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Abstract

The first integral method and the (G
′

G
)-expansion method are two

efficient methods for obtaining exact solutions of some nonlinear partial
differential equations.
In this paper, we first describe the first integral method and the (G

′

G
)-

expansion method. Then we solve the mKdV equation with both meth-
ods and compare the solutions.
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1 Introduction

Nonlinear phenomena appear in a wide variety of scientific applications such
as plasma physics, solid state physics, fluid dynamics. In order to better
make efforts to seek more exact solutions to them. Several powerful methods
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have been proposed to obtain exact solutions of nonlinear evolution equa-
tions, such as inverse scattering method [1], Backlund transformation method
[2, 3], Darboux transformation method[4, 5], Hirota’s bilinear method [11, 12],
F-expansion method[13-16], and so on.
The first integral method was first proposed by Feng [17] in solving Burgers-
KdV equation which is based on the ring theory of commutative algebra. Re-
cently, this useful method is widely used by many such as in [18− 20] and by
the reference therein.
Very recently, Wang et al.[21] introduced a new method called the (G

′

G
)-expansion

method to look for traveling wave solutions of nonlinear evolution equations.
The(G

′

G
)-expansion method is based on the assumptions that the traveling wave

solutions can be expressed by a polynomial in (G
′

G
), and that G = G(ξ) satisfies

a second order linear ordinary differential equation(LODE).
The degree of the polynomial can be determined by considering the homoge-
neous balance between the highest order derivative and nonlinear terms ap-
pearing in the given nonlinear evolution equations. The coefficients of the
polynomial can be obtained by solving a set of algebraic equations resulted
from the process of using the method. By using the(G

′

G
)-expansion method,

Wang et al. success fully obtain more traveling wave solutions of four nonlinear
evolution equations.
The aim of this paper is to compare between the first integral method and the
(G

′

G
)-expansion method.

2 The first integral method(FIM)

Consider the nonlinear partial differential equation in the form

F (u, ux, ut, uxx, uxt, ...) = 0, (1)

where u = u(x, t) is the solution of nonlinear partial differential equation
Eq.(1). We use the transformations,

u(x, t) = f(ξ), (2)

where ξ = x− vt. This enables us to use the following changes:

∂

∂t
(.) = −v

∂

∂ξ
(.),

∂

∂x
(.) =

∂

∂ξ
(.),

∂2

∂x2
(.) =

∂2

∂ξ2
(.), .... (3)

Using Eq.(3) to transfer the nonlinear partial differential equation Eq.(1) to
nonlinear ordinary differential equation

G(f(ξ),
∂f(ξ)

∂ξ
,
∂2f(ξ)

∂ξ2
, ...) = 0. (4)
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Next, we introduce a new independent variable

X(ξ) = f(ξ), Y =
∂f(ξ)

∂ξ
, (5)

which leads a system of nonlinear ordinary differential equations

∂X(ξ)

∂ξ
= Y (ξ), (6)

∂Y (ξ)

∂ξ
= F1(X(ξ), Y (ξ)).

By the qualitative theory of ordinary differential equations [22], if we can find
the integrals to Eq.(6) under the same conditions, then the general solutions
to Eq.(6) can be solved directly. However, in general, it is really difficult for us
to realize this even for one first integral, because for a given plane autonomous
system, there is no systematic theory that can tell us how to find its first inte-
grals, nor is there a logical way for telling us what these first integrals are. We
will apply the Division Theorem to obtain one first integral to Eq.(6) which
reduces Eq.(4) to a first order integrable ordinary differential equation. An
exact solution to Eq.(1) is then obtained by solving this equation. Now, let us
recall the Division Theorem:

Division Theorem. Suppose that P (w, z) and Q(w, z) are polynomials in
C[w, z]; and P (w, z) is irreducible in C[w, z]; If Q(w, z) vanishes at all zero
points of P (w, z), then there exists a polynomial G(w, z) in C[w, z] such that

Q(w, z) = P (w, z)G(w, z).

3 The (G
′

G
)-expansion method

Suppose that a nonlinear equation, say in two independent variables x and t,

is given by
P (u, ut, ux, utt, uxt, uxx, ...) = 0, (7)

where u = u(x, t) is an unknown function, P is a polynomial in u = u(x, t)
and its various partial derivatives, in which the highest order derivatives and
nonlinear terms are involved. In the following we give the main steps of the
(G

′

G
)-expansion method.

Step 1. Combining the independent variables x and t into one variable ξ =
x− vt, we suppose that

u(x, t) = u(ξ), ξ = x− vt, (8)
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the traveling wave variable (8) permits us reducing Eq.(7) to an ordinary dif-
ferential equation(ODE) for u = u(ξ)

P (u,−vu′, u′, v2u′′,−vu′′, u′′, ...) = 0, (9)

Step 2. Suppose that the solution of ODE (9) can be expressed by a polyno-
mial in (G

′

G
) as follows:

u(ξ) = αm(
G′

G
)m + ..., (10)

where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0, (11)

α0, α1, ..., αm, λ and µ are constants to be determined later, αm 6= 0. The
positive integer m can be determined by considering the homogeneous balance
between the highest order derivatives and nonlinear terms appearing in ODE
(9).
Step 3. By substituting (10) into (9) and using second order LODE (11),
collecting all terms with the same order of (G

′

G
) together, the left-hand side of

Eq.(9) is converted into another polynomial in (G
′

G
). Equating each coefficient

of this polynomial to zero, yields a set of algebraic equations for α0, α1, ..., αm, λ

and µ.

Step4. Assuming that the constants α0, α1, ..., αm, λ and µ can be obtained
by solving the algebraic equations in Step 3, since the general solutions of
the second order LODE (11) have been well known for us, then substituting
α0, α1, ..., αm, v and the general solutions of Eq.(11) into (10) we have more
traveling wave solutions of the nonlinear evolution equation (8).

4 Exact solutions of mKdV equation by using

the first integral method

In this section, we study the mKdV equation

ut − u2ux + uxxx = 0. (12)

We use the traveling wave transformation

u(x, t) = u(ξ), ξ = x− vt. (13)

By the travelling variable (13) permits us reducing Eq.(12) to an ODE for
u = u(ξ)

−vu′ − u2u′ + u′′′ = 0. (14)
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Integrating (14) with respect to ξ, then we have

R + vu+
1

3
u3 = u′′ (15)

Using(5) and (6), we can get

Ẋ(ξ) = Y (ξ), (16)

Ẏ (ξ) =
1

3
X3(ξ) + vX(ξ) +R. (17)

According to the first integral method, we suppose the X(ξ) and Y (ξ) are
nontrivial solutions of (16)-(17), and

Q(X, Y ) =
m
∑

i=0

ai(X)Y i = 0

is an irreducible polynomial in the complex domain C[X, Y ] such that

Q(X(ξ), Y (ξ)) =
m
∑

i=0

ai(X(ξ))Y i(ξ) = 0, (18)

where ai(X)(i = 0, 1, ..., m), are polynomials of X and am(X) 6= 0. Equation
(18) is called the first integral to (16) and (17). Due to the Division Theorem,
there exists a polynomial g(X)+h(X)Y, in the complex domain C[X, Y ] such
that

dQ

dξ
=

dQ

dX

dX

dξ
+

dQ

dY

dY

dξ
= (g(X) + h(X)Y )

m
∑

i=0

ai(X)Y i. (19)

In this example, Suppose that m = 1, by comparing with the coefficients of
Y i(i = 2, 1, 0) on both sides of (19), we have

ȧ1(X) = h(X)a1(X), (20)

ȧ0(X) = g(X)a1(X) + h(X)a0(X), (21)

a1(X)[
1

3
X3(ξ) + vX(ξ) +R] = g(X)a0(X). (22)

Since ai(X) (i = 0, 1) are polynomials, then from (20) we deduce that a1(X)
is constant and h(X) = 0. For simplicity, take a1(X) = 1. Balancing the
degrees of g(X) and a0(X), we conclude that deg(g(X)) = 1 only. Suppose
that g(X) = A0X + A1, then we find a0(X),

a0(X) =
1

2
A0X

2 + A1X + A2, (23)

where A2 is arbitrary integration constant.
Substituting a0(X) and g(X) into (22) and setting all the coefficients of powers
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X to be zero, then we obtain a system of nonlinear algebraic equations and by
solving it, we obtain

A0 =

√
6

3
, A1 = 0, A2 =

√
6

2
v, R = 0, (24)

A0 = −
√
6

3
, A1 = 0, A2 = −

√
6

2
v, R = 0, (25)

where v is arbitrary constant.
Using the conditions (24) in (18), we obtain

Y1(ξ) = −
√
6

6
X2(ξ)−

√
6

2
v. (26)

Combining (26) with (16), we obtain the exact solution to equations (16) and
(17):
When v < 0

u1,1(ξ) =
√
3v tanh(

√
2v

2
ξ + ξ0), (27)

where ξ = x− vt and ξ0 is an arbitrary constant.
When v > 0

u1,2(ξ) = −
√
3v tan(

√
2v

2
ξ + ξ0), (28)

where ξ = x− vt and ξ0 is an arbitrary constant.
Similarly, in the case of (25), from (18), we obtain

Y2(ξ) =

√
6

6
X2(ξ) +

√
6

2
v, (29)

and then the exact solution of mKdV equation can be written as:
When v < 0

u2,1(ξ) = −
√
3v tanh(

√
2v

2
ξ + ξ0), (30)

where ξ = x− vt and ξ0 is an arbitrary constant.
When v > 0

u2,2(ξ) =
√
3v tan(

√
2v

2
ξ + ξ0), (31)

where ξ = x− vt and ξ0 is an arbitrary constant.
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5 Exact solutions of mKdV equation by using

the (G
′

G
)-expansion method

We use the traveling wave transformation

u(x, t) = u(ξ), ξ = x− vt. (32)

By the travelling variable (32) permits us reducing Eq.(12) to an ODE for
u = u(ξ)

−vu′ − u2u′ + u′′′ = 0. (33)

Integrating (33) with respect to ξ, then we have

R + vu+
1

3
u3 = u′′ (34)

where R is integration constant.
Suppose that the solution of ODE (34) can be expressed by a polynomial in
(G

′

G
) as follows:

u(ξ) = αm(
G′

G
)m + ..., (35)

where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0. (36)

By using (35) and (36) it is easily derived that

u3 = α3

m(
G′

G
) + ..., (37)

u′ = −mα3

m(
G′

G
)m+1 + ..., (38)

u′′ = m(m+ 1)α3

m(
G′

G
)m+2 + ... (39)

Considering the homogeneous balance between u′′ and u3 in Eq.(34), we re-
quired that

m+ 2 = 3m

then m = 1, so we can write (35) as

u(ξ) = α1(
G′

G
) + α0, α1 6= 0 (40)

and therefore

u3 = α3

1(
G′

G
)3 + 3α0α

2

1(
G′

G
)2 + 3α2

0α1(
G′

G
) + α3

0, (41)
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u′′ = 2α1(
G′

G
)3 + 3α1λ(

G′

G
)2 + α1(λ

2 + 2µ)(
G′

G
) + α1µλ. (42)

By substituting (40), (41) and (42) into ODE.(34) and collecting all terms with
the same power of (G

′

G
) together, the left-hand side of ODE.(34) is converted

into another polynomial in (G
′

G
). Equating each coefficient of this polynomial

to zero, yields a set of simultaneous algebraic equations for α0, α1, v, µ and λ

as follows:

0 : R + α0v +
1

3
α3

0 − α1µλ = 0, (43)

1 : v + α2

0 − λ2 − 2µ = 0, (44)

2 : α0α1 − 3λ = 0, (45)

3 :
1

3
α2

1 − 2 = 0. (46)

Solving the algebraic equations above with aid Maple,yields

R = 0, µ =
1

4
λ2 +

1

2
v , α0 =

√
6

2
λ, α1 =

√
6 (47)

R = 0, µ =
1

4
λ2 +

1

2
v , α0 = −

√
6

2
λ, α1 = −

√
6 (48)

λ, v are arbitrary constants.
By using (47), expression (40) can be written as

u(ξ) =
√
6(
G′

G
) +

√
6

2
λ (49)

where ξ = x − vt and µ = 1

4
λ2 + 1

2
v.Eq.(49) is the formula of a solution of

Eq.(34).
Substituting the general solutions of Eq.(36) into Eq.(49) we have three types
of traveling wave solutions of the mKdV equation as follows:
When λ2 − 4µ > 0,

u1(ξ) =

√
6

2

√

λ2 − 4µ(
c1 sinh

1

2

√
λ2 − 4µξ + c2 cosh

1

2

√
λ2 − 4µξ

c2 sinh
1

2

√
λ2 − 4µξ + c1 cosh

1

2

√
λ2 − 4µξ

), (50)

ξ = x− vt and µ = 1

4
λ2 + 1

2
v and c1, c2 are arbitrary constants.

When λ2 − 4µ < 0,

u2(ξ) =

√
6

2

√

4µ− λ2(
−c1 sin

1

2

√
4µ− λ2ξ + c2 cos

1

2

√
4µ− λ2ξ

c1 cos
1

2

√
4µ− λ2ξ + c2 sin

1

2

√
4µ− λ2ξ

), (51)

ξ = x− vt and µ = 1

4
λ2 + 1

2
v and c1, c2 are arbitrary constants.

When λ2 − 4µ = 0,

u3(ξ) =

√
6c2

c1 + c2ξ
. (52)
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ξ = x− vt and µ = 1

4
λ2 + 1

2
v and c1, c2 are arbitrary constants.

By using (48), expression (40) can be written as

u(ξ) = −
√
6(
G′

G
)−

√
6

2
λ (53)

where ξ = x − vt and µ = 1

4
λ2 + 1

2
v.Eq.(53) is the formula of a solution of

Eq.(34).
Substituting the general solutions of Eq.(36) into Eq.(53) we have three types
of traveling wave solutions of the mKdV equation as follows:
When λ2 − 4µ > 0,

u4(ξ) = −
√
6

2

√

λ2 − 4µ(
c1 sinh

1

2

√
λ2 − 4µξ + c2 cosh

1

2

√
λ2 − 4µξ

c2 sinh
1

2

√
λ2 − 4µξ + c1 cosh

1

2

√
λ2 − 4µξ

), (54)

ξ = x− vt and µ = 1

4
λ2 + 1

2
v and c1, c2 are arbitrary constants.

When λ2 − 4µ < 0,

u5(ξ) = −
√
6

2

√

4µ− λ2(
−c1 sin

1

2

√
4µ− λ2ξ + c2 cos

1

2

√
4µ− λ2ξ

c1 cos
1

2

√
4µ− λ2ξ + c2 sin

1

2

√
4µ− λ2ξ

), (55)

ξ = x− vt and µ = 1

4
λ2 + 1

2
v and c1, c2 are arbitrary constants.

When λ2 − 4µ = 0,

u6(ξ) =
−
√
6c2

c1 + c2ξ
. (56)

ξ = x− vt and µ = 1

4
λ2 + 1

2
v and c1, c2 are arbitrary constants.

6 Comparison of two methods of first integral

and (G
′

G
)-expansion

In this section, we compare two methods of first integral and (G
′

G
)-expansion

and we describe the advantages of these two methods.
At first, we describe the advantages of (G

′

G
)-expansion method. We can use

(G
′

G
)-expansion method to solve the nonlinear equations with any degree of

derivative but when we can use the first integral method that the nonlinear
equation is a second-order nonlinear differential equation or it can become to
a second-order nonlinear differential equation. In this case, there are a lot of
nonlinear equations which have been solved by (G

′

G
)-expansion method but we

can not solve them by first integral method.
For example, Kupershmidt equation [23], as follows:

ut = uxxxxx + 10uuxxx + 25uxuxx + 20u2ux
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which we can not convert this equation to a second-order nonlinear differential
equation.
If an equation can be solved by two these methods, through the first integral
method we can obtain more solution of equation because with every step we
can put different m and find many solutions of the equation. But we obtain
limited solutions of equation in (G

′

G
)-expansion method.

In both methods, because the calculations are done easily with aim of Maple,
so we have not problem of difficulty in the calculations or time-consuming
calculations for any of the two methods.
In this paper, we have obtained the exact solutions of the mKdV equation by
using these two methods. Now, we compare the solutions:
Remark 1. In expression (50), if c1 > 0 and c21 > c22, then u1 = u1(ξ) can be
written as:

u1(ξ) =

√
6

2

√

λ2 − 4µ tanh(
1

2

√

λ2 − 4µξ + ξ0),

where ξ = x − vt, µ = 1

4
λ2 + 1

2
v and ξ0 = tanh−1( c2

c1
) that is equivalent to the

expression (27).
Remark 2. In expression (51), if we put c1 = 0, then u2 = u2(ξ) can be
written as:

u2(ξ) =
−
√
6

2

√

4µ− λ2 tan(
1

2

√

4µ− λ2ξ),

where ξ = x− vt and µ = 1

4
λ2 + 1

2
v that is equivalent to the expression (28) if

we put ξ0 = 0.
Remark 3. In expression (54), if c1 > 0 and c21 > c22, then u4 = u4(ξ) can be
written as:

u4(ξ) =
−
√
6

2

√

λ2 − 4µ tanh(
1

2

√

λ2 − 4µξ + ξ0),

where ξ = x − vt, µ = 1

4
λ2 + 1

2
v and ξ0 = tanh−1( c2

c1
) that is equivalent to the

expression (30).
Remark 4. In expression (55), if we put c1 = 0, then u5 = u5(ξ) can be
written as:

u5(ξ) =

√
6

2

√

4µ− λ2 tan(
1

2

√

4µ− λ2ξ),

where ξ = x− vt and µ = 1

4
λ2 + 1

2
v that is equivalent to the expression (31) if

we put ξ0 = 0.

7 Conclusion

The first integral method and the (G
′

G
)-expansion method are used to find new

exact traveling wave solutions. Thus, we can say that the proposed methods
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can be extended to solve the problems of nonlinear partial differential equations
which arising in the theory of solitons and other areas.
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