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Abstract

In the present paper, we first give the definition for coclosed-exact
fields of differential forms, and then an estimate below the natural ex-
ponents of coclosed-exact forms is obtained. An application to the reg-
ularity theory of quasiregular mappings is given.
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1 Introduction

We first introduce some basic notions of exterior calculus. Throughout this
paper we always assume () is a connected open subset of R", n > 2. We
use ey, ey, -, e, to denote the standard unit basis of R". Let A‘=A’( R™)
be the linear space of f-covectors, spanned by the exterior products e; =
ei, Nei, \---Ne;,, corresponding to all ordered (-tuples I = (41,49, --,47),1 <
ih < iy <---<ig<mn, £=0,1,---,n The Grassman algebra A = ®A’ is
a graded algebra with respect to the exterior products. For a = Y afe; € A
and 8 =3 Ble; € A, the inner product in A is given by (o, 8) = >; ! 87 with
summation over all ¢-tuples I = (i1, 19, --,%s) and all integers £ = 0,1, .-, n.
The Hodge star operator * : A — A is defined by the rule x1 = e; Aes A---Ae,
and a A = B Axa = («a, f)(x1) for all a, § € A. The norm of a € A is given
by the formula |a|?> = (a,a) = *(a A xa) € A = R. The Hodge star is an
isometric isomorphism on A with * : A® — A" and #x = (—1)“™=9 . A® = AL

Let D’ (Q,/\é) be those differential forms w = Y wle; € A with w! €
D' (2), where we have denoted by D’ (Q2) the space of Schwartz distributions.
Let 1 < p < oo. We denote the LP-norm of a measurable function f over §2 by

151 = 1l = ([ 7)™
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We write LP (Q, /\Z) for the (-forms w(x) = Y ;wr(z)drr = 3 Wiyiy..q, (T)dxs, A

dx;, A\ - -Ndz;, with wy(x) € LP(€, R) for all ordered ¢-tuples I. Thus L? (Q, /\Z)
is a Banach space with norm

ol = ([ otorpitr) " = ([ (S b)) az) ™"

Similarly, Wi (Q, /\é) are those differential /-forms on {2 whose coefficients are
in W?(€, R). The notations W,>P(€, R)” and W,” (Q, /\Z) are self-explanatory.

oc oc

The exterior derivative is denoted by d : D’ (Q, /\é) — D' (Q, /\”1) for ¢ =
0,1,---,n. Its formal adjoint operator d* : D’ (Q, /\”1) — D’ (Q, /\é) is given

by d* = (—1)"*1xd* on D’ (Q, /\“1), ¢=0,1,---,n. The well-known Poincaré
Lemma states that d od = 0. It is easy to see that d* o d* = 0 as well.
A differential ¢-form u € D’ (Q, /\Z) is called a closed form if du = 0 in

Q. Tt is called exact if there exists a differential form o € D' (2, A**) such
that u = da. Poincaré Lemma implies that exact forms are closed. Similarly,
a differential ¢-form v € D’ (Q, /\Z) is called a coclosed form if d*v = 0. It is

called coexact if there exists a differential (¢ + 1)-form g € D’ (Q, /\”1) such
that v = d*(. Poincaré Lemma implies that coexact forms are coclosed.

Let G = (Gl) . be an n x n matrix. The f-exterior power of G is a
I/ 1<i,5<n

linear operator

LN =N

defined by
Guloa Nag A+ Nay) = Gag AGag A -+ A Gay,

where oy, a9, -+, € A'. The linear transform Gi can be expressed as an
C* x C* matrix whose entries are ¢ x ¢ minors of G and denoted by G% =
(det G{’)cfv’xcff’ where I = (i1, +,i), J = (j1,- -, je) are ordered ¢(-tuples and

R

det G; = det ' .

G G,

Definition 1.1 A pair of differential (-forms F = (C,€) € L” (Q,/\Z) X
LY (Q, /\Z), 1 <y, ¢ < oo, is called coclosed-exact, if d*C = 0 and there exists
a differential (¢ — 1)-form v € N such that & = du. Moreover, the Jacobian
associated to the field F is defined by J(xz, F) = (C,E).

In much the same way, we can define the closed-coexact fields of differential
forms.
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Definition 1.2 A pair of differential (-forms F = (C,&) € L” (Q,/\Z) X
LY (Q, /\Z), 1<y, ¢ < oo, is called closed-coexact, if dC = 0 and there exists

a differential ((+1)-formu € N such that € = d*u. The Jacobian associated
to the field F is defined by J(z, F) = (C,E).

Balls with radius R are denoted by Br and B,p is the ball with the same
center as Bg and diam(B,g) = odiam(Bg). The n-dimensional Lebesgue
measure of a set £ C R" is denoted by |E|. We can find the following result
in [1, 2]: Let @ C R" be a cube or a ball. To each y € @ there corresponds a

linear operator K, : C* (Q, /\Z) — C®(Q, \"™") defined by

1
() (361,00 6t) = [ #7tr +y = tyso =y, 60, Gt
and the decomposition
w = d(K,) + K,(dw).

Another linear operator Ty : C*° (Q,/\é) — O™ (Q,/\Z_l) is defined by
averaging K, over all points y in @

Tow = /Q o(y) Kywdy,

where ¢ € Cg°(Q) is normalized by [, ¢(y)dy = 1. We define the (-form
wg € D' (Q,A) by

wo = Q™ /Qw(y)dy, if ¢ =0, and wg =d(Tpw), if ¢ =1,2,---,n,

for all w € LP (Q, /\Z) ,1 <p < oo. It is easy to see that wg is exact.

2 Estimates Below the Natural Exponents

In this section, we derive two estimates below the natural exponents for coclosed-
exact and closed-coexact fields of differential forms.

In the following, we denote by c(x, - - -, %) a constant depending only on the
quantities *, - - -, %, whose value may be different from line to line.

We begin with a simple consequence of Holder’s inequality. Let 1 < p/, ¢’ <
oo be a Holder conjugate pair, z% + i = 1. For any pair of differential forms

F = (C,&) with C € L” (BR,/\Z), EeL? (BR,/\Z), and any test function
¢ € C5°(Bg), we have

< [llloolICll 1€l

/ oJ (z, F)dx
Br

_ ‘/BR o(C, E)d
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In order to exploit certain cancelations in the above integral we now assume
F = (C,€&) be a coclosed-exact pair of differential forms, that is, d*C = 0 and
there exists a differential (¢ — 1)-form v € A*! such that & = du. Unless
otherwise stated, this assumption will remain valid throughout this article.
The following theorems are estimates with integrable exponents below the
natural ones. For coclosed-exact fields of differential forms, we have

Theorem 2.1 Let 1 < p', ¢ < oo be a Héolder conjugate pair, z% + % =1,

and 1 < r',s" < oo satisfies % + % =1+ % Then there exists a constant
c=c(n,p,r") such that for each test function i» € C§°(Bgr), one has

J(x, F)

1—¢ < 1,—5 _ 1/—&
e S el ol — s,

(1) (2.1)
+l VO IEIIC ol dull .

wherever 0 < 2e < min {p/p_,l, ql_,l, r—1 5/_,1} and F = (C,€) € r'(-e) (BR, /\Z) X

q r s
La0-2) (BR, /\Z) NL"-2) (BR, /\Z) x L*'(1=¢) (BR, /\g) a coclosed-ezact field of
differential (-forms.

For closed-coexact fields of differential forms, we have

Theorem 2.2 Let 1 < p’ q’ < oo be a Holder conjugate pair, z% + i =1,

and 1 <7r',s' < oo satzsﬁes -+ =1+ 1+€. Then there exists a constant ¢ =
c(n,p'sr") such that (2.1) holds for each test function ¢ € C§°(Bgr), wherever

/

0 <2 < mm{ e 871} and F = (C,&) € L»'(1~) (BR,/\Z) X

P g 1 s
L7(-9) (BR, /\Z) NL" (=) (BR, /\Z) x [¥(1-2) (BR, /\Z) a closed-coezact field of
differential £-forms.

The key tool used in establishing (2.1) is the stability of the Hodge de-
composition theorem under nonlinear perturbations of differential forms, first
discovered by Iwaniec [3].

Lemma 2.3 Forw € L'(1—9) (R" /\Z) €< —, consider the Hodge decompo-
sition

lw|"*w =da+d*p, witha e L] <R”,/\é_l> and B € L} (R", /\Hl) .

If w is closed, then
Bl < e(n)rlelwllqZ.)-

If w is coclosed, then
ldadl; < e(n)rlelllwllgz.
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In the proof of Theorem 2.1, we will also need the Poincaré and Sobolev-
Poincaré inequalities, which can be found in [2], see also [4, 5].

Lemma 2.4 Suppose that w € D’ (B,/\Z) and dw € LP(B,\"™Y), ¢ =

0,1,---,n. Then w — wg s in LP (B, /\Z) and we have the following uniform
estimate

1/p

1/p
( Iz —wB|de) < C(p,n)diam(B) ( / \dw\pdx)
B B
for B a cube or a ball in R".

Lemma 2.5 Suppose that w € D’ (B,/\Z) and dw € LP (B,/\”l), (=

0,1,---,n and 1 < p < n. Then w —wg is in L"/(~P) (B,/\Z) and we have
the following uniform estimate

( / o — wp /P g
B

for B a cube or a ball in R".

)(n_p)/np < ([ |dw|pd:c>1/p (2.2)

The following lemma comes from [6], which is an elementary inequality for
differential ¢-forms.

Lemma 2.6 Suppose that X,Y € A be two differential (-forms and 0 <

e< 1. Then

1+¢)

XX = Y| Y| < 2 X —Y|'"e
1

— &

Proof of Theorem 2.1 We define the values of the coefficients of C and £ to
be 0 outside Bg. Let us decompose, according to Lemma 2.3, with w = C €
L¥0=9) (Bg, \Y),

{ Clec=day+d'r, ave I (Ba N7') pre 1 (Ba A7),
[den |l < c(m)plelIC] s

(2.3)
and then with w = d(¢(u — up,)) € LT~ (BR> /\Z)a

|d((u = upy))[Td((u = upy)) = dag + d*fs,
as € LY (Bp, A7), B2 € LY (Br, A, (2.4)
|d*Ballg < e(n)dlelld(W(u — upy))llgi—e)-

(2.3) and (2.4) imply

ld*Bully < c(n)pICNE-e) (2.5)
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and
[daslly < c(n)d[[d(¥(u — upp))ll i) (2.6)
respectively.
Let us introduce a differential /-form

= |d((u — up, )| "d((u — upy)) — [pdu|~*¢Pdu,
then by Lemma 2.5 one has

2¢ (1—|—5)
1-—

Bl < [dep A (u = upg )| (2.7)

Since coclosed forms are orthogonal to exact forms, then

/B 77Dl—a <C75> dx

CFIEF
= [, {leI7"C. hidu| idu)
= [ {Ie177C. (bt — upy)) | d(b(u — up,) — E)de 28)

— / (day + d* By, das + d* 52>dx—/B (c|=C, E)dx

— / (da, day) dx+/ d*ﬁl,d*62>da:—/ (C|C, E)da
R

== ]1"‘]2"‘[3

Our nearest goal is to estimate |[;], |I2| and |I3| for sufficiently small e, say

! /

2e < min{ '1, s R 1} |I;| can be estimated by (2.3) and (2.6) as

= < /
= |/ R<fza1,da2l>dx} < [ldes ezl 29)
< clmpellC o ldtw( — up )l
|I5| can be estimated by (2.4) and (2.5) as
5 = <d*51,d*52>dx\ < 1 Bully 4" Bally 2.10)

< (np)IéTIHCH1 olld(u = up)lgi—e)-

|I3] can be estimated by (2.7) and Lemma 2.4 as

5] = / (c|sc, E>dx‘
25(1—|—g) . .
< S [, G A )
< VOIS [ 1o~ g, ' d
r 1! (r'=1) /7"
< Vel ( |C|(1_€)T'dx) (] =m0
Br Bgr
< eln ) IV IO lldull .-

(2.11)
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where we recall that & 4+ 4 = 1+ =2, Combining (2.8)-(2.11) we arrive at

(2.1), completing the proof of Theorem 2.1.
Proof of Theorem 2.2 Similar to the proof of Theorem 2.1.

3 An Application to Weakly Quasiregular Map-
pings

We now give an application of Theorem 2.1 to quasiregular mappings. Let
QCR",n>2and f=(fLf2% -, f") e W(UR"), 1 <r < co. The
differential Df(x) : Q@ — GL(n) and its determinant J;(x) = det D f(x) are,
therefore, defined almost everywhere in (2. We assume that J(x) is nonnega-
tive.

Definition 3.1 A mapping f € W57 (Q, R™) is said to be weakly K -quasiregular,
1<K <oo, if
max |Df (z)¢] < Kmin [Df(z)¢]

for almost every x € Q. It is called K -quasireqular if r is equal to the dimension
of the domain, thus J;(z) € L},.(Q).

The theory of quasiregular mappings is a central topic in modern analysis
with important connections to a variety of topics as elliptic partial differential
equations, complex dynamics, differential geometry and calculus of variations;
see [7, 8] and the references therein. For the recent developments of quasireg-
ular mapping theory, see [7-12].

If we introduce, for every K-quasiregular mapping f, a metric tensor G(z)
on {2,

= { @D IEPIE, tor ) £
Id, for J¢(z) =0,

where D'f(z) and Id are the transpose of Df(z) and the identity matrix,
respectively, then quasiregular mappings are simply weak solutions to the dif-
ferential system

D'f(z)Df(z) = J;" ()G (x),

commonly called the n-dimensional Beltrami equation.

Fix an ordered (-tuple I = (iy,14y,---,%y) and its complementary (n — 1)-
tuple J = (j1,J2, "+, jn_e¢) ordered in such a way that dx; = *dz;. Suppose
that > max{¢,n—¢}. To each such pair (I, J) we assign the differential form

uy = fiedfil A-ee A dfiz71 c L;;/C(n—l) <Q’/\Z—l)
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and the conjugate form
vy = *fjldsz A A dfjn—e c Llr;/c(n—l) <Q, /\£+1> ‘

The degree of local integrability is verified by the Sobolev embedding theorem.
Clearly,

dup = (=1)df A= Adf € Liy, (9 /\Z)

and
dvy = (~1) s dfit A A dfinr € L, <Q /\€> .

From [3], we know that the differential forms duy, d*v; € L} (2, A*) satisfy the
p-harmonic and the conjugate g-harmonic equations

d*A(x,dur) =0 (3.1)

dA (2, d*vy;) =0 (3.2)

respectively, where

Al.€) = (C4) " @E PG (@), p= 7,

n
A7H(2,€) = (G @), QG @8, a=——,
and the following estimates hold
(A(z, duy), dur) > c1|duy|?, (3.4)
\A(x,du1)| S Cg|dU1|p_1. (35)

We recall a famous regularity result due to T.Iwaniec, see [3, Theorem 3].

Theorem 3.2 There exist exponents ¢ = q(n,K) < n < p(n,K) = p
such that every weakly K -quasiregular mapping of class VVllOCq(Q, R™) belongs to
WLP(Q, R") and so is K -quasiregular.

We now give an alternative proof of Theorem 3.1 by using Theorem 2.1.
Similarly, Theorem 3.1 can also be proved by using Theorem 2.2.
An examination of [3] reveals that Theorem 3.1 is based on a weak reverse

Holder inequality. Instead of rewriting all the needed steps, we only prove the
following lemma, which is sufficient to the proof of Theorem 3.1.
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Lemma 3.3 For every weakly K -quasireqular mapping of class W,o" 2 (Q, RY),
we have the weakly reverse Holder inequality

n+l—e

][ |du1|p(1‘€)dx§97[ |du1|p(1_€)d$+ <][ |du1|7;p+(11 ?dx) " . (3.6)
Bry2 Br

provided that € small enough, where fp = @ [ is the integral mean over
Bg.

Proof. For quasiregular mapping f € VVI1 n{1=e) (©,R™), we introduce two
differential ¢-forms C = A(z,du;) and € = duy, then by (3.1), it is obvious
that F = (C,€) is a coclosed-exact pair. For B CC , take ¢ € C§°(Bg)
such that 0 <1 < 1,49 =1 on Bgyy and |V¢| < ng). Then by (3.4) and (3.5),

1 J(x, F) 1« (Alz,duy), duy) (1—¢)
€ dx = € dx > ¢ durPV' % dx.
w ICE|€| /Bﬁ,,w |A(z, dup)|f|dug e = /BR/2| 1 o
3.7

Take p' = 1% and ¢’ = p we obtain from Lemma 2.4 that

el o lld(ur — (un) s ).
ellel i, [Iedurllig . + llde A (ur = (un)s,) 15|
ce|CllL

IN

IN

1 —e
i [ndufnq(l . W||<uf—<uI>BR>|;(1_a>] 33
e 121 e

1
cel|dug|[2G=3)-

IN

ez lduy| el = () I8 |

IN

! __ np ! __ np :
Take " = Py T and s' = =, we obtain

||V¢||1 6||C||1/(1 - ||du1| /(1 ‘)
< Rl E||d Ian(l 6) ||d I| np(l €) (39)

n+1 n+l—e

1
= fuelldul I’):fiie?

Combining (2.1) with (3.7), (3.8) and (3.9) we get that

n+l—e

/ ‘dul‘p(l—e)dx < C&?/ ‘dul‘pl Edaj—l— (/ |du1|7;p+(11 ?dSL’> n
Brys Rl 5

Divide both sides of the above inequality by |Br/s| = w,(R/2)" we obtain

n+l—e

][ ‘dU[‘p(l_e)dflf < 057[ |du1|p(1‘€)dx +ec (][ ‘dul";l’fl <) dx) n
Brys Br Br

Take € small enough such that § = ce < 1, we arrive at (3.7). Lemma 3.3 has
been proved.
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