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Abstract

In this paper, we present some new definitions of D∗-metric spaces

and prove a common fixed point theorem for two mappings under the

condition of weakly compatible mappings in complete D∗-metric spaces.

Also we improved some fixed point theorems in complete D
∗-metric

spaces.
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1 Introduction

In 1922, the Polish mathematician, Banach, proved a theorem which ensures,
under appropriate conditions, the existence and uniqueness of a fixed point.
His result is called Banach’s fixed point theorem or the Banach contraction
principle. This theorem provides a technique for solving a variety of applied
problems in mathematical science and engineering. Many authors have ex-
tended, generalized and improved Banach’s fixed point theorem in different
ways. In [20], Jungck introduced more generalized commuting mappings, called
compatible mappings, which are more general than commuting and weakly
commuting mappings. This concept has been useful for obtaining more com-
prehensive fixed point theorems (see, e.g.,( [2, 3, 4, 5, 10, 12, 13, 21, 24, 25, 28]).
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Dhage [6] introduced the notion of generalized metric or D-metric spaces
and claimed that D-metrics defines a Hausdorff topology and that D-metric
is sequentially continuous in all the three variables. Many authors used these
claims for proving some fixed point theorems in D-metric spaces. Rhoades
[20] generalized Dhage’s contractive condition by increasing the number of
factors and proved the existence of unique fixed point of a self-map in D-metric
space. Recently, motivated by the concept of compatibility for metric space,
Singh and Sharma [27] introduced the concept of D-compatibility of maps
in D-metric space and proved some fixed point theorems using a contractive
condition. Unfortunately, almost all theorems in D-metric spaces are not valid
(see [17, 18, 19]). In this paper, we introduce D∗-metric which is a modification
of the definition of D-metric introduced by Dhage [6] and prove some basic
properties in D∗-metric spaces.

In this paper, (X,D∗) will denote aD∗-metric space, N the set of all natural
numbers, and R+ the set of all positive real numbers.

Definition 1.1 Let X be a nonempty set. A generalized metric (or D∗-
metric) on X is a function: D∗ : X3 −→ R+ that satisfies the following
conditions for each x, y, z, a ∈ X.

(1) D∗(x, y, z) ≥ 0,
(2) D∗(x, y, z) = 0 if and only if x = y = z,
(3) D∗(x, y, z) = D∗(p{x, y, z}),(symmetry) where p is a permutation func-

tion,
(4) D∗(x, y, z) ≤ D∗(x, y, a) +D∗(a, z, z).

The pair (X,D∗) is called a generalized metric (or D∗-metric) space.

Some examples of such a function are
(a) D∗(x, y, z) = max{d(x, y), d(y, z), d(z, x)},
(b) D∗(x, y, z) = d(x, y) + d(y, z) + d(z, x).

Here, d is the ordinary metric on X .
(c) If X = Rn then we define

D∗(x, y, z) = (||x− y||p + ||y − z||p + ||z − x||p)
1

p

for every p ∈ R+.
(d) Let X = R+. Define

D∗(x, y, z) =

{

0 if x = y = z,

max{x, y, z} otherwise ,

(e) If X = R then we define

D∗(x, y, z) = |x+ y − 2z| + |y + z − 2x|+ |z + x− 2y|

for every x, y, z ∈ R.
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(f) If X = R then we define

D∗(x, y, z) = |x+ 2y − 3z|+ |y + 2z − 3x|+ |z + 2x− 3y|

for every x, y, z ∈ R.

Lemma 1.2 Let (X,D∗) be a D∗-metric space. ThenD∗(x, x, y) = D∗(x, y, y).

Proof. Form triangular inequality (4) we have that
(i) D∗(x, x, y) ≤ D∗(x, x, x) +D∗(x, y, y) = D∗(x, y, y)

and similarly
(ii)D∗(y, y, x) ≤ D∗(y, y, y) +D∗(y, x, x) = D∗(y, x, x).

(i),(ii) imply that D∗(x, x, y) = D∗(x, y, y).
Let (X,D∗) be a D∗-metric space. We define the open ball BD∗(x, r) with

center x ∈ X and radius r > 0 as

BD∗(x, r) = {y ∈ X : D∗(x, y, y) < r}.

Example 1.3 Let X = R. Denote D∗(x, y, z) = |x− y|+ |y − z| + |z − x|
for all x, y, z ∈ R. Thus

BD∗(1, 2) = {y ∈ R : D∗(1, y, y) < 2}

= {y ∈ R : |y − 1|+ |y − 1| < 2}

= {y ∈ R : |y − 1| < 1} = (0, 2).

Definition 1.4 Let (X,D∗) be a D∗-metric space and A ⊂ X.
(1) If for every x ∈ A there exist r > 0 such that BD∗(x, r) ⊂ A, then

subset A is called open subset of X.
(2) Subset A of X is said to be D∗-bounded if there exists r > 0 such that

D∗(x, y, y) < r for all x, y ∈ A.
(3) A sequence {xn} in X converges to x if and only if D∗(xn, xn, x) =

D∗(x, x, xn) → 0 as n → ∞. That is for each ǫ > 0 there exist n0 ∈ N such
that for each n ≥ n0 we have that

D∗(x, xn, xn) = D∗(x, x, xn) < ǫ. (∗)

This is equivalent with, for each ǫ > 0 there exist n0 ∈ N such that for each
n,m ≥ n0 we have that

D∗(x, xn, xm) < ǫ. (∗∗)

Indeed, from (∗) we conclude that

D∗(xn, xm, x) = D∗(xn, x, xm) ≤ D∗(xn, x, x) +D∗(x, xm, xm) <
ǫ

2
+

ǫ

2
= ε.

Conversely, set m = n in (∗∗) we have D∗(xn, xn, x) < ǫ.
(4) Sequence {xn} in X is called a Cauchy sequence if for each ǫ > 0 , there

exits n0 ∈ N such that D∗(xn, xn, xm) < ǫ for each n,m ≥ n0. The D∗-metric
space (X,D∗) is said to be complete if every Cauchy sequence is convergent.
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2 Preliminary Notes

A subset A ⊆ X is called open if for each x ∈ A, there exist r > 0 such that
BD∗(x, r) ⊆ A. Let τD∗ denote the family of all open subsets of X . Then τD∗

is called the topology induced by the D∗ metric.

Lemma 2.1 Let (X,D∗) be a D∗-metric space. If r > 0 , then ball BD∗(x, r)
with center x ∈ X and radius r is open set.

Proof. Let z ∈ BD∗(x, r) , hence D∗(x, z, z) < r. If set D∗(x, z, z) = δ and
r′ = r − δ then we prove that BD∗(z, r′) ⊆ BD∗(x, r). Let y ∈ BD∗(z, r′),
by triangular inequality we have D∗(x, y, y) = D∗(y, y, x) ≤ D∗(y, y, z) +
D∗(z, x, x) < r′ + δ = r. Hence BD∗(z, r′) ⊆ BD∗(x, r). That is ball BD∗(x, r)
is open ball.

Definition 2.2 Let (X,D∗) be a D∗- metric space. D∗ is said to be con-
tinuous function on X3 if

lim
n→∞

D∗(xn, yn, zn) = D∗(x, y, z).

Whenever a sequence {(xn, yn, zn)} in X3 converges to a point
(x, y, z) ∈ X3 i.e.

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z

Lemma 2.3 Let (X,D∗) be a D∗- metric space. Then D∗ is continuous
function on X3.

Proof. Let {(xn, yn, zn)} ∈ X3 converges to a point (x, y, z) ∈ X3 i.e.

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z.

Then for each ǫ > 0 there exist n1, n2, n3 ∈ N such that for every n ≥ n1 we
have D∗(x, x, xn) <

ǫ
3
, for every n ≥ n2 we have D

∗(y, y, yn) <
ǫ
3
and for every

n ≥ n3 we have D∗(z, z, zn) <
ǫ
3
.

If set n0 = max{n1, n2, n3}, then for every n ≥ n0 by triangular inequality we
have

D∗(xn, yn, zn) ≤ D∗(xn, yn, z) +D∗(z, zn, zn) ≤ D∗(xn, z, y) +D∗(y, yn, yn) +D∗(z, zn, zn)

≤ D∗(z, y, x) +D∗(x, xn, xn) +D∗(y, yn, yn) +D∗(z, zn, zn)

< D∗(x, y, z) +
ǫ

3
+

ǫ

3
+

ǫ

3
= D∗(x, y, z) + ǫ.

Hence we have
D∗(xn, yn, zn)−D∗(x, y, z) < ǫ
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and

D∗(x, y, z) ≤ D∗(x, y, zn) +D∗(zn, z, z) ≤ D∗(x, zn, yn) +D∗(yn, y, y) +D∗(zn, z, z)

≤ D∗(zn, yn, xn) +D∗(xn, x, x) +D∗(yn, y, y) +D∗(zn, z, z)

< D∗(xn, yn, zn) +
ǫ

3
+

ǫ

3
+

ǫ

3
= D∗(xn, yn, zn) + ǫ.

Thus,

D∗(x, y, z)−D∗(xn, yn, zn) < ǫ.

Therefore we have |D∗(xn, yn, zn)−D∗(x, y, z)| < ǫ, that is

lim
n→∞

D∗(xn, yn, zn) = D∗(x, y, z)

Lemma 2.4 Let (X,D∗) be a D∗-metric space. If the sequence {xn} in X

converges to x,then x is unique.

Proof. Let xn −→ y and y 6= x. Since {xn} converges to x and y, for each
ǫ > 0 there exist n1, n2 ∈ N such that for every n ≥ n1 we have D

∗(x, x, xn) <
ǫ
2
and for every n ≥ n2 we have D∗(y, y, xn) <

ǫ
2
. If n0 = max{n1, n2}, then

for every n ≥ n0 we have

D∗(x, x, y) ≤ D∗(x, x, xn) +D∗(xn, y, y) <
ǫ

2
+

ǫ

2
= ε.

Hence D∗(x, x, y) = 0 is a contradiction. Thus, x = y.

Lemma 2.5 Let (X,D∗) be a D∗-metric space. If the sequence {xn} in X

is converges to x, then the sequence {xn} is a Cauchy sequence.

Proof. Since xn −→ x, for each ǫ > 0 there exist n1, n2 ∈ N such that
for every n ≥ n1 we have D∗(xn, xn, x) < ǫ

2
and for every m ≥ n2 we have

D∗(x, xm, xm) <
ǫ
2
. If n0 = max{n1, n2}, then for every n,m ≥ n0 we have

D∗(xn, xn, xm) ≤ D∗(xn, xn, x)+D∗(x, xm, xm) <
ǫ
2
+ ǫ

2
= ǫ.Hence sequence

{xn} is a Cauchy sequence.
In 1998, Jungck and Rhoades [12] introduced the following concept of weak

compatibility.

Definition 2.6 Let A and S be mappings from a D∗-metric space (X,D∗)
into itself. Then the mappings are said to be weak compatible if they commute
at their coincidence point, that is, Ax = Sx implies that ASx = SAx.

Let (X,D∗) be a D∗-metric space, for A,B,C ⊆ X , define

δD∗(A,B,C) = sup{D∗(a, b, c); a ∈ A, b ∈ B, c ∈ C}.
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If A consists of a single point a, we write δD∗(A,B,C) = δD∗(a, B, C).
If B and C also consists of a single point b and c respectively, we write
δD∗(A,B,C) = D∗(a, b, c).

It follows immediately from the definition that

δD∗(A,B,C) = 0 ⇐⇒ A = B = C = {a},

δD∗(A,B,C) = δD∗(p{A,B,C}) ≥ 0,

(symmetry) where p is a permutation function, for all A,B,C ⊆ X . In partic-
ular for ∅ 6= A = B = C ⊂ X ,

δD∗(A) = sup{D∗(a, b, c); a, b, c ∈ A}.

It follows immediately from the definition that:
If A ⊆ B, then δD∗(A) ≤ δD∗(B).
Let an = δD∗(An) for n ∈ N in which An = {xn, xn+1, xn+2, · · ·} in D∗-

metric space (X,D∗). Then

(1) since An ⊇ An+1, an ≤ an+1,

(2) D∗(xl, xm, xk) ≤ δD∗(An) = an for every l, m, k ≥ n,

(3) 0 ≤ δD∗(An) = an and an+1 ≤ an for every n ≥ 1.
Therefore, {an} is decreasing and bounded for all n ∈ N , and so there

exists an 0 ≤ a such that limn→∞ an = a.

Lemma 2.7 By above conditions let (X,D∗) be a D∗-metric space. If
limn→∞ an = 0, then the sequence {xn} is a Cauchy sequence.

Proof. Since limn→∞ an = 0. Thus for every ǫ > 0, there exists a n0 ∈ N such
that for every n > n0, we have |an − 0| < ǫ. That is an = δD∗(An) < ǫ. Then
for l, m, k ≥ n > n0 we have

D∗(xl, xm, xk) ≤ sup{D∗(xi, xj , xp) | xi, xj , xp ∈ An} = an < ǫ.

Therefore, {xn} is a Cauchy sequence in X .

3 Main Results

Theorem 3.1 Let f and g be self-mappings of a complete D∗-metric space
(X,D∗) satisfying the following conditions:

(i) g(X) ⊆ f(X), and f(X) is closed subset of X,
(ii) the pair (f, g) is weakly compatible,
(iii) D∗(gx, gy, gz) ≤ φ(D∗(fx, fy, fz)), for every x, y, z ∈ X,

where φ : [0,∞) −→ [0,∞) is a nondecreasing continuous function with φ(t) <
t for every t > 0.

Then f and g have a unique common fixed point in X.
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Proof. Let x0 be an arbitrary point in X . By (i), we can choose a point x1 in
X such that y0 = gx0 = fx1 and y1 = gx1 = fx2. There exists a sequence {yn}
such that, yn = gxn = fxn+1, for n = 0, 1, 2, · · ·. We prove that the sequence
{yn} is a Cauchy sequence. Let An = {yn, yn+1, yn+2, · · ·} and an = δD∗(An),
n ∈ N , then limn→∞ an = a for some a ≥ 0.

Put x = xn+k, y = xm+k, z = xl+k in (iii) for k ≥ 1 and m,n, l ≥ 0, we have

D∗(yn+k, ym+k, yl+k) = D∗(gxn+k, gxm+k, gxl+k)

≤ φ(D∗(fxn+k, fxm+k, fxl+k))

= φ(D∗(yn+k−1, ym+k−1, yl+k−1)).

Since D∗(yn+k−1, ym+k−1, yl+k−1) ≤ ak−1, for every n,m, l ≥ 0 and φ is increas-
ing in t, we get

D∗(yn+k, ym+k, ym+k) ≤ φ(D∗(yn+k−1, ym+k−1, yl+k−1)).

Hence

sup
m,n,l≥0

{D∗(yn+k, ym+k, yl+k) ≤ φ(ak−1).

Therefore, we have ak ≤ φ(ak−1). Letting k → ∞, we get a ≤ φ(a). If
a 6= 0, then a ≤ φ(a) < a, which is a contradiction. Thus a = 0 and hence
limn→∞ an = 0. Thus by Lemma 2.7 {yn} is a Cauchy sequence in X . By the
completeness of X , there exists a u ∈ X such that

lim
n→∞

yn = lim
n→∞

gxn = lim
n→∞

fxn+1 = u.

Let f(X) is closed, there exist v ∈ X such that fv = u. Now we show that
gv = u. From inequality (iii) we have that

D∗(gxn, gxn, gv) ≤ φ(D∗(fxn, fxn, fv)).

Taking n −→ ∞, we get

D∗(u, u, gv) ≤ φ(D∗(0) = 0,

it implies gv = u.
Since the pair (f, g) are weakly compatible, hence we get, gfv = fgv. Thus

fu = gu. exists Now we prove that gu = u. If set xn, xn, u replacing x, y, z

respectively , in inequality (iii) we get

D∗(gxn, gxn, gu) ≤ φ(D∗(fxn, fxn, fu))
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Taking n −→ ∞, we get

D∗(u, u, gu) ≤ φ(D∗(u, u, gu))

If gu 6= u, then D∗((u, u, gu) < D∗(u, u, gu), is contradiction. Therefore,

fu = gu = u.

For the uniqueness, let u and u′ be fixed points of f, g. Taking x = y = u

and z = u′ in (iii), we have

D∗(u, u, u′) = D∗(gu, gu, gu′)

≤ φ(D∗(fu, fu, fu′))

= φ(D∗(u, u, u′)) < D∗(u, u, u′),

which is a contradiction. Thus we have u = u′.

Corollary 3.2 Let f , g and h be self-mappings of a complete D∗-metric
space (X,D∗) satisfying the following conditions:

(i) g(X) ⊆ fh(X), and fh(X) is closed subset of X,
(ii) the pair (fh, g) is weakly compatible and fh = hf, gh = hg

(iii) D∗(gx, gy, gz) ≤ φ(D∗(fhx, fhy, fhz)),
for every x, y, z ∈ X, where φ : [0,∞) −→ [0,∞) is a nondecreasing continuous
function with φ(t) < t for every t > 0 .

Then f , g and h have a unique common fixed point in X.

Proof. By Theorem 3.1 there exist a fixed point u ∈ X such that fhu = gu =
u. Now, we prove that hu = u. If hu 6= u, then in (iii), we have

D∗(hu, u, u) = D∗(hgu, gu, gu)

= D∗(ghu, gu, gu)

≤ φ(D∗(fhhu, fhu, fhu)) = φ(D∗(hu, u, u))

< D∗(hu, u, u),

which is a contradiction. Thus we have hu = u. Therefore,

fu = fhu = u = hu = gu.

Corollary 3.3 Let g be self-mapping of a complete D∗-metric space (X,D∗)
satisfying the following condition:

D∗(gnx, gny, gnz) ≤ φ(D∗(x, y, z)),

for every x, y, z ∈ X and n ∈ N , where φ : [0,∞) −→ [0,∞) is a nondecreasing
continuous function with φ(t) < t for every t > 0 .

Then g have a unique common fixed point in X.
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Proof. Replace f with I, the identity map, in Theorem 3.1. Hence the all
conditions of Theorem 3.1 are hold and therefore there exists a unique u ∈ X

such that gnu = u. Thus

gn(gu) = g(gnu) = gu.

Since u is unique, we have gu = u.

Corollary 3.4 Let f and g be self-mappings of a complete D∗-metric space
(X,D∗) satisfying the following condition:

(i) gn(X) ⊆ fm(X), and fm(X) is closed subset of X,
(ii) the pair (fm, gn) is weakly compatible and fmg = gfm, gnf = fgn

(iii) D∗(gnx, gny, gnz) ≤ φ(D∗(fmx, fmy, fmz)),
for every x, y, z ∈ X and n,m ∈ N , where φ : [0,∞) −→ [0,∞) is a nonde-
creasing continuous function with φ(t) < t for every t > 0 .

Then f and g have a unique common fixed point in X.

Proof. By Theorem 3.1 there exist a fixed point u ∈ X such that fmu =
gnu = u. On the other hand, we have

gu = g(gnu) = gn(gu) and gu = g(fmu) = fm(gu).

Since u is unique, we have gu = u. Similarly, we have fu = u.

Corollary 3.5 Let (X,D∗) be a completeD∗-metric space and let f1, f2, · · · , fn, g :
X −→ X be maps that satisfy the following conditions:

(a) g(X) ⊆ f1f2 · · ·fn(X);

(b) the pair (f1f2 · · · fn, g) is weak compatible, f1f2 · · · fn(X) is closed subset
of X;

(c) D∗(gx, gy, gz) ≤ φ(D∗(f1f2 · · · fn(x), f1f2 · · · fn(y), f1f2 · · · fn(z))),
for all x, y, z ∈ X and n ∈ N , where φ : [0,∞) −→ [0,∞) is a nonde-
creasing continuous function with φ(t) < t for every t > 0;

(d) g(f2 · · · fn) = (f2 · · ·fn)g,
g(f3 · · · fn) = (f3 · · ·fn)g,
...
gfn = fng,

f1(f2 · · · fn) = (f2 · · · fn)f1,
f1f2(f3 · · · fn) = (f3 · · · fn)f1f2,
...
f1 · · · fn−1(fn) = (fn)f1 · · · fn−1.
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Then f1, f2, · · · , fn, g have a unique common fixed point.

Proof. By Corollarly3.2, if set f1f2 · · ·fn = f then f, g have a unique common
fixed point in X . That is, there exists x ∈ X , such that f1f2 · · · fn(x) = g(x) =
x. We prove that fi(x) = x, for i = 1, 2, · · ·. From (c), we have

D∗(g(f2 · · ·fnx), g(x), g(x)) ≤ φ(D∗(f1f2 · · ·fn(f2 · · ·fnx), f1f2 · · · fn(x), f1f2 · · · fn(x))).

By (d), we get

D∗(f2 · · · fnx, x, x) ≤ φ(D∗(f2 · · ·fnx, x, x))

< D∗(f2 · · · fnx, x, x).

Hence, f2 · · · fn(x) = x. Thus , f1(x) = f1f2 · · · fn(x) = x.
Similarly, we have f2(x) = · · · fn(x) = x.
Now, we give one example to validate Theorem 2.1.

Example 3.6 Let (X,D∗) be a complete D∗-metric space, where X = [0, 2]
and

D∗(x, y, z) = |x− y|+ |y − z| + |z − x|.

Define self-maps f and g on X as follows: fx = x+1

2
and gx = x+5

6
, for all

x ∈ X.

Let φ(t) = 1

2
t. Then , we have

D∗(gx, gy, gz) =
1

6
(|x− y|+ |y − z|+ |z − x|)

≤
1

4
(|x− y|+ |y − z|+ |x− z|) = φ(D∗(fx, fy, fz).

That is all conditions of Theorem 3.1 are holds and 1 is the unique common
fixed point of f and g.
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