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Abstract

In the present paper, we first give the definition for coclosed-exact

fields of differential forms, and then an estimate below the natural ex-

ponents of coclosed-exact forms is obtained. An application to the reg-

ularity theory of quasiregular mappings is given.
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1 Introduction

We first introduce some basic notions of exterior calculus. Throughout this
paper we always assume Ω is a connected open subset of Rn, n ≥ 2. We
use e1, e2, · · · , en to denote the standard unit basis of Rn. Let

∧ℓ=
∧ℓ ( Rn)

be the linear space of ℓ-covectors, spanned by the exterior products eI =
ei1 ∧ ei2 ∧ · · · ∧ eiℓ , corresponding to all ordered ℓ-tuples I = (i1, i2, · · · , iℓ), 1 ≤
i1 < i2 < · · · < iℓ ≤ n, ℓ = 0, 1, · · · , n. The Grassman algebra

∧

= ⊕
∧ℓ is

a graded algebra with respect to the exterior products. For α =
∑

αIeI ∈
∧

and β =
∑

βIeI ∈
∧

, the inner product in
∧

is given by 〈α, β〉 =
∑

I α
IβI with

summation over all ℓ-tuples I = (i1, i2, · · · , iℓ) and all integers ℓ = 0, 1, · · · , n.
The Hodge star operator ∗ :

∧

→
∧

is defined by the rule ∗1 = e1∧e2∧· · ·∧en
and α∧∗β = β ∧∗α = 〈α, β〉(∗1) for all α, β ∈

∧

. The norm of α ∈
∧

is given
by the formula |α|2 = 〈α, α〉 = ∗(α ∧ ∗α) ∈

∧0 = R. The Hodge star is an
isometric isomorphism on

∧

with ∗ :
∧ℓ →

∧n−ℓ and ∗∗ = (−1)ℓ(n−ℓ) :
∧ℓ →

∧ℓ.

Let D′
(

Ω,
∧ℓ

)

be those differential forms ω =
∑

ωIeI ∈
∧ℓ with ωI ∈

D′ (Ω), where we have denoted by D′ (Ω) the space of Schwartz distributions.
Let 1 ≤ p <∞. We denote the Lp-norm of a measurable function f over Ω by

‖f‖p = ‖f‖p,Ω =
(
∫

Ω
|f(x)|pdx

)1/p

.
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We write Lp
(

Ω,
∧ℓ

)

for the ℓ-forms ω(x) =
∑

I ωI(x)dxI =
∑

ωi1i2···iℓ(x)dxi1 ∧

dxi2∧· · ·∧dxiℓ with ωI(x) ∈ Lp(Ω,R) for all ordered ℓ-tuples I. Thus Lp
(

Ω,
∧ℓ

)

is a Banach space with norm

‖ω‖p,Ω =
(
∫

Ω
|ω(x)|pdx

)1/p

=
(
∫

Ω

(

∑

|ωI(x)|
2
)p/2

dx
)1/p

.

Similarly,W 1,p
(

Ω,
∧ℓ

)

are those differential ℓ-forms on Ω whose coefficients are

inW 1,p(Ω,R). The notationsW 1,p
loc (Ω,R)

n andW 1,p
loc

(

Ω,
∧ℓ

)

are self-explanatory.

The exterior derivative is denoted by d : D′
(

Ω,
∧ℓ

)

→ D′
(

Ω,
∧ℓ+1

)

for ℓ =

0, 1, · · · , n. Its formal adjoint operator d∗ : D′
(

Ω,
∧ℓ+1

)

→ D′
(

Ω,
∧ℓ

)

is given

by d∗ = (−1)nℓ+1∗d∗ onD′
(

Ω,
∧ℓ+1

)

, ℓ = 0, 1, · · · , n. The well-known Poincaré
Lemma states that d ◦ d = 0. It is easy to see that d∗ ◦ d∗ = 0 as well.

A differential ℓ-form u ∈ D′
(

Ω,
∧ℓ

)

is called a closed form if du = 0 in

Ω. It is called exact if there exists a differential form α ∈ D′
(

Ω,
∧ℓ−1

)

such
that u = dα. Poincaré Lemma implies that exact forms are closed. Similarly,
a differential ℓ-form v ∈ D′

(

Ω,
∧ℓ

)

is called a coclosed form if d∗v = 0. It is

called coexact if there exists a differential (ℓ + 1)-form β ∈ D′
(

Ω,
∧ℓ+1

)

such
that v = d∗β. Poincaré Lemma implies that coexact forms are coclosed.

Let G =
(

Gi
j

)

1≤i,j≤n
be an n × n matrix. The ℓ-exterior power of G is a

linear operator

Gℓ
# :

∧ℓ
→

∧ℓ

defined by

Gℓ
#(α1 ∧ α2 ∧ · · · ∧ αℓ) = Gα1 ∧Gα2 ∧ · · · ∧Gαℓ,

where α1, α2, · · · , αℓ ∈
∧1. The linear transform Gℓ

# can be expressed as an
Cℓ

n × Cℓ
n matrix whose entries are ℓ × ℓ minors of G and denoted by Gℓ

# =
(

detGI
J

)

Cℓ
n×Cℓ

n

, where I = (i1, · · · , iℓ), J = (j1, · · · , jℓ) are ordered ℓ-tuples and

detGI
J = det







Gi1
j1, · · · Gi1

jℓ

· · ·

Giℓ
j1, · · · Giℓ

jℓ





 .

Definition 1.1 A pair of differential ℓ-forms F = (C, E) ∈ Lp′
(

Ω,
∧ℓ

)

×

Lq′
(

Ω,
∧ℓ

)

, 1 ≤ p′, q′ <∞, is called coclosed-exact, if d∗C = 0 and there exists

a differential (ℓ− 1)-form u ∈
∧ℓ−1 such that E = du. Moreover, the Jacobian

associated to the field F is defined by J (x,F) = 〈C, E〉.

In much the same way, we can define the closed-coexact fields of differential
forms.
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Definition 1.2 A pair of differential ℓ-forms F = (C, E) ∈ Lp′
(

Ω,
∧ℓ

)

×

Lq′
(

Ω,
∧ℓ

)

, 1 ≤ p′, q′ < ∞, is called closed-coexact, if dC = 0 and there exists

a differential (ℓ+1)-form u ∈
∧ℓ+1 such that E = d∗u. The Jacobian associated

to the field F is defined by J (x,F) = 〈C, E〉.

Balls with radius R are denoted by BR and BσR is the ball with the same
center as BR and diam(BσR) = σdiam(BR). The n-dimensional Lebesgue
measure of a set E ⊂ Rn is denoted by |E|. We can find the following result
in [1, 2]: Let Q ⊂ Rn be a cube or a ball. To each y ∈ Q there corresponds a

linear operator Ky : C
∞

(

Q,
∧ℓ

)

→ C∞(Q,
∧ℓ−1) defined by

(Kyω)(x; ξ1, ξ2, · · · , ξℓ−1) =
∫ 1

0
tℓ−1ω(tx+ y − ty; x− y, ξ1, · · · , ξℓ−1)dt

and the decomposition
ω = d(Ky) +Ky(dω).

Another linear operator TQ : C∞
(

Q,
∧ℓ

)

→ C∞
(

Q,
∧ℓ−1

)

is defined by
averaging Ky over all points y in Q

TQω =
∫

Q
ϕ(y)Kyωdy,

where ϕ ∈ C∞
0 (Q) is normalized by

∫

Q ϕ(y)dy = 1. We define the ℓ-form

ωQ ∈ D′
(

Q,
∧ℓ

)

by

ωQ = |Q|−1
∫

Q
ω(y)dy, if ℓ = 0, and ωQ = d(TQω), if ℓ = 1, 2, · · · , n,

for all ω ∈ Lp
(

Q,
∧ℓ

)

, 1 ≤ p <∞. It is easy to see that ωQ is exact.

2 Estimates Below the Natural Exponents

In this section, we derive two estimates below the natural exponents for coclosed-
exact and closed-coexact fields of differential forms.

In the following, we denote by c(∗, · · · , ∗) a constant depending only on the
quantities ∗, · · · , ∗, whose value may be different from line to line.

We begin with a simple consequence of Hölder’s inequality. Let 1 < p′, q′ <
∞ be a Hölder conjugate pair, 1

p′
+ 1

q′
= 1. For any pair of differential forms

F = (C, E) with C ∈ Lp′
(

BR,
∧ℓ

)

, E ∈ Lq′
(

BR,
∧ℓ

)

, and any test function

ϕ ∈ C∞
0 (BR), we have

∣

∣

∣

∣

∫

BR

ϕJ (x,F)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

BR

ϕ〈C, E〉dx

∣

∣

∣

∣

≤ ‖ϕ‖∞‖C‖p′‖E‖q′.
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In order to exploit certain cancelations in the above integral we now assume
F = (C, E) be a coclosed-exact pair of differential forms, that is, d∗C = 0 and
there exists a differential (ℓ − 1)-form u ∈

∧ℓ−1 such that E = du. Unless
otherwise stated, this assumption will remain valid throughout this article.
The following theorems are estimates with integrable exponents below the
natural ones. For coclosed-exact fields of differential forms, we have

Theorem 2.1 Let 1 < p′, q′ < ∞ be a Hölder conjugate pair, 1
p′
+ 1

q′
= 1,

and 1 < r′, s′ < ∞ satisfies 1
r′
+ 1

s′
= 1 + 1+ε

n
. Then there exists a constant

c = c(n, p′, r′) such that for each test function ψ ∈ C∞
0 (BR), one has

∫

BR

ψ1−εJ (x,F)

|C|ε|E|ε
dx ≤ cε‖C‖1−ε

p′(1−ε)‖d(ψ(u− uBR
))‖1−ε

q′(1−ε)

+c‖∇ψ‖1−ε
∞ ‖C‖1−ε

r′(1−ε)‖du‖
1−ε
s′(1−ε),

(2.1)

wherever 0 ≤ 2ε ≤ min
{

p′−1
p′
, q

′−1
q′
, r

′−1
r′
, s

′−1
s′

}

and F = (C, E) ∈ Lp′(1−ε)
(

BR,
∧ℓ

)

×

Lq′(1−ε)
(

BR,
∧ℓ

)

⋂

Lr′(1−ε)
(

BR,
∧ℓ

)

×Ls′(1−ε)
(

BR,
∧ℓ

)

a coclosed-exact field of
differential ℓ-forms.

For closed-coexact fields of differential forms, we have

Theorem 2.2 Let 1 < p′, q′ < ∞ be a Hölder conjugate pair, 1
p′
+ 1

q′
= 1,

and 1 < r′, s′ <∞ satisfies 1
r′
+ 1

s′
= 1+ 1+ε

n
. Then there exists a constant c =

c(n, p′, r′) such that (2.1) holds for each test function ϕ ∈ C∞
0 (BR), wherever

0 ≤ 2ε ≤ min
{

p′−1
p′
, q

′−1
q′
, r

′−1
r′
, s

′−1
s′

}

and F = (C, E) ∈ Lp′(1−ε)
(

BR,
∧ℓ

)

×

Lq′(1−ε)
(

BR,
∧ℓ

)

⋂

Lr′(1−ε)
(

BR,
∧ℓ

)

×Ls′(1−ε)
(

BR,
∧ℓ

)

a closed-coexact field of
differential ℓ-forms.

The key tool used in establishing (2.1) is the stability of the Hodge de-
composition theorem under nonlinear perturbations of differential forms, first
discovered by Iwaniec [3].

Lemma 2.3 For ω ∈ Lr(1−ε)
(

Rn,
∧ℓ

)

, ε < 1
2
, consider the Hodge decompo-

sition

|ω|−εω = dα + d∗β, with α ∈ Lr
1

(

Rn,
∧ℓ−1

)

and β ∈ Lr
1

(

Rn,
∧ℓ+1

)

.

If ω is closed, then
‖d∗β‖r ≤ c(n)r|ε|‖ω‖1−ε

r(1−ε).

If ω is coclosed, then
‖dα‖r ≤ c(n)r|ε|‖ω‖1−ε

r(1−ε).
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In the proof of Theorem 2.1, we will also need the Poincaré and Sobolev-
Poincaré inequalities, which can be found in [2], see also [4, 5].

Lemma 2.4 Suppose that ω ∈ D′
(

B,
∧ℓ

)

and dω ∈ Lp(B,
∧ℓ+1), ℓ =

0, 1, · · · , n. Then ω − ωB is in Lp
(

B,
∧ℓ

)

and we have the following uniform
estimate

(
∫

B
|ω − ωB|

pdx
)1/p

≤ C(p, n)diam(B)
(
∫

B
|dω|pdx

)1/p

for B a cube or a ball in Rn.

Lemma 2.5 Suppose that ω ∈ D′
(

B,
∧ℓ

)

and dω ∈ Lp
(

B,
∧ℓ+1

)

, ℓ =

0, 1, · · · , n and 1 < p < n. Then ω − ωB is in Lnp/(n−p)
(

B,
∧ℓ

)

and we have
the following uniform estimate

(
∫

B
|ω − ωB|

np/(n−p)dx
)(n−p)/np

≤ C(p, n)
(
∫

B
|dω|pdx

)1/p

(2.2)

for B a cube or a ball in Rn.

The following lemma comes from [6], which is an elementary inequality for
differential ℓ-forms.

Lemma 2.6 Suppose that X, Y ∈
∧ℓ be two differential ℓ-forms and 0 ≤

ε < 1. Then
∣

∣

∣|X|−εX − |Y |−εY
∣

∣

∣ ≤
2ε(1 + ε)

1− ε
|X − Y |1−ε.

Proof of Theorem 2.1 We define the values of the coefficients of C and E to
be 0 outside BR. Let us decompose, according to Lemma 2.3, with ω = C ∈
Lp′(1−ε)

(

BR,
∧ℓ

)

,







|C|−εC = dα1 + d∗β1, α1 ∈ Lp′

1

(

BR,
∧ℓ−1

)

, β1 ∈ Lp′

1

(

BR,
∧ℓ+1

)

,

‖dα1‖p′ ≤ c(n)p′|ε|‖C‖1−ε
p′(1−ε),

(2.3)

and then with ω = d(ψ(u− uBR
)) ∈ Lq′(1−ε)

(

BR,
∧ℓ

)

,















|d(ψ(u− uBR
))|−εd(ψ(u− uBR

)) = dα2 + d∗β2,

α2 ∈ Lq′

1

(

BR,
∧ℓ−1

)

, β2 ∈ Lq′

1

(

BR,
∧ℓ+1

)

,

‖d∗β2‖q′ ≤ c(n)q′|ε|‖d(ψ(u− uBR
))‖1−ε

q′(1−ε).

(2.4)

(2.3) and (2.4) imply

‖d∗β1‖p′ ≤ c(n)p′‖C‖1−ε
p′(1−ε) (2.5)
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and
‖dα2‖q′ ≤ c(n)q′‖d(ψ(u− uBR

))‖1−ε
q′(1−ε) (2.6)

respectively.
Let us introduce a differential ℓ-form

E = |d(ψ(u− uBR
))|−εd(ψ(u− uBR

))− |ψdu|−εψdu,

then by Lemma 2.5 one has

|E| ≤
2ε(1 + ε)

1− ε
|dψ ∧ (u− uBR

)|1−ε. (2.7)

Since coclosed forms are orthogonal to exact forms, then
∫

BR

ψ1−ε 〈C, E〉

|C|ε|E|ε
dx

=
∫

BR

〈|C|−εC, |ψdu|−εψdu〉dx

=
∫

BR

〈|C|−εC, |d(ψ(u− uBR
))|−εd(ψ(u− uBR

))− E〉dx

=
∫

BR

〈dα1 + d∗β1, dα2 + d∗β2〉dx−
∫

BR

〈|C|−εC, E〉dx

=
∫

BR

〈dα1, dα2〉dx+
∫

BR

〈d∗β1, d
∗β2〉dx−

∫

BR

〈|C|−εC, E〉dx

= I1 + I2 + I3.

(2.8)

Our nearest goal is to estimate |I1|, |I2| and |I3| for sufficiently small ε, say

2ε ≤ min
{

p′

p′−1
, q′

q′−1
, r′

r′−1
, s′

s′−1

}

. |I1| can be estimated by (2.3) and (2.6) as

|I1| =
∣

∣

∣

∣

∫

BR

〈dα1, dα2〉dx
∣

∣

∣

∣

≤ ‖dα1‖p′‖dα2‖q′

≤ c(n, p′)|ε|‖C‖1−ε
p′(1−ε)‖d(ψ(u− uBR

))‖1−ε
q′(1−ε).

(2.9)

|I2| can be estimated by (2.4) and (2.5) as

|I2| =
∣

∣

∣

∣

∫

BR

〈d∗β1, d
∗β2〉dx

∣

∣

∣

∣

≤ ‖d∗β1‖p′‖d
∗β2‖q′

≤ c(n, p′)|ε|‖C‖1−ε
p′(1−ε)‖d(ψ(u− uBR

))‖1−ε
q′(1−ε).

(2.10)

|I3| can be estimated by (2.7) and Lemma 2.4 as

|I3| =

∣

∣

∣

∣

∫

BR

〈|C|−εC, E〉dx

∣

∣

∣

∣

≤
2ε(1 + ε)

1− ε

∫

BR

|C|1−ε|dψ ∧ (u− uBR
)|1−εdx

≤ c(n)‖∇ψ‖1−ε
∞

∫

BR

|C|1−ε|u− uBR
|1−εdx

≤ c(n)‖∇ψ‖1−ε
∞

(
∫

BR

|C|(1−ε)r′dx
)1/r′ (∫

BR

|u− uBR
|r

′(1−ε)/(r′−1)dx
)(r′−1)/r′

≤ c(n, r′)‖∇ψ‖1−ε
∞ ‖C‖1−ε

r′(1−ε)‖du‖
1−ε
s′(1−ε),

(2.11)
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where we recall that 1
r′
+ 1

s′
= 1 + 1−ε

n
. Combining (2.8)-(2.11) we arrive at

(2.1), completing the proof of Theorem 2.1.
Proof of Theorem 2.2 Similar to the proof of Theorem 2.1.

3 An Application toWeakly Quasiregular Map-

pings

We now give an application of Theorem 2.1 to quasiregular mappings. Let
Ω ⊂ Rn, n ≥ 2, and f = (f 1, f 2, · · · , fn) ∈ W 1,r

loc (Ω,R
n), 1 ≤ r < ∞. The

differential Df(x) : Ω → GL(n) and its determinant Jf(x) = detDf(x) are,
therefore, defined almost everywhere in Ω. We assume that Jf(x) is nonnega-
tive.

Definition 3.1 A mapping f ∈ W 1,r
loc (Ω,R

n) is said to be weaklyK-quasiregular,
1 ≤ K <∞, if

max
|ξ|=1

|Df(x)ξ| ≤ Kmin
|ξ|=1

|Df(x)ξ|

for almost every x ∈ Ω. It is called K-quasiregular if r is equal to the dimension
of the domain, thus Jf(x) ∈ L1

loc(Ω).

The theory of quasiregular mappings is a central topic in modern analysis
with important connections to a variety of topics as elliptic partial differential
equations, complex dynamics, differential geometry and calculus of variations;
see [7, 8] and the references therein. For the recent developments of quasireg-
ular mapping theory, see [7-12].

If we introduce, for every K-quasiregular mapping f , a metric tensor G(x)
on Ω,

G(x) =

{

J
−2/n
f (x)Dtf(x)Df(x), for Jf(x) 6= 0,

Id, for Jf(x) = 0,

where Dtf(x) and Id are the transpose of Df(x) and the identity matrix,
respectively, then quasiregular mappings are simply weak solutions to the dif-
ferential system

Dtf(x)Df(x) = J
2/n
f (x)G(x),

commonly called the n-dimensional Beltrami equation.
Fix an ordered ℓ-tuple I = (i1, i2, · · · , iℓ) and its complementary (n − 1)-

tuple J = (j1, j2, · · · , jn−ℓ) ordered in such a way that dxI = ∗dxJ . Suppose
that r ≥ max{ℓ, n−ℓ}. To each such pair (I, J) we assign the differential form

uI = f iℓdf i1 ∧ · · · ∧ df iℓ−1 ∈ L
n/(n−1)
loc

(

Ω,
∧ℓ−1

)
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and the conjugate form

vJ = ∗f j1df j2 ∧ · · · ∧ df jn−ℓ ∈ L
n/(n−1)
loc

(

Ω,
∧ℓ+1

)

.

The degree of local integrability is verified by the Sobolev embedding theorem.
Clearly,

duI = (−1)ℓ−1df i1 ∧ · · · ∧ df iℓ ∈ L1
loc

(

Ω,
∧ℓ

)

and

d∗vJ = (−1)ℓ+1 ∗ df j1 ∧ · · · ∧ df jn−ℓ ∈ L1
loc

(

Ω,
∧ℓ

)

.

From [3], we know that the differential forms duI , d
∗vj ∈ L1

loc(Ω,
∧ℓ) satisfy the

p-harmonic and the conjugate q-harmonic equations

d∗A(x, duI) = 0 (3.1)

dA−1(x, d∗vJ) = 0 (3.2)

respectively, where

A(x, ξ) = 〈(Gℓ
#)

−1(x)ξ, ξ〉(p−2)/2(Gℓ
#)

−1(x)ξ, p =
n

ℓ
,

A−1(x, ξ) = 〈(Gℓ
#)(x)ξ, ξ〉

(q−2)/2(Gℓ
#)(x)ξ, q =

n

n− ℓ
,

and the following estimates hold

〈A(x, duI), duI〉 ≥ c1|duI |
p, (3.4)

|A(x, duI)| ≤ c2|duI |
p−1. (3.5)

We recall a famous regularity result due to T.Iwaniec, see [3, Theorem 3].

Theorem 3.2 There exist exponents q = q(n,K) < n < p(n,K) = p
such that every weakly K-quasiregular mapping of class W 1,q

loc (Ω,R
n) belongs to

W 1,p
loc (Ω,R

n) and so is K-quasiregular.

We now give an alternative proof of Theorem 3.1 by using Theorem 2.1.
Similarly, Theorem 3.1 can also be proved by using Theorem 2.2.

An examination of [3] reveals that Theorem 3.1 is based on a weak reverse
Hölder inequality. Instead of rewriting all the needed steps, we only prove the
following lemma, which is sufficient to the proof of Theorem 3.1.
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Lemma 3.3 For every weaklyK-quasiregular mapping of classW
1,n(1−ε)
loc (Ω,Rn),

we have the weakly reverse Hölder inequality

−
∫

BR/2

|duI |
p(1−ε)dx ≤ θ −

∫

BR

|duI |
p(1−ε)dx+

(

−
∫

BR

|duI |
np(1−ε)
n+1−ε dx

)
n+1−ε

n

. (3.6)

provided that ε small enough, where −
∫

BR
= 1

|BR|

∫

B is the integral mean over
BR.

Proof. For quasiregular mapping f ∈ W
1,n(1−ε)
loc (Ω,Rn), we introduce two

differential ℓ-forms C = A(x, duI) and E = duI , then by (3.1), it is obvious
that F = (C, E) is a coclosed-exact pair. For BR ⊂⊂ Ω, take ψ ∈ C∞

0 (BR)

such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on BR/2 and |∇ψ| ≤ c(n)
R

. Then by (3.4) and (3.5),
∫

BR

ψ1−εJ (x,F)

|C|ε|E|ε
dx =

∫

BR

ψ1−ε 〈A(x, duI), duI〉

|A(x, duI)|ε|duI |ε
dx ≥ c

∫

BR/2

|duI |
p(1−ε)dx.

(3.7)
Take p′ = p

p−1
and q′ = p we obtain from Lemma 2.4 that

ε‖C‖1−ε
p′(1−ε)‖d(ψ(uI − (uI)BR

))‖1−ε
q′(1−ε)

≤ ε‖C‖1−ε
p′(1−ε)

[

‖ψduI‖
1−ε
q′(1−ε) + ‖dψ ∧ (uI − (uI)BR

)‖1−ε
q′(1−ε)

]

≤ cε‖C‖1−ε
p′(1−ε)

[

‖duI‖
1−ε
q′(1−ε) +

1

R1−ε
‖(uI − (uI)BR

)‖1−ε
q′(1−ε)

]

≤ cε‖duI‖
(p−1)(1−ε)
p(1−ε)

[

‖duI‖
1−ε
p(1−ε) +

1

R1−ε
‖(uI − (uI)BR

)‖1−ε
p(1−ε)

]

≤ cε‖duI‖
p(1−ε)
p(1−ε).

(3.8)

Take r′ = np
(p−1)(n+1−ε)

and s′ = np
n+1−ε

, we obtain

‖∇ψ‖1−ε
∞ ‖C‖1−ε

r′(1−ε)‖duI‖
1−ε
s′(1−ε)

≤
c

R1−ε
‖duI‖

(p−1)(1−ε)
np(1−ε)
n+1−ε

‖duI‖
1−ε
np(1−ε)
n+1−ε

=
c

R1−ε
‖duI‖

p(1−ε)
np(1−ε)
n+1−ε

.

(3.9)

Combining (2.1) with (3.7), (3.8) and (3.9) we get that

∫

BR/2

|duI |
p(1−ε)dx ≤ cε

∫

BR

|duI |
p(1−ε)dx+

c

R1−ε

(
∫

BR

|duI |
np(1−ε)
n+1−ε dx

)
n+1−ε

n

.

Divide both sides of the above inequality by |BR/2| = ωn(R/2)
n we obtain

−
∫

BR/2

|duI |
p(1−ε)dx ≤ cε−

∫

BR

|duI |
p(1−ε)dx+ c

(

−
∫

BR

|duI |
np(1−ε)
n+1−ε dx

)
n+1−ε

n

.

Take ε small enough such that θ = cε < 1, we arrive at (3.7). Lemma 3.3 has
been proved.
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