_{c-a}(T) + 1.$

Therefore $\gamma_{c-a}(T) = 1$.

Therefore T is $K_{1,n}$.

Converse is obvious.

Theorem 5.10 If G is a planar graph with diam(G)=2, $\chi(G)=3$ and $\gamma(G)=2$,

then $3 \leq \gamma_{c-a}^{\chi}(G) \leq 5$

Proof: Lower bound is trivial. Let $S = \{a, b\}$ be a γ -set of G. Since diam(G)=2, $g_0(G) = 3$ or 5, where $g_0(G)$ is the length of the smallest odd cycle of G. **Case (i):** $g_0(G) = 3$. Let C be a 3-cycle xyzx. If a,b \notin C, then two vertices of C are adjacent to a and one verex is adjacent to b or vice versa, for otherwise K_4 is induced, a contradiction. Let x and y be adjacent to a and z be adjacent to b. Then axya is a 3-cycle. Hence $\{a, x, y, b\}$ is a chromatic c-a dominating set of G. If a or b is in the 3-cycle, then the 3-cycle together with the remaining vertex of S is a chromatic c-a dominating set of G.

Case (ii): $g_0(G) = 5$. Let C be a 5-cycle uvwxyu. If $a,b\notin C$, then as S is a dominating set, vertices of C are adjacent to a or b and not to both, otherwise a 3-cycle is induced. Moreover no two consecutive vertices of C can be both adjacent to a or b, otherwise a 3-cycle is induced. Then S can dominate at most 4-vertices of C, a contradiction. Hence a or $b \in C$. Let $a \in C$ and $b \notin C$. Let u=a. Then x and w are adjacent to b and hence a 3-cycle is induced, a contradiction. Therefore both $a,b \in C$ and hence V(C) is a γ_{c-a}^{χ} -set of G. Case(i) and case(ii) show that the upper bound is attained.

Theorem 5.11 For any integer $N \ge 0$, there exists a connected graph G and a graph G' such that G' is obtained from G by adding exactly one vertex and $\gamma_{c-a}^{\chi}(G) - \gamma_{c-a}^{\chi}(G') = N.$

Proof: Let $G = P_{3(N+2)}$, a path on 3(N+2) vertices. Then $\gamma_{c-a}^{\chi}(G) = \left\lceil \frac{3(N+2)}{3} \right\rceil + 1 = N+3$. Let G' be the graph obtained from G by adding a new vertex v and joining v to all the vertices of G. Therefore $\gamma_{c-a}^{\chi}(G') = 3$ Hence $\gamma_{c-a}^{\chi}(G) - \gamma_{c-a}^{\chi}(G') = N+3-3 = N$

REFERENCES:

[1].Frank Harary, Graph Theory, Narosa Publishing House, Reprint 1997.

[2].Gary Chartrand, Ping Zhang Chromatic Graph Theory CRC press, Taylor

Dr.Francis group - A chapman and Hall book, 2009.

[3].Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York, Basel, Hong Kong 1998.

[4].S.M.Hedetniemi, S.T.Hedetniemi, D.F Rall, Acyclic Domination, Discrete Mathematics 222(2000), 151-165.

[5] M.Poopalaranjani, On some coloring and domination parameters in graphs,Ph.D Thesis, Bharathidasan University, India, 2006.

Received: September, 2013