Mathematica Aeterna, Vol. 2, 2012, no. 2, 89 - 100

Common Fixed Point Theorems for two mappings in D^* -Metric Spaces

Shaban Sedghi

Department of Mathematics,Qaemshahr Branch, Islamic Azad University, Qaemshahr , Iran sedghi_gh@yahoo.com sedghi.gh@qaemshahriau.ac.ir

Nabi Shobe

Department of Mathematics, Islamic Azad University-Babol Branch, Iran nabi_shobe@yahoo.com

Abstract

In this paper, we present some new definitions of D^* -metric spaces and prove a common fixed point theorem for two mappings under the condition of weakly compatible mappings in complete D^* -metric spaces. Also we improved some fixed point theorems in complete D^* -metric spaces.

Mathematics Subject Classification: 54E40; 54E35; 54H25

Keywords: D^* -metric contractive mapping; Complete D^* -metric space; Common fixed point theorem.

1 Introduction

In 1922, the Polish mathematician, Banach, proved a theorem which ensures, under appropriate conditions, the existence and uniqueness of a fixed point. His result is called Banach's fixed point theorem or the Banach contraction principle. This theorem provides a technique for solving a variety of applied problems in mathematical science and engineering. Many authors have extended, generalized and improved Banach's fixed point theorem in different ways. In [20], Jungck introduced more generalized commuting mappings, called *compatible* mappings, which are more general than commuting and weakly commuting mappings. This concept has been useful for obtaining more comprehensive fixed point theorems (see, e.g., ([2, 3, 4, 5, 10, 12, 13, 21, 24, 25, 28]). Dhage [6] introduced the notion of generalized metric or D-metric spaces and claimed that D-metrics defines a Hausdorff topology and that D-metric is sequentially continuous in all the three variables. Many authors used these claims for proving some fixed point theorems in D-metric spaces. Rhoades [20] generalized Dhage's contractive condition by increasing the number of factors and proved the existence of unique fixed point of a self-map in D-metric space. Recently, motivated by the concept of compatibility for metric space, Singh and Sharma [27] introduced the concept of D-compatibility of maps in D-metric space and proved some fixed point theorems using a contractive condition. Unfortunately, almost all theorems in D-metric spaces are not valid (see [17, 18, 19]). In this paper, we introduce D^* -metric which is a modification of the definition of D-metric introduced by Dhage [6] and prove some basic properties in D^* -metric spaces.

In this paper, (X, D^*) will denote a D^* -metric space, N the set of all natural numbers, and R^+ the set of all positive real numbers.

Definition 1.1 Let X be a nonempty set. A generalized metric (or D^* -metric) on X is a function: $D^* : X^3 \longrightarrow R^+$ that satisfies the following conditions for each $x, y, z, a \in X$.

(1) $D^*(x, y, z) \ge 0$,

(2) $D^*(x, y, z) = 0$ if and only if x = y = z,

(3) $D^*(x, y, z) = D^*(p\{x, y, z\}), (symmetry)$ where p is a permutation function,

(4) $D^*(x, y, z) \le D^*(x, y, a) + D^*(a, z, z).$

The pair (X, D^*) is called a generalized metric (or D^* -metric) space.

Some examples of such a function are

(a) $D^*(x, y, z) = \max\{d(x, y), d(y, z), d(z, x)\},\$

(b) $D^*(x, y, z) = d(x, y) + d(y, z) + d(z, x).$

Here, d is the ordinary metric on X.

(c) If $X = R^n$ then we define

$$D^*(x, y, z) = (||x - y||^p + ||y - z||^p + ||z - x||^p)^{\frac{1}{p}}$$

for every $p \in R^+$.

(d) Let $X = R^+$. Define

$$D^*(x, y, z) = \begin{cases} 0 & \text{if } x = y = z, \\ \max\{x, y, z\} & \text{otherwise }, \end{cases}$$

(e) If X = R then we define

$$D^*(x, y, z) = |x + y - 2z| + |y + z - 2x| + |z + x - 2y|$$

for every $x, y, z \in R$.

(f) If X = R then we define

$$D^*(x, y, z) = |x + 2y - 3z| + |y + 2z - 3x| + |z + 2x - 3y|$$

for every $x, y, z \in R$.

Lemma 1.2 Let (X, D^*) be a D^* -metric space. Then $D^*(x, x, y) = D^*(x, y, y)$.

Proof. Form triangular inequality (4) we have that

(i) $D^*(x, x, y) \le D^*(x, x, x) + D^*(x, y, y) = D^*(x, y, y)$ and similarly

(ii) $D^*(y, y, x) \le D^*(y, y, y) + D^*(y, x, x) = D^*(y, x, x).$ (i),(ii) imply that $D^*(x, x, y) = D^*(x, y, y).$

Let (X, D^*) be a D^* -metric space. We define the open ball $B_{D^*}(x, r)$ with center $x \in X$ and radius r > 0 as

$$B_{D^*}(x,r) = \{ y \in X : D^*(x,y,y) < r \}.$$

Example 1.3 Let X = R. Denote $D^*(x, y, z) = |x - y| + |y - z| + |z - x|$ for all $x, y, z \in R$. Thus

$$B_{D^*}(1,2) = \{ y \in R : D^*(1,y,y) < 2 \}$$

= $\{ y \in R : |y-1| + |y-1| < 2 \}$
= $\{ y \in R : |y-1| < 1 \} = (0,2).$

Definition 1.4 Let (X, D^*) be a D^* -metric space and $A \subset X$.

(1) If for every $x \in A$ there exist r > 0 such that $B_{D^*}(x,r) \subset A$, then subset A is called open subset of X.

(2) Subset A of X is said to be D^* -bounded if there exists r > 0 such that $D^*(x, y, y) < r$ for all $x, y \in A$.

(3) A sequence $\{x_n\}$ in X converges to x if and only if $D^*(x_n, x_n, x) = D^*(x, x, x_n) \to 0$ as $n \to \infty$. That is for each $\epsilon > 0$ there exist $n_0 \in N$ such that for each $n \ge n_0$ we have that

$$D^*(x, x_n, x_n) = D^*(x, x, x_n) < \epsilon. \quad (*)$$

This is equivalent with, for each $\epsilon > 0$ there exist $n_0 \in N$ such that for each $n, m \geq n_0$ we have that

$$D^*(x, x_n, x_m) < \epsilon. \quad (**)$$

Indeed, from (*) we conclude that

$$D^{*}(x_{n}, x_{m}, x) = D^{*}(x_{n}, x, x_{m}) \le D^{*}(x_{n}, x, x) + D^{*}(x, x_{m}, x_{m}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \varepsilon.$$

Conversely, set m = n in (**) we have $D^*(x_n, x_n, x) < \epsilon$.

(4) Sequence $\{x_n\}$ in X is called a Cauchy sequence if for each $\epsilon > 0$, there exits $n_0 \in N$ such that $D^*(x_n, x_n, x_m) < \epsilon$ for each $n, m \ge n_0$. The D^* -metric space (X, D^*) is said to be complete if every Cauchy sequence is convergent.

2 Preliminary Notes

A subset $A \subseteq X$ is called *open* if for each $x \in A$, there exist r > 0 such that $B_{D^*}(x,r) \subseteq A$. Let τ_{D^*} denote the family of all open subsets of X. Then τ_{D^*} is called the *topology induced* by the D^* metric.

Lemma 2.1 Let (X, D^*) be a D^* -metric space. If r > 0, then ball $B_{D^*}(x, r)$ with center $x \in X$ and radius r is open set.

Proof. Let $z \in B_{D^*}(x,r)$, hence $D^*(x,z,z) < r$. If set $D^*(x,z,z) = \delta$ and $r' = r - \delta$ then we prove that $B_{D^*}(z,r') \subseteq B_{D^*}(x,r)$. Let $y \in B_{D^*}(z,r')$, by triangular inequality we have $D^*(x,y,y) = D^*(y,y,x) \leq D^*(y,y,z) + D^*(z,x,x) < r' + \delta = r$. Hence $B_{D^*}(z,r') \subseteq B_{D^*}(x,r)$. That is ball $B_{D^*}(x,r)$ is open ball.

Definition 2.2 Let (X, D^*) be a D^* - metric space. D^* is said to be continuous function on X^3 if

$$\lim_{n \to \infty} D^*(x_n, y_n, z_n) = D^*(x, y, z).$$

Whenever a sequence $\{(x_n, y_n, z_n)\}$ in X^3 converges to a point $(x, y, z) \in X^3$ i.e.

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y, \lim_{n \to \infty} z_n = z$$

Lemma 2.3 Let (X, D^*) be a D^* - metric space. Then D^* is continuous function on X^3 .

Proof. Let $\{(x_n, y_n, z_n)\} \in X^3$ converges to a point $(x, y, z) \in X^3$ i.e.

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y, \lim_{n \to \infty} z_n = z.$$

Then for each $\epsilon > 0$ there exist $n_1, n_2, n_3 \in N$ such that for every $n \ge n_1$ we have $D^*(x, x, x_n) < \frac{\epsilon}{3}$, for every $n \ge n_2$ we have $D^*(y, y, y_n) < \frac{\epsilon}{3}$ and for every $n \ge n_3$ we have $D^*(z, z, z_n) < \frac{\epsilon}{3}$.

If set $n_0 = \max\{n_1, n_2, n_3\}$, then for every $n \ge n_0$ by triangular inequality we have

$$D^{*}(x_{n}, y_{n}, z_{n}) \leq D^{*}(x_{n}, y_{n}, z) + D^{*}(z, z_{n}, z_{n}) \leq D^{*}(x_{n}, z, y) + D^{*}(y, y_{n}, y_{n}) + D^{*}(z, z_{n}, z_{n})$$

$$\leq D^{*}(z, y, x) + D^{*}(x, x_{n}, x_{n}) + D^{*}(y, y_{n}, y_{n}) + D^{*}(z, z_{n}, z_{n})$$

$$< D^{*}(x, y, z) + \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = D^{*}(x, y, z) + \epsilon.$$

Hence we have

$$D^*(x_n, y_n, z_n) - D^*(x, y, z) < \epsilon$$

and

$$D^{*}(x, y, z) \leq D^{*}(x, y, z_{n}) + D^{*}(z_{n}, z, z) \leq D^{*}(x, z_{n}, y_{n}) + D^{*}(y_{n}, y, y) + D^{*}(z_{n}, z, z)$$

$$\leq D^{*}(z_{n}, y_{n}, x_{n}) + D^{*}(x_{n}, x, x) + D^{*}(y_{n}, y, y) + D^{*}(z_{n}, z, z)$$

$$< D^{*}(x_{n}, y_{n}, z_{n}) + \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = D^{*}(x_{n}, y_{n}, z_{n}) + \epsilon.$$

93

Thus,

$$D^*(x, y, z) - D^*(x_n, y_n, z_n) < \epsilon$$

Therefore we have $|D^*(x_n, y_n, z_n) - D^*(x, y, z)| < \epsilon$, that is

$$\lim_{n \to \infty} D^*(x_n, y_n, z_n) = D^*(x, y, z)$$

Lemma 2.4 Let (X, D^*) be a D^* -metric space. If the sequence $\{x_n\}$ in X converges to x, then x is unique.

Proof. Let $x_n \longrightarrow y$ and $y \neq x$. Since $\{x_n\}$ converges to x and y, for each $\epsilon > 0$ there exist $n_1, n_2 \in N$ such that for every $n \geq n_1$ we have $D^*(x, x, x_n) < \frac{\epsilon}{2}$ and for every $n \geq n_2$ we have $D^*(y, y, x_n) < \frac{\epsilon}{2}$. If $n_0 = \max\{n_1, n_2\}$, then for every $n \geq n_0$ we have

$$D^*(x, x, y) \le D^*(x, x, x_n) + D^*(x_n, y, y) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \varepsilon.$$

Hence $D^*(x, x, y) = 0$ is a contradiction. Thus, x = y.

Lemma 2.5 Let (X, D^*) be a D^* -metric space. If the sequence $\{x_n\}$ in X is converges to x, then the sequence $\{x_n\}$ is a Cauchy sequence.

Proof. Since $x_n \to x$, for each $\epsilon > 0$ there exist $n_1, n_2 \in N$ such that for every $n \ge n_1$ we have $D^*(x_n, x_n, x) < \frac{\epsilon}{2}$ and for every $m \ge n_2$ we have $D^*(x, x_m, x_m) < \frac{\epsilon}{2}$. If $n_0 = \max\{n_1, n_2\}$, then for every $n, m \ge n_0$ we have

 $D^*(x_n, x_n, x_m) \leq D^*(x_n, x_n, x) + D^*(x, x_m, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Hence sequence $\{x_n\}$ is a Cauchy sequence.

In 1998, Jungck and Rhoades [12] introduced the following concept of weak compatibility.

Definition 2.6 Let A and S be mappings from a D^* -metric space (X, D^*) into itself. Then the mappings are said to be weak compatible if they commute at their coincidence point, that is, Ax = Sx implies that ASx = SAx.

Let (X, D^*) be a D^* -metric space, for $A, B, C \subseteq X$, define

$$\delta_{D^*}(A, B, C) = \sup\{D^*(a, b, c); a \in A, b \in B, c \in C\}.$$

If A consists of a single point a, we write $\delta_{D^*}(A, B, C) = \delta_{D^*}(a, B, C)$. If B and C also consists of a single point b and c respectively, we write $\delta_{D^*}(A, B, C) = D^*(a, b, c)$.

It follows immediately from the definition that

$$\begin{split} \delta_{D^*}(A,B,C) &= 0 \Longleftrightarrow A = B = C = \{a\},\\ \delta_{D^*}(A,B,C) &= \delta_{D^*}(p\{A,B,C\}) \ge 0, \end{split}$$

(symmetry) where p is a permutation function, for all $A, B, C \subseteq X$. In particular for $\emptyset \neq A = B = C \subset X$,

$$\delta_{D^*}(A) = \sup\{D^*(a, b, c); a, b, c \in A\}.$$

It follows immediately from the definition that:

If $A \subseteq B$, then $\delta_{D^*}(A) \leq \delta_{D^*}(B)$.

Let $a_n = \delta_{D^*}(A_n)$ for $n \in N$ in which $A_n = \{x_n, x_{n+1}, x_{n+2}, \dots\}$ in D^* -metric space (X, D^*) . Then

(1) since $A_n \supseteq A_{n+1}, a_n \le a_{n+1}$,

- (2) $D^*(x_l, x_m, x_k) \leq \delta_{D^*}(A_n) = a_n$ for every $l, m, k \geq n$,
- (3) $0 \leq \delta_{D^*}(A_n) = a_n$ and $a_{n+1} \leq a_n$ for every $n \geq 1$.

Therefore, $\{a_n\}$ is decreasing and bounded for all $n \in N$, and so there exists an $0 \leq a$ such that $\lim_{n\to\infty} a_n = a$.

Lemma 2.7 By above conditions let (X, D^*) be a D^* -metric space. If $\lim_{n\to\infty} a_n = 0$, then the sequence $\{x_n\}$ is a Cauchy sequence.

Proof. Since $\lim_{n\to\infty} a_n = 0$. Thus for every $\epsilon > 0$, there exists a $n_0 \in N$ such that for every $n > n_0$, we have $|a_n - 0| < \epsilon$. That is $a_n = \delta_{D^*}(A_n) < \epsilon$. Then for $l, m, k \ge n > n_0$ we have

$$D^*(x_l, x_m, x_k) \le \sup\{D^*(x_i, x_j, x_p) \mid x_i, x_j, x_p \in A_n\} = a_n < \epsilon.$$

Therefore, $\{x_n\}$ is a Cauchy sequence in X.

3 Main Results

Theorem 3.1 Let f and g be self-mappings of a complete D^* -metric space (X, D^*) satisfying the following conditions:

(i) $g(X) \subseteq f(X)$, and f(X) is closed subset of X,

(ii) the pair (f, g) is weakly compatible,

(iii) $D^*(gx, gy, gz) \leq \phi(D^*(fx, fy, fz))$, for every $x, y, z \in X$,

where $\phi : [0, \infty) \longrightarrow [0, \infty)$ is a nondecreasing continuous function with $\phi(t) < t$ for every t > 0.

Then f and g have a unique common fixed point in X.

Proof. Let x_0 be an arbitrary point in X. By (i), we can choose a point x_1 in X such that $y_0 = gx_0 = fx_1$ and $y_1 = gx_1 = fx_2$. There exists a sequence $\{y_n\}$ such that, $y_n = gx_n = fx_{n+1}$, for $n = 0, 1, 2, \cdots$. We prove that the sequence $\{y_n\}$ is a Cauchy sequence. Let $A_n = \{y_n, y_{n+1}, y_{n+2}, \cdots\}$ and $a_n = \delta_{D^*}(A_n)$, $n \in N$, then $\lim_{n \to \infty} a_n = a$ for some $a \ge 0$.

Put $x = x_{n+k}, y = x_{m+k}, z = x_{l+k}$ in (iii) for $k \ge 1$ and $m, n, l \ge 0$, we have

$$D^{*}(y_{n+k}, y_{m+k}, y_{l+k}) = D^{*}(gx_{n+k}, gx_{m+k}, gx_{l+k})$$

$$\leq \phi(D^{*}(fx_{n+k}, fx_{m+k}, fx_{l+k}))$$

$$= \phi(D^{*}(y_{n+k-1}, y_{m+k-1}, y_{l+k-1})).$$

Since $D^*(y_{n+k-1}, y_{m+k-1}, y_{l+k-1}) \leq a_{k-1}$, for every $n, m, l \geq 0$ and ϕ is increasing in t, we get

$$D^*(y_{n+k}, y_{m+k}, y_{m+k}) \le \phi(D^*(y_{n+k-1}, y_{m+k-1}, y_{l+k-1})).$$

Hence

$$\sup_{n,n,l\geq 0} \{ D^*(y_{n+k}, y_{m+k}, y_{l+k}) \le \phi(a_{k-1}) \}$$

Therefore, we have $a_k \leq \phi(a_{k-1})$. Letting $k \to \infty$, we get $a \leq \phi(a)$. If $a \neq 0$, then $a \leq \phi(a) < a$, which is a contradiction. Thus a = 0 and hence $\lim_{n\to\infty} a_n = 0$. Thus by Lemma 2.7 $\{y_n\}$ is a Cauchy sequence in X. By the completeness of X, there exists a $u \in X$ such that

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} gx_n = \lim_{n \to \infty} fx_{n+1} = u.$$

Let f(X) is closed, there exist $v \in X$ such that fv = u. Now we show that gv = u. From inequality (iii) we have that

$$D^*(gx_n, gx_n, gv) \le \phi(D^*(fx_n, fx_n, fv)).$$

Taking $n \longrightarrow \infty$, we get

$$D^*(u, u, gv) \le \phi(D^*(0) = 0,$$

it implies gv = u.

Since the pair (f, g) are weakly compatible, hence we get, gfv = fgv. Thus fu = gu. exists Now we prove that gu = u. If set x_n, x_n, u replacing x, y, z respectively, in inequality (iii) we get

$$D^*(gx_n, gx_n, gu) \le \phi(D^*(fx_n, fx_n, fu))$$

Taking $n \longrightarrow \infty$, we get

$$D^*(u, u, gu) \le \phi(D^*(u, u, gu))$$

If $gu \neq u$, then $D^*((u, u, gu) < D^*(u, u, gu)$, is contradiction. Therefore,

$$fu = gu = u.$$

For the uniqueness, let u and u' be fixed points of f, g. Taking x = y = u and z = u' in (iii), we have

$$D^{*}(u, u, u') = D^{*}(gu, gu, gu')$$

$$\leq \phi(D^{*}(fu, fu, fu'))$$

$$= \phi(D^{*}(u, u, u')) < D^{*}(u, u, u'),$$

which is a contradiction. Thus we have u = u'.

Corollary 3.2 Let f, g and h be self-mappings of a complete D^* -metric space (X, D^*) satisfying the following conditions:

(i) $g(X) \subseteq fh(X)$, and fh(X) is closed subset of X,

(ii) the pair (fh, g) is weakly compatible and fh = hf, gh = hg

(iii) $D^*(gx, gy, gz) \le \phi(D^*(fhx, fhy, fhz)),$

for every $x, y, z \in X$, where $\phi : [0, \infty) \longrightarrow [0, \infty)$ is a nondecreasing continuous function with $\phi(t) < t$ for every t > 0.

Then f, g and h have a unique common fixed point in X.

Proof. By Theorem 3.1 there exist a fixed point $u \in X$ such that fhu = gu = u. Now, we prove that hu = u. If $hu \neq u$, then in (iii), we have

$$D^*(hu, u, u) = D^*(hgu, gu, gu)$$

= $D^*(ghu, gu, gu)$
 $\leq \phi(D^*(fhhu, fhu, fhu)) = \phi(D^*(hu, u, u))$
 $< D^*(hu, u, u),$

which is a contradiction. Thus we have hu = u. Therefore,

$$fu = fhu = u = hu = gu.$$

Corollary 3.3 Let g be self-mapping of a complete D^* -metric space (X, D^*) satisfying the following condition:

$$D^*(g^n x, g^n y, g^n z) \le \phi(D^*(x, y, z)),$$

for every $x, y, z \in X$ and $n \in N$, where $\phi : [0, \infty) \longrightarrow [0, \infty)$ is a nondecreasing continuous function with $\phi(t) < t$ for every t > 0.

Then g have a unique common fixed point in X.

Proof. Replace f with I, the identity map, in Theorem 3.1. Hence the all conditions of Theorem 3.1 are hold and therefore there exists a unique $u \in X$ such that $g^n u = u$. Thus

$$g^n(gu) = g(g^n u) = gu.$$

Since u is unique, we have gu = u.

Corollary 3.4 Let f and g be self-mappings of a complete D^* -metric space (X, D^*) satisfying the following condition:

(i) $g^n(X) \subseteq f^m(X)$, and $f^m(X)$ is closed subset of X,

(ii) the pair (f^m, g^n) is weakly compatible and $f^m g = gf^m$, $g^n f = fg^n$

(iii) $D^*(g^n x, g^n y, g^n z) \le \phi(D^*(f^m x, f^m y, f^m z)),$

for every $x, y, z \in X$ and $n, m \in N$, where $\phi : [0, \infty) \longrightarrow [0, \infty)$ is a nondecreasing continuous function with $\phi(t) < t$ for every t > 0.

Then f and g have a unique common fixed point in X.

Proof. By Theorem 3.1 there exist a fixed point $u \in X$ such that $f^m u = g^n u = u$. On the other hand, we have

$$gu = g(g^n u) = g^n(gu)$$
 and $gu = g(f^m u) = f^m(gu)$.

Since u is unique, we have gu = u. Similarly, we have fu = u.

Corollary 3.5 Let (X, D^*) be a complete D^* -metric space and let $f_1, f_2, \dots, f_n, g: X \longrightarrow X$ be maps that satisfy the following conditions:

- (a) $g(X) \subseteq f_1 f_2 \cdots f_n(X);$
- (b) the pair $(f_1 f_2 \cdots f_n, g)$ is weak compatible, $f_1 f_2 \cdots f_n(X)$ is closed subset of X;
- (c) $D^*(gx, gy, gz) \leq \phi(D^*(f_1f_2\cdots f_n(x), f_1f_2\cdots f_n(y), f_1f_2\cdots f_n(z))),$ for all $x, y, z \in X$ and $n \in N$, where $\phi : [0, \infty) \longrightarrow [0, \infty)$ is a nondecreasing continuous function with $\phi(t) < t$ for every t > 0;

Then f_1, f_2, \dots, f_n, g have a unique common fixed point.

Proof. By Corollarly3.2, if set $f_1 f_2 \cdots f_n = f$ then f, g have a unique common fixed point in X. That is, there exists $x \in X$, such that $f_1 f_2 \cdots f_n(x) = g(x) = x$. We prove that $f_i(x) = x$, for $i = 1, 2, \cdots$. From (c), we have

$$D^*(g(f_2 \cdots f_n x), g(x), g(x)) \le \phi(D^*(f_1 f_2 \cdots f_n (f_2 \cdots f_n x), f_1 f_2 \cdots f_n (x), f_1 f_2 \cdots f_n (x))).$$

By (d), we get

$$D^*(f_2 \cdots f_n x, x, x) \leq \phi(D^*(f_2 \cdots f_n x, x, x))$$

$$< D^*(f_2 \cdots f_n x, x, x).$$

Hence, $f_2 \cdots f_n(x) = x$. Thus, $f_1(x) = f_1 f_2 \cdots f_n(x) = x$. Similarly, we have $f_2(x) = \cdots f_n(x) = x$.

Now, we give one example to validate Theorem 2.1.

Example 3.6 Let (X, D^*) be a complete D^* -metric space, where X = [0, 2] and

$$D^*(x, y, z) = |x - y| + |y - z| + |z - x|.$$

Define self-maps f and g on X as follows: $fx = \frac{x+1}{2}$ and $gx = \frac{x+5}{6}$, for all $x \in X$.

Let $\phi(t) = \frac{1}{2}t$. Then , we have

$$D^*(gx, gy, gz) = \frac{1}{6}(|x - y| + |y - z| + |z - x|)$$

$$\leq \frac{1}{4}(|x - y| + |y - z| + |x - z|) = \phi(D^*(fx, fy, fz).$$

That is all conditions of Theorem 3.1 are holds and 1 is the unique common fixed point of f and g.

References

- [1] I.Altun, H.A.Hancer and D.Turkoglu, A fixed point theorem for multimaps satisfying an implicit relation on metrically convex metric spaces, Math. Communications 11(2006), 17-23.
- [2] N.A.Assad and S.Sessa, Common fixed points for nonself-maps on compacta, SEA Bull. Math. 16 (1992), 1-5.
- [3] N.Chandra, S.N.Mishra, S.L.Singh and B.E.Rhoades, Coincidences and fixed points of nonexpansive type multi-valued and single-valued maps, Indian J. Pure Appl. Math.26 (1995), 393-401.

- [4] Y.J.Cho, P.P.Murthy and G.Jungck, A common fixed point theorem of Meir and Keeler type, Internat. J. Math.Sci. 16 (1993), 669-674.
- [5] R.O.Davies and S.Sessa, A common fixed point theorem of Gregus type for compatible mappings, Facta Univ. (Nis) Ser. Math. Inform. 7 (1992), 51-58.
- [6] B.C.Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc.84(1992),no.4,329-336.
- [7] B.C.Dhage, A fixed point theorem for non-self multi-maps in metric spaces, Comment. Math. Univ. Carolinae 40(1999), 251-258.
- [8] George A, Veeramani P. On some result in fuzzy metric space. Fuzzy Sets Syst 1994; 64:395–9.
- [9] M.Imdad, S.Kumar, M.S.Khan, Remarks on some fixed point theorems satisfying implicit relation, Rad. Math.11(2002),135-143.
- [10] J.Jachymski, Common fixed point theorems for some families of maps, Indian J.Pure Appl. Math. 55 (1994), 925-937.
- [11] Jungck G. Commuting maps and fixed points. Amer Math Monthly 1976; 83:261–3.
- [12] Jungck G and Rhoades B. E, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29(1998), no. 3,227-238.
- [13] S.M.Kang, Y.J.Cho and G.Jungck, Common fixed points of compatible mappings, Internat. J.Math. Math. Sci. 13 (1990), 61-66.
- [14] Rodríguez López J, Ramaguera S. The Hausdorff fuzzy metric on compact sets. Fuzzy Sets Sys 2004; 147:273–83.
- [15] MiheţD.A Banach contraction theorem in fuzzy metric spaces.Fuzzy Sets Sys 2004;144:431-9.
- [16] V.Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math.33(2000),159-164.
- [17] Naidu S.V.R, Rao K.P.R and Srinivasa Rao N. On the topology of Dmetric spaces and the generation of D-metric spaces from metric spaces, Internat.J.Math. Math.Sci. 2004(2004), No.51,2719-2740.
- [18] Naidu S.V.R, Rao K.P.R and Srinivasa Rao N. On the concepts of balls in a D- metric space, Internat.J.Math.Math.Sci.,2005,No.1(2005)133-141.

- [19] Naidu S.V.R, Rao K.P.R and Srinivasa Rao N. On convergent sequences and fixed point theorems in D-Metric spaces, Internat.J.Math.Math.Sci., 2005:12(2005),1969-1988.
- [20] B.E.Rhoades, A fixed point theorem for generalized metric spaces, Int. J. Math. Math. Sci. 19(1996), no. 1, 145-153.
- [21] B.E.Rhoades, K.Tiwary and G.N.Singh, A common fixed point theorem for compatible mappings, Indian J.Pure Appl. Math. 26 (5) (1995),403-409.
- [22] B.E.Rhoades, A fixed point theorem for a multi-maps inon-self mappings, Comment. Math. Univ. Carolinae 37(1996), 401-404.
- [23] Saadati R, Razani A, and Adibi H. A common fixed point theorem in *L*-fuzzy metric spaces. Chaos, Solitons and Fractals, doi:10.1016/j.chaos.2006.01.023.
- [24] S.Sessa and Y.J.Cho, Compatible mappings and a common fixed point theorem of change type, Publ. Math. Debrecen 43 (3-4) (1993),289-296.
- [25] S.Sessa, B.E.Rhoades and M.S.Khan, On common fixed points of compatible mappings, Internat. J.Math. Math. Sci. 11 (1988),375-392.
- [26] S.Sharma, B.Desphande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J.Math. 33(2002), 245-252.
- [27] B.Singh and R.K.Sharma, Common fixed points via compatible maps in D-metric spaces, Rad. Mat.11 (2002), no.1,145-153.
- [28] K.Tas, M.Telci and B. Fisher, Common fixed point theorems for compatible mappings, Internat. J.Math. Math. Sci. 19 (3) (1996), 451-456.

Received: October, 2011