Complementary Acyclic Chromatic Preserving Sets in Graphs

M.Valliammal
Department of Mathematics
N.M.S.Sermathai Vasan College for Women
Madurai-12
Email:valliambu@gmail.com
\section*{S.P.Subbiah}
Department of Mathematics
M.T.N.College
Madurai-04
Email:drspsmtnc@gmail.com

V.Swaminathan

Ramanujan Research Centre
Saraswathi Narayanan College
Madurai-22
Email: sulanesri@yahoo.com

Abstract

Let $\mathrm{G}=(V, E)$ be a simple graph. A subset S of $\mathrm{V}(\mathrm{G})$ is called a complementary acyclic chromatic preserving set of G (c-acp set of G) if $\langle V-S\rangle$ is acyclic and $\chi(<S>)=\chi(G)$. The minimum cardinality of a c-acp set in G is called the complementary acyclic chromatic preserving number of G and is denoted by c-acpn(G). A c-acp set of G of cardinality c-acpn (G) is called a c-acpn- set of G. A study of chromatic preserving sets has been made in detail in [5]. In this paper, a study of complementary acyclic chromatic preserving sets is initiated.Further chromatic complementary acyclic dominating sets are defined and studied.

Keywords: complementary acyclic chromatic preserving set,complementary acyclic chromatic preserving number, chromatic complementary acyclic dominating set.

Mathematics Subject Classification : 05C15

1 Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. Let P be a graph property and let t be a parameter of G. Let S be a subset of $V(G)$. S is said to be a P-set which is t preserving if S satisfies P and $t(\langle S\rangle)=t(G)$. Depending on the nature of P , either minimum cardinality or maximum cardinality of such a set is taken as a new parameter. If P is the property that the set is complementary acyclic and t is the chromatic number, then the t-preserving P -set is called the complementary acyclic chromatic preserving set . A study of such sets is made in this paper.Further, a study of chromatic complementary acyclic dominating sets is also made.

2 Preliminaries

Definition 2.1 A subset S of $V(G)$ is called a complementary acyclic chromatic preserving set of G (c-acp set of G) if $\langle V-S\rangle$ is acyclic and $\chi(<S>)=\chi(G)$.

The minimum cardinality of a c-acp set in G is called the complementary acyclic chromatic preserving number of G and is denoted by c-acpn (G). A c-acp set of G of cardinality c-acpn (G) is called a c-acpn- set of G.

Remark 2.2 Since $V(G)$ is a c-acp set, the existence of a c-acp sets is guaranteed in any graph.

Remark 2.3 The c-acp property is superhereditary, since any super set of a c-acp set is a c-acp set. Hence a c-acp set is minimal if and only if it is one minimal.

3 Main Results

c-acpn for standard graphs

1. $\mathrm{c}-\operatorname{acpn}\left(K_{n}\right)=n$.
2. $\operatorname{c}-\operatorname{acpn}\left(K_{1, n}\right)=2$.
3. $\mathrm{c}-\operatorname{acpn}\left(K_{m, n}\right)=\min \{m, n\}, \quad m, n \geq 2$.
4. $\operatorname{c-acpn}\left(D_{r, s}\right)=2$.
5. c-acpn $\left(P_{n}\right)=2$.
6. $\operatorname{c-acpn}\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}$
7. $\operatorname{c-acpn}\left(n K_{1}\right)=1$.

Observation 3.1 A c-acpn-set of a connected graph G need not induce a connected subgraph.

For: Consider the graph G:

In this graph c-acpn $(G)=4$ and any c-acpn-set is disconnected. $S_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{7}\right\}$ is a c-acpn-set which is disconnected.

Observation $3.2 \chi(G)=c$-acpn (G) if and only if any c-acpn-set induces a complete subgraph.

Proof: By hypothesis c-acpn $(\mathrm{G})=\chi(G)$.Let S be a c-acpn-set of G .
c-acpn $(\mathrm{G})=|S|=\chi(G)=\chi(<S>)$.
Therefore $\langle S\rangle$ is a complete subgraph.
Conversely, let any c-acpn-set induces a complete subgraph. Let S be a c-acpn-set of G. $|S|=\chi(<S>)=\chi(G)$.

That is $\mathrm{c}-\operatorname{acpn}(\mathrm{G})=\chi(G)$.

Illustration 3.3 Consider the graph G :

Remark 3.4 If $\chi(G)=\omega(G)$, then $\operatorname{cpn}(G)=\chi(G)$. But c-acpn (G) may be greater than $\chi(G)$.

For example, consider the graph G:

Definition 3.5 A subset S of $V(G)$ is called a minimal c-acp set of G if S is a c-acp set of G and no subset of S is a c-acp set of G.

Theorem 3.6 Let S be a c-acp set of G. S is minimal if and only if for any u in S, either $V-(S-\{u\})$ contains a cycle or $\chi(<S-\{u\}>)<\chi(G)$.

Proof: Obvious.

Definition 3.7 The maximum cardinality of a minimal c-acp set of G is called the upper c-acp number of G and is denoted by $c-a c p N(G)$.

Remark 3.8 There are graphs G with $c-\operatorname{acpn}(G)<c-a c p N(G)$.

4 Fine c-acp Graphs

Definition 4.1 A graph G is a fine c-acp graph if all minimal c-acp sets have the same cardinality.

Example 4.2 (i) Every totally disconnected graph is a fine c-acp graph.
(ii) $K_{n, n}$ is a fine c-acp graph.
(iii) $K_{n_{1}, n_{2}, \ldots, n_{r}}$ wher $n_{1}=n_{2}=\ldots=n_{r}=t$ is a fine c-acp graph.
(iv) Any acyclic graph $\neq \overline{K_{n}}$ is a fine c-acp graph. All minimal c-acp sets have cardinality two.
(v) All cycles are fine c-acp graphs.

Theorem 4.3 Let G_{1} and G_{2} be graphs. Suppose G_{1} contains a cycle, G_{2} is acyclic and $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)$. Then $G_{1} \cup G_{2}$ is a fine c-acp graph if and only if both G_{1} and G_{2} are fine c-acp graphs and the cardinality of any minimal c-acp set of G_{1} is same as the sum of cardinalities of any minimal c-acp set of G_{2} and a minimal c-a set of G_{1}.

Proof: Suppose G_{1} contains a cycle, G_{2} is acyclic and $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)$. Let S_{1} be a minimal c-acp set of G_{1}. Then S_{1} is a c-a set of $G_{1} \cup G_{2} . \chi\left(S_{1}\right)=\chi\left(G_{1}\right)=$ $\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}=\chi\left(G_{1} \cup G_{2}\right)$. Therefore S_{1} is c-acp set of $G_{1} \cup G_{2}$. Since S_{1} is a minimal c-acp set of G_{1}, S_{1} is minimal c-acp set of $G_{1} \cup G_{2}$. Any minimal c-acp set of G_{2} is not a c-a set of $G_{1} \cup G_{2}$. Let S_{2} be a minimal c-acp set of G_{2} and T_{2} be a minimal c-a set of G_{1}. Then $S_{2} \cup T_{2}$ is a c-a set of $G_{1} \cup G_{2} . \chi\left(S_{2} \cup T_{2}\right)=\max \left\{\chi\left(S_{2}\right), \chi\left(T_{2}\right)\right\}$. Suppose $\chi\left(T_{2}\right)>\chi\left(S_{2}\right)$. Then $\chi\left(S_{2} \cup T_{2}\right)=\chi\left(T_{2}\right)=\chi\left(G_{1}\right)$ if and only if T_{2} is a c-a set of G_{1}. Therefore $\chi\left(S_{2} \cup T_{2}\right)=\chi\left(G_{1} \cup G_{2}\right)$ if and only if T_{2} is a c-acp set of G_{1}. Let S_{1} be a minimal c-acp set of G_{1} contained in T_{2}. Then $S_{1} \subset S_{2} \cup T_{2}$. Therefore $S_{2} \cup T_{2}$ is not a minimal c-acp set of $G_{1} \cup G_{2}$. Suppose $\chi\left(T_{2}\right) \leq \chi\left(S_{2}\right)$. Then $\chi\left(S_{2} \cup T_{2}\right)=\chi\left(S_{2}\right)=\chi\left(G_{2}\right)=\chi\left(G_{1}\right)=\chi\left(G_{1} \cup G_{2}\right) . S_{2} \cup T_{2}$ is a c-acp set of $G_{1} \cup G_{2} . S_{2} \cup T_{2}$ is a minimal c-acp set of $G_{1} \cup G_{2}$ if and only if $\chi\left(T_{2}\right)<\chi\left(G_{1}\right)$. Conversely, let T be a minimal c-acp set of $G_{1} \cup G_{2}$. Let $T=T_{1} \cup T_{2}$, where $T_{1} \subseteq V\left(G_{1}\right)$ and $T_{2} \subseteq V\left(G_{2}\right)$. Since T is a c-a set of $G_{1} \cup G_{2}, T_{1}$ is a c-a set of G_{1} and T_{2} is a c-a set of $G_{2} . \chi(T)=\chi\left(T_{1} \cup T_{2}\right)=\max \left\{\chi\left(T_{1}\right), \chi\left(T_{2}\right)\right\}=\chi\left(G_{1} \cup G_{2}\right)=$
$\chi\left(G_{1}\right)=\chi\left(G_{2}\right)$. If $\chi\left(T_{1}\right)>\chi\left(T_{2}\right)$, then $\chi(T)=\max \left\{\chi\left(T_{1}\right), \chi\left(T_{2}\right)\right\}=\chi\left(T_{1}\right)=$ $\chi\left(G_{1}\right)$. Therefore T_{1} is a c-acp set of G_{1} and a c-acp set of $G_{1} \cup G_{2}$. since T is minimal, $T_{2}=\Phi$.

Thus a minimal c-acp set of $G_{1} \cup G_{2}$ is a minimal c-acp set of G_{1} if $\chi\left(T_{1}\right)>$ $\chi\left(T_{2}\right)$.Suppose $\chi\left(T_{2}\right)>\chi\left(T_{1}\right)$, then $\chi(T)=\max \left\{\chi\left(T_{1}\right), \chi\left(T_{2}\right)\right\}=\chi\left(T_{2}\right)=$ $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)$. Therefore T_{2} is a c-acp set of G_{2}. That is T_{2} is a cp of set of $G_{1} \cup G_{2}$ but T_{2} is not a c-a set of $G_{1} \cup G_{2}$. Also T_{1} is not a cp set of G_{1}. Therefore $T=T_{1} \cup T_{2}$, where T_{1} is a minimal c-a set of G_{1} and T_{2} is a minimal c-acp set of G_{2}. Thus if G_{1} contains a cycle and G_{2} is acyclic and $\chi\left(G_{1}\right)=\chi\left(G_{2}\right)$, then $G_{1} \cup G_{2}$ is a fine c-acp graph if and only if both G_{1} and G_{2} are fine c-acp graphs and the cardinality of any minimal c-acp set of G_{1} is same as the sum of cardinalities of any minimal c-acp set of G_{2} and a minimal c-a set of G_{1}.

Theorem 4.4 Let G_{1} and G_{2} be graphs. Suppose G_{1} contains a cycle and G_{2} is acyclic and $\chi\left(G_{1}\right)<\chi\left(G_{2}\right)$. Then $G_{1} \cup G_{2}$ is a fine c-acp graph if and only if G_{2} is a fine c-acp graph and all minimal c-a sets of G_{1} have equal cardinality.

Proof: Suppose G_{1} contains a cycle and G_{2} is acyclic and $\chi\left(G_{1}\right)<\chi\left(G_{2}\right)$. Any c-acp set of G_{1} is a c-a set of $G_{1} \cup G_{2}$ but it is not a cp set $G_{1} \cup G_{2}$. Let S_{2} be a minimal cp set of G_{2} and S_{1} be a minimal c-a set of G_{1}. Clearly $\chi\left(S_{2}\right)=$ $\chi\left(G_{2}\right)>\chi\left(G_{1}\right) \geq \chi\left(S_{1}\right)$. Therefore $S_{1} \cup S_{2}$ is a minimal c-acp set of $G_{1} \cup G_{2}$. Suppose T is a minimal c-acp set of $G_{1} \cup G_{2}$. Let $T=T_{1} \cup T_{2}$, where $T_{1} \subseteq V\left(G_{1}\right)$ and $T_{2} \subseteq V\left(G_{2}\right)$. Since T is a c-a set of $G_{1} \cup G_{2}, T_{1}$ is a c-a set of G_{1} and T_{2} is a c-a set of $G_{2} . \chi(T)=\chi\left(T_{1} \cup T_{2}\right)=\max \left\{\chi\left(T_{1}\right), \chi\left(T_{2}\right\}=\chi\left(G_{1} \cup G_{2}\right)=\chi\left(G_{2}\right)\right.$. If $\chi\left(T_{1}\right)>\chi\left(T_{2}\right)$, then $\chi\left(T_{1}\right)=\chi\left(G_{2}\right)>\chi\left(G_{1}\right)$, a contradiction, since T_{1} is a subset of $V\left(G_{1}\right)$. Therefore $\chi\left(T_{1}\right) \leq \chi\left(T_{2}\right)$. Therefore $\chi(T)=\chi\left(T_{2}\right)=\chi\left(G_{2}\right)$. Therefore T_{2} is a c-acp set of G_{2} and T_{1} is a c-a set of G_{1}.Since T is minimal,
T_{1} is a minimal c-a set of G_{1} and T_{2} is a minimal c-acp set of G_{2}. Thus $G_{1} \cup G_{2}$ is a fine c-acp graph if and only if G_{2} is a fine c-acp graph and all minimal c-a sets of G_{1} have equal cardinality.

Similar argument can be given if G_{2} contains a cycle and G_{1} is acyclic.

5 Chromatic Complementary Acyclic Dominating Set

Definition 5.1 Let $G=(V, E)$ be a simple graph. A subset D of $V(G)$ is called a complementary acyclic dominating set of G if D is a dominating set of G and $<V-D>$ is acyclic.

Definition 5.2 Let $G=(V, E)$ be a simple graph. A subset D of $V(G)$ is called a chromatic complementary acyclic dominating set (chromatic c-a dominating set) of G if D is a complementary acyclic dominating set and $\chi(<D>)=\chi(G)$.

Definition 5.3 The minimum cardinality of a chromatic c-a dominating set of G is called the chromatic c-a domination number of G and is denoted by $\gamma_{c-a}^{\chi}(G)$.

Example 5.4

$D=\left\{u_{1}, u_{2}, u_{5}\right\}$ is a chromatic c-a dominating set of G .

Here $\chi(<D>)=\chi(G)=3$ and $\gamma_{c-a}^{\chi}(G)=3$

Theorem 5.5 Let G be a graph with $\Delta(G)=1$. Then $\gamma_{c-a}^{\chi}(G)+\Delta(G)=n$ if and only if $G=2 K_{2} \cup(n-4) K_{1}$.

Proof: Suppose G is a graph with $\Delta(G)=1$ and $\gamma_{c-a}^{\chi}(G)+\Delta(G)=n$. Then each component of G is K_{1} or K_{2}. Let t be the number of components which are K_{2}. Then $\gamma_{c-a}^{\chi}(G)=n-2 t+t+1=n-t+1$.
Therefore $\gamma_{c-a}^{\chi}(G)+\Delta(G)=n-t+1+1=n-t+2$ which implies $\mathrm{t}=2$. Therefore $G=2 K_{2} \cup(n-4) K_{1}$. The converse is obvious.

Theorem 5.6 For any bipartite graph $G, \gamma_{c-a}(G) \leq \gamma_{c-a}^{\chi}(G) \leq \gamma_{c-a}(G)+1$.

Proof: Since G is bipartite, $\chi(G)=2$. Let D be a γ_{c-a}-set of G . If $<D>$ contains an edge, then $\gamma_{c-a}^{\chi}(G)=|D|=\gamma_{c-a}(G)$. If $<D>$ is totally disconnected for all $\gamma_{c-a^{-}}$sets of G , then $D \cup\{v\}$ is a γ_{c-a}^{χ}-set of G , where $v \in V-D$. Then $\gamma_{c-a}^{\chi}(G)=|D|+1=\gamma_{c-a}(G)+1$. Hence $\gamma_{c-a}(G) \leq \gamma_{c-a} \chi(G) \leq \gamma_{c-a}(G)+1$

Example 5.7

$D=\left\{u_{2}, u_{6}\right\}$ is a c-a dominating set, $\gamma_{c-a}(G)=2$.
But $D_{1}=\left\{u_{2}, u_{6}, u_{7}\right\}$ is a chromatic c-a dominating set of G.
Therefore $\gamma_{c-a}^{\chi}(G)=3=\gamma_{c-a}(G)+1$.

Theorem 5.8 Let G be a graph without isolates. If G has a vertex u and
$\chi(G)>\chi(G-v)$, for all $v \in V(G)-\{u\}$ and $\chi(G)=\chi(G-u)$, then $\gamma_{c-a}^{\chi}(G)=$ $n-1$.

Proof: Let D be a γ_{c-a}^{χ}-set of G. Then $\chi(<D>)=\chi(G)$.
Suppose $|D|<n-1$. Then D does not contain at least one vertex $v \neq u$. Therefore $D \subset V(G)-\{v\}$.
Therefore $\chi(<D>) \leq \chi(<V(G)-\{v\}>)<\chi(G)$, a contradiction. Therefore $|D| \geq n-1$. Consider $S=V(G)-\{u\}$. Then S dominates u and $\chi(<S>)=$ $\chi(G)$. Therefore S is a c-a dominating set of G and so $\gamma_{c-a}^{\chi}(G) \leq|S|=n-1$. Therefore $\gamma_{c-a}^{\chi}(G)=n-1$.

Theorem 5.9 Let T be a tree. Then $\gamma_{c-a}^{\chi}(T)=2$ if and only if T is either $K_{1, n}$ or $D_{r, s}$

Proof: Let $\gamma_{c-a}^{\chi}(T)=2$. Let $D=\{u, v\}$ be a γ_{c-a}^{χ}-set of T.
$\gamma_{c-a}^{\chi}(T)=\gamma_{c-a}(T)$ or $\gamma_{c-a}(T)+1$
case (i): Let $\gamma_{c-a}^{\chi}(T)=\gamma_{c-a}(T)$
Therefore D is not independent and D is a γ_{c-a}^{χ}-set.
Since T is a tree, every point other than u and v is adjacent to exactly one of u and v. Also every point of T other than u and v is a pendent vertex.

Since u, v have private neighbour, $T=D_{r, s}$.
Case (ii): $\gamma_{c-a}^{\chi}(T)=\gamma_{c-a}(T)+1$.
Therefore $\gamma_{c-a}(T)=1$.
Therefore T is $K_{1, n}$.
Converse is obvious.
Theorem 5.10 If G is a planar graph with $\operatorname{diam}(G)=\mathcal{L}, \chi(G)=3$ and $\gamma(G)=2$,
then $3 \leq \gamma_{c-a}^{\chi}(G) \leq 5$

Proof: Lower bound is trivial. Let $S=\{a, b\}$ be a γ-set of G. Since $\operatorname{diam}(\mathrm{G})=2$, $g_{0}(G)=3$ or 5 , where $g_{0}(G)$ is the length of the smallest odd cycle of G.

Case (i): $g_{0}(G)=3$. Let C be a 3 -cycle xyzx. If $\mathrm{a}, \mathrm{b} \notin \mathrm{C}$, then two vertices of C are adjacent to a and one verex is adjacent to b or vice versa, for otherwise K_{4} is induced, a contradiction. Let x and y be adjacent to a and z be adjacent to b . Then axya is a 3 -cycle. Hence $\{a, x, y, b\}$ is a chromatic c-a dominating set of G. If a or b is in the 3 -cycle, then the 3 -cycle together with the remaining vertex of S is a chromatic c-a dominating set of G .

Case (ii): $g_{0}(G)=5$. Let C be a 5 -cycle uvwxyu. If $\mathrm{a}, \mathrm{b} \notin \mathrm{C}$, then as S is a dominating set, vertices of C are adjacent to a or b and not to both, otherwise a 3 -cycle is induced. Moreover no two consecutive vertices of C can be both adjacent to a or b , otherwise a 3 -cycle is induced. Then S can dominate at most 4 -vertices of C , a contradiction. Hence a or $\mathrm{b} \in \mathrm{C}$. Let $a \in C$ and $b \notin C$. Let $\mathrm{u}=\mathrm{a}$. Then x and w are adjacent to b and hence a 3 -cycle is induced, a contradiction. Therefore both a,b $\in \mathrm{C}$ and hence $V(C)$ is a γ_{c-a}^{χ}-set of G . Case(i) and case(ii) show that the upper bound is attained.

Theorem 5.11 For any integer $N \geq 0$, there exists a coneected graph G and a graph G^{\prime} such that G^{\prime} is obtained from G by adding exactly one vertex and $\gamma_{c-a}^{\chi}(G)-\gamma_{c-a}^{\chi}\left(G^{\prime}\right)=N$.

Proof: Let $G=P_{3(N+2)}$, a path on $3(\mathrm{~N}+2)$ vertices. Then $\gamma_{c-a}^{\chi}(G)=\left\lceil\frac{3(N+2)}{3}\right\rceil+$ $1=N+3$. Let G^{\prime} be the graph obtained from G by adding a new vertex v and joining v to all the vertices of G . Therefore $\gamma_{c-a}^{\chi}\left(G^{\prime}\right)=3$ Hence $\gamma_{c-a}^{\chi}(G)-\gamma_{c-a}^{\chi}\left(G^{\prime}\right)=$ $N+3-3=N$

REFERENCES:

[1].Frank Harary,Graph Theory,Narosa Publishing House,Reprint 1997.
[2].Gary Chartrand, Ping Zhang Chromatic Graph Theory CRC press, Taylor Dr.Francis group - A chapman and Hall book, 2009.
[3].Teresa W.Haynes,Stephen T.Hedetniemi,Peter J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc,New York,Basel,Hong Kong 1998.
[4].S.M.Hedetniemi, S.T.Hedetniemi, D.F Rall,Acyclic Domination,Discrete Mathematics 222(2000), 151-165.
[5] M.Poopalaranjani,On some coloring and domination parameters in graphs, Ph.D Thesis, Bharathidasan University, India, 2006.

Received: September, 2013

