# Coclosed-Exact Fields of Differential Forms 

GAO Hongya<br>College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China<br>email: ghy@hbu.cn


#### Abstract

In the present paper, we first give the definition for coclosed-exact fields of differential forms, and then an estimate below the natural exponents of coclosed-exact forms is obtained. An application to the regularity theory of quasiregular mappings is given.


Mathematics Subject Classification: 30C65, 35J70, 35B65.
Keywords: coclosed-exact field, differential form, quasiregular mapping, weakly reverse Hölder inequality.

## 1 Introduction

We first introduce some basic notions of exterior calculus. Throughout this paper we always assume $\Omega$ is a connected open subset of $\mathrm{R}^{n}, n \geq 2$. We use $e_{1}, e_{2}, \cdots, e_{n}$ to denote the standard unit basis of $\mathrm{R}^{n}$. Let $\Lambda^{\ell}=\Lambda^{\ell}\left(\mathrm{R}^{n}\right)$ be the linear space of $\ell$-covectors, spanned by the exterior products $e_{I}=$ $e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{\ell}}$, corresponding to all ordered $\ell$-tuples $I=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right), 1 \leq$ $i_{1}<i_{2}<\cdots<i_{\ell} \leq n, \ell=0,1, \cdots, n$. The Grassman algebra $\Lambda=\oplus \Lambda^{\ell}$ is a graded algebra with respect to the exterior products. For $\alpha=\sum \alpha^{I} e_{I} \in \Lambda$ and $\beta=\sum \beta^{I} e_{I} \in \Lambda$, the inner product in $\Lambda$ is given by $\langle\alpha, \beta\rangle=\sum_{I} \alpha^{I} \beta^{I}$ with summation over all $\ell$-tuples $I=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$ and all integers $\ell=0,1, \cdots, n$. The Hodge star operator $*: \wedge \rightarrow \wedge$ is defined by the rule $* 1=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}$ and $\alpha \wedge * \beta=\beta \wedge * \alpha=\langle\alpha, \beta\rangle(* 1)$ for all $\alpha, \beta \in \wedge$. The norm of $\alpha \in \wedge$ is given by the formula $|\alpha|^{2}=\langle\alpha, \alpha\rangle=*(\alpha \wedge * \alpha) \in \Lambda^{0}=\mathrm{R}$. The Hodge star is an isometric isomorphism on $\Lambda$ with $*: \Lambda^{\ell} \rightarrow \Lambda^{n-\ell}$ and $* *=(-1)^{\ell(n-\ell)}: \Lambda^{\ell} \rightarrow \Lambda^{\ell}$.

Let $\mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell}\right)$ be those differential forms $\omega=\sum \omega^{I} e_{I} \in \Lambda^{\ell}$ with $\omega^{I} \in$ $\mathcal{D}^{\prime}(\Omega)$, where we have denoted by $\mathcal{D}^{\prime}(\Omega)$ the space of Schwartz distributions. Let $1 \leq p<\infty$. We denote the $L^{p}$-norm of a measurable function $f$ over $\Omega$ by

$$
\|f\|_{p}=\|f\|_{p, \Omega}=\left(\int_{\Omega}|f(x)|^{p} d x\right)^{1 / p} .
$$

We write $L^{p}\left(\Omega, \wedge^{\ell}\right)$ for the $\ell$-forms $\omega(x)=\sum_{I} \omega_{I}(x) d x_{I}=\sum \omega_{i_{1} i_{2} \cdots i_{\ell}}(x) d x_{i_{1}} \wedge$ $d x_{i_{2}} \wedge \cdots \wedge d x_{i_{\ell}}$ with $\omega_{I}(x) \in L^{p}(\Omega, \mathrm{R})$ for all ordered $\ell$-tuples $I$. Thus $L^{p}\left(\Omega, \Lambda^{\ell}\right)$ is a Banach space with norm

$$
\|\omega\|_{p, \Omega}=\left(\int_{\Omega}|\omega(x)|^{p} d x\right)^{1 / p}=\left(\int_{\Omega}\left(\sum\left|\omega_{I}(x)\right|^{2}\right)^{p / 2} d x\right)^{1 / p} .
$$

Similarly, $W^{1, p}\left(\Omega, \Lambda^{\ell}\right)$ are those differential $\ell$-forms on $\Omega$ whose coefficients are in $W^{1, p}(\Omega, \mathrm{R})$. The notations $W_{l o c}^{1, p}(\Omega, \mathrm{R})^{n}$ and $W_{l o c}^{1, p}\left(\Omega, \Lambda^{\ell}\right)$ are self-explanatory. The exterior derivative is denoted by $d: \mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell}\right) \rightarrow \mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell+1}\right)$ for $\ell=$ $0,1, \cdots, n$. Its formal adjoint operator $d^{*}: \mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell+1}\right) \rightarrow \mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell}\right)$ is given by $d^{*}=(-1)^{n \ell+1} * d *$ on $\mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell+1}\right), \ell=0,1, \cdots, n$. The well-known Poincaré Lemma states that $d \circ d=0$. It is easy to see that $d^{*} \circ d^{*}=0$ as well.

A differential $\ell$-form $u \in \mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell}\right)$ is called a closed form if $d u=0$ in $\Omega$. It is called exact if there exists a differential form $\alpha \in \mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell-1}\right)$ such that $u=d \alpha$. Poincaré Lemma implies that exact forms are closed. Similarly, a differential $\ell$-form $v \in \mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell}\right)$ is called a coclosed form if $d^{*} v=0$. It is called coexact if there exists a differential $(\ell+1)$-form $\beta \in \mathcal{D}^{\prime}\left(\Omega, \Lambda^{\ell+1}\right)$ such that $v=d^{*} \beta$. Poincaré Lemma implies that coexact forms are coclosed.

Let $G=\left(G_{j}^{i}\right)_{1 \leq i, j \leq n}$ be an $n \times n$ matrix. The $\ell$-exterior power of $G$ is a linear operator

$$
G_{\#}^{\ell}: \Lambda^{\ell} \rightarrow \bigwedge^{\ell}
$$

defined by

$$
G_{\#}^{\ell}\left(\alpha_{1} \wedge \alpha_{2} \wedge \cdots \wedge \alpha_{\ell}\right)=G \alpha_{1} \wedge G \alpha_{2} \wedge \cdots \wedge G \alpha_{\ell}
$$

where $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\ell} \in \Lambda^{1}$. The linear transform $G_{\#}^{\ell}$ can be expressed as an $C_{n}^{\ell} \times C_{n}^{\ell}$ matrix whose entries are $\ell \times \ell$ minors of $G$ and denoted by $G_{\#}^{\ell}=$ $\left(\operatorname{det} G_{J}^{I}\right)_{C_{n}^{\ell} \times C_{n}^{e}}$, where $I=\left(i_{1}, \cdots, i_{\ell}\right), J=\left(j_{1}, \cdots, j_{\ell}\right)$ are ordered $\ell$-tuples and

$$
\operatorname{det} G_{J}^{I}=\operatorname{det}\left[\begin{array}{ccc}
G_{j_{1}}^{i_{1}}, & \cdots & G_{j_{\ell}}^{i_{1}} \\
G_{j_{1}}^{i_{\ell}}, & \cdots & G_{j_{\ell}}^{i_{\ell}}
\end{array}\right]
$$

Definition 1.1 A pair of differential $\ell$-forms $\mathcal{F}=(\mathcal{C}, \mathcal{E}) \in L^{p^{\prime}}\left(\Omega, \Lambda^{\ell}\right) \times$ $L^{q^{\prime}}\left(\Omega, \wedge^{\ell}\right), 1 \leq p^{\prime}, q^{\prime}<\infty$, is called coclosed-exact, if $d^{*} \mathcal{C}=0$ and there exists a differential $(\ell-1)$-form $u \in \Lambda^{\ell-1}$ such that $\mathcal{E}=d u$. Moreover, the Jacobian associated to the field $\mathcal{F}$ is defined by $\mathcal{J}(x, \mathcal{F})=\langle\mathcal{C}, \mathcal{E}\rangle$.

In much the same way, we can define the closed-coexact fields of differential forms.

Definition 1.2 A pair of differential $\ell$-forms $\mathcal{F}=(\mathcal{C}, \mathcal{E}) \in L^{p^{\prime}}\left(\Omega, \Lambda^{\ell}\right) \times$ $L^{q^{\prime}}\left(\Omega, \Lambda^{\ell}\right), 1 \leq p^{\prime}, q^{\prime}<\infty$, is called closed-coexact, if $d \mathcal{C}=0$ and there exists a differential $(\ell+1)$-form $u \in \Lambda^{\ell+1}$ such that $\mathcal{E}=d^{*} u$. The Jacobian associated to the field $\mathcal{F}$ is defined by $\mathcal{J}(x, \mathcal{F})=\langle\mathcal{C}, \mathcal{E}\rangle$.

Balls with radius $R$ are denoted by $B_{R}$ and $B_{\sigma R}$ is the ball with the same center as $B_{R}$ and $\operatorname{diam}\left(B_{\sigma R}\right)=\sigma \operatorname{diam}\left(B_{R}\right)$. The $n$-dimensional Lebesgue measure of a set $E \subset \mathrm{R}^{n}$ is denoted by $|E|$. We can find the following result in $[1,2]$ : Let $Q \subset \mathrm{R}^{n}$ be a cube or a ball. To each $y \in Q$ there corresponds a linear operator $K_{y}: C^{\infty}\left(Q, \Lambda^{\ell}\right) \rightarrow C^{\infty}\left(Q, \Lambda^{\ell-1}\right)$ defined by

$$
\left(K_{y} \omega\right)\left(x ; \xi_{1}, \xi_{2}, \cdots, \xi_{\ell-1}\right)=\int_{0}^{1} t^{\ell-1} \omega\left(t x+y-t y ; x-y, \xi_{1}, \cdots, \xi_{\ell-1}\right) d t
$$

and the decomposition

$$
\omega=d\left(K_{y}\right)+K_{y}(d \omega) .
$$

Another linear operator $T_{Q}: C^{\infty}\left(Q, \Lambda^{\ell}\right) \rightarrow C^{\infty}\left(Q, \Lambda^{\ell-1}\right)$ is defined by averaging $K_{y}$ over all points $y$ in $Q$

$$
T_{Q} \omega=\int_{Q} \varphi(y) K_{y} \omega d y,
$$

where $\varphi \in C_{0}^{\infty}(Q)$ is normalized by $\int_{Q} \varphi(y) d y=1$. We define the $\ell$-form $\omega_{Q} \in \mathcal{D}^{\prime}\left(Q, \Lambda^{\ell}\right)$ by

$$
\omega_{Q}=|Q|^{-1} \int_{Q} \omega(y) d y, \text { if } \ell=0, \text { and } \omega_{Q}=d\left(T_{Q} \omega\right), \text { if } \ell=1,2, \cdots, n,
$$

for all $\omega \in L^{p}\left(Q, \Lambda^{\ell}\right), 1 \leq p<\infty$. It is easy to see that $\omega_{Q}$ is exact.

## 2 Estimates Below the Natural Exponents

In this section, we derive two estimates below the natural exponents for coclosedexact and closed-coexact fields of differential forms.

In the following, we denote by $c(*, \cdots, *)$ a constant depending only on the quantities $*, \cdots, *$, whose value may be different from line to line.

We begin with a simple consequence of Hölder's inequality. Let $1<p^{\prime}, q^{\prime}<$ $\infty$ be a Hölder conjugate pair, $\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1$. For any pair of differential forms $\mathcal{F}=(\mathcal{C}, \mathcal{E})$ with $\mathcal{C} \in L^{p^{\prime}}\left(B_{R}, \Lambda^{\ell}\right), \mathcal{E} \in L^{q^{\prime}}\left(B_{R}, \Lambda^{\ell}\right)$, and any test function $\varphi \in C_{0}^{\infty}\left(B_{R}\right)$, we have

$$
\left|\int_{B_{R}} \varphi \mathcal{J}(x, \mathcal{F}) d x\right|=\left|\int_{B_{R}} \varphi\langle\mathcal{C}, \mathcal{E}\rangle d x\right| \leq\|\varphi\|_{\infty}\|\mathcal{C}\|_{p^{\prime}}\|\mathcal{E}\|_{q^{\prime}} .
$$

In order to exploit certain cancelations in the above integral we now assume $\mathcal{F}=(\mathcal{C}, \mathcal{E})$ be a coclosed-exact pair of differential forms, that is, $d^{*} \mathcal{C}=0$ and there exists a differential $(\ell-1)$-form $u \in \Lambda^{\ell-1}$ such that $\mathcal{E}=d u$. Unless otherwise stated, this assumption will remain valid throughout this article. The following theorems are estimates with integrable exponents below the natural ones. For coclosed-exact fields of differential forms, we have

Theorem 2.1 Let $1<p^{\prime}, q^{\prime}<\infty$ be a Hölder conjugate pair, $\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1$, and $1<r^{\prime}, s^{\prime}<\infty$ satisfies $\frac{1}{r^{\prime}}+\frac{1}{s^{\prime}}=1+\frac{1+\varepsilon}{n}$. Then there exists a constant $c=c\left(n, p^{\prime}, r^{\prime}\right)$ such that for each test function $\psi \in C_{0}^{\infty}\left(B_{R}\right)$, one has

$$
\begin{align*}
\int_{B_{R}} \psi^{1-\varepsilon} \frac{\mathcal{J}(x, \mathcal{F})}{|\mathcal{C}|^{\varepsilon}|\mathcal{E}|^{\varepsilon}} d x \leq & c \varepsilon\|\mathcal{C}\|_{p^{\prime}(1-\varepsilon)}^{1-\varepsilon}\left\|d\left(\psi\left(u-u_{B_{R}}\right)\right)\right\|_{{q^{\prime}}^{\prime}(1-\varepsilon)}^{1-\varepsilon}  \tag{2.1}\\
& +c\|\nabla \psi\|_{\infty}^{1-\varepsilon}\|\mathcal{C}\|_{r^{\prime}(1-\varepsilon)}^{1-\varepsilon}\|d u\|_{s^{\prime}(1-\varepsilon)}^{1-\varepsilon},
\end{align*}
$$

wherever $0 \leq 2 \varepsilon \leq \min \left\{\frac{p^{\prime}-1}{p^{\prime}}, \frac{q^{\prime}-1}{q^{\prime}}, \frac{r^{\prime}-1}{r^{\prime}}, \frac{s^{\prime}-1}{s^{\prime}}\right\}$ and $\mathcal{F}=(\mathcal{C}, \mathcal{E}) \in L^{p^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right) \times$ $L^{q^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right) \cap L^{r^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right) \times L^{s^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right)$ a coclosed-exact field of differential $\ell$-forms.

For closed-coexact fields of differential forms, we have
Theorem 2.2 Let $1<p^{\prime}, q^{\prime}<\infty$ be a Hölder conjugate pair, $\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}=1$, and $1<r^{\prime}, s^{\prime}<\infty$ satisfies $\frac{1}{r^{\prime}}+\frac{1}{s^{\prime}}=1+\frac{1+\varepsilon}{n}$. Then there exists a constant $c=$ $c\left(n, p^{\prime}, r^{\prime}\right)$ such that (2.1) holds for each test function $\varphi \in C_{0}^{\infty}\left(B_{R}\right)$, wherever $0 \leq 2 \varepsilon \leq \min \left\{\frac{p^{\prime}-1}{p^{\prime}}, \frac{q^{\prime}-1}{q^{\prime}}, \frac{r^{\prime}-1}{r^{\prime}}, \frac{s^{\prime}-1}{s^{\prime}}\right\}$ and $\mathcal{F}=(\mathcal{C}, \mathcal{E}) \in L^{p^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right) \times$ $L^{q^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right) \cap L^{r^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right) \times L^{s^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right)$ a closed-coexact field of differential $\ell$-forms.

The key tool used in establishing (2.1) is the stability of the Hodge decomposition theorem under nonlinear perturbations of differential forms, first discovered by Iwaniec [3].

Lemma 2.3 For $\omega \in L^{r(1-\varepsilon)}\left(R^{n}, \Lambda^{\ell}\right), \varepsilon<\frac{1}{2}$, consider the Hodge decomposition

$$
|\omega|^{-\varepsilon} \omega=d \alpha+d^{*} \beta, \quad \text { with } \alpha \in L_{1}^{r}\left(R^{n}, \bigwedge^{\ell-1}\right) \text { and } \beta \in L_{1}^{r}\left(R^{n}, \bigwedge^{\ell+1}\right) \text {. }
$$

If $\omega$ is closed, then

$$
\left\|d^{*} \beta\right\|_{r} \leq c(n) r|\varepsilon|\|\omega\|_{r(1-\varepsilon)}^{1-\varepsilon} .
$$

If $\omega$ is coclosed, then

$$
\|d \alpha\|_{r} \leq c(n) r|\varepsilon|\|\omega\|_{r(1-\varepsilon)}^{1-\varepsilon} .
$$

In the proof of Theorem 2.1, we will also need the Poincaré and SobolevPoincaré inequalities, which can be found in [2], see also [4, 5].

Lemma 2.4 Suppose that $\omega \in \mathcal{D}^{\prime}\left(B, \Lambda^{\ell}\right)$ and $d \omega \in L^{p}\left(B, \Lambda^{\ell+1}\right), \ell=$ $0,1, \cdots, n$. Then $\omega-\omega_{B}$ is in $L^{p}\left(B, \Lambda^{\ell}\right)$ and we have the following uniform estimate

$$
\left(\int_{B}\left|\omega-\omega_{B}\right|^{p} d x\right)^{1 / p} \leq C(p, n) \operatorname{diam}(B)\left(\int_{B}|d \omega|^{p} d x\right)^{1 / p}
$$

for $B$ a cube or a ball in $R^{n}$.
Lemma 2.5 Suppose that $\omega \in \mathcal{D}^{\prime}\left(B, \Lambda^{\ell}\right)$ and $d \omega \in L^{p}\left(B, \Lambda^{\ell+1}\right)$, $\ell=$ $0,1, \cdots, n$ and $1<p<n$. Then $\omega-\omega_{B}$ is in $L^{n p /(n-p)}\left(B, \wedge^{\ell}\right)$ and we have the following uniform estimate

$$
\begin{equation*}
\left(\int_{B}\left|\omega-\omega_{B}\right|^{n p /(n-p)} d x\right)^{(n-p) / n p} \leq C(p, n)\left(\int_{B}|d \omega|^{p} d x\right)^{1 / p} \tag{2.2}
\end{equation*}
$$

for $B$ a cube or a ball in $R^{n}$.
The following lemma comes from [6], which is an elementary inequality for differential $\ell$-forms.

Lemma 2.6 Suppose that $X, Y \in \Lambda^{\ell}$ be two differential $\ell$-forms and $0 \leq$ $\varepsilon<1$. Then

$$
\left||X|^{-\varepsilon} X-|Y|^{-\varepsilon} Y\right| \leq \frac{2^{\varepsilon}(1+\varepsilon)}{1-\varepsilon}|X-Y|^{1-\varepsilon}
$$

Proof of Theorem 2.1 We define the values of the coefficients of $\mathcal{C}$ and $\mathcal{E}$ to be 0 outside $B_{R}$. Let us decompose, according to Lemma 2.3, with $\omega=\mathcal{C} \in$ $L^{p^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right)$,

$$
\left\{\begin{array}{l}
|\mathcal{C}|^{-\varepsilon} \mathcal{C}=d \alpha_{1}+d^{*} \beta_{1}, \quad \alpha_{1} \in L_{1}^{p^{\prime}}\left(B_{R}, \bigwedge^{\ell-1}\right), \beta_{1} \in L_{1}^{p^{\prime}}\left(B_{R}, \bigwedge^{\ell+1}\right),  \tag{2.3}\\
\left\|d \alpha_{1}\right\|_{p^{\prime}} \leq c(n) p^{\prime}|\varepsilon|\|\mathcal{C}\|_{p^{\prime}(1-\varepsilon)}^{1-\varepsilon},
\end{array}\right.
$$

and then with $\omega=d\left(\psi\left(u-u_{B_{R}}\right)\right) \in L^{q^{\prime}(1-\varepsilon)}\left(B_{R}, \Lambda^{\ell}\right)$,

$$
\left\{\begin{array}{c}
\left|d\left(\psi\left(u-u_{B_{R}}\right)\right)\right|^{-\varepsilon} d\left(\psi\left(u-u_{B_{R}}\right)\right)=d \alpha_{2}+d^{*} \beta_{2},  \tag{2.4}\\
\alpha_{2} \in L_{1}^{q^{\prime}}\left(B_{R}, \Lambda^{\ell-1}\right), \beta_{2} \in L_{1}^{q^{\prime}}\left(B_{R}, \Lambda^{\ell+1}\right), \\
\left\|d^{*} \beta_{2}\right\|_{q^{\prime}} \leq c(n) q^{\prime}|\varepsilon|\left\|d\left(\psi\left(u-u_{B_{R}}\right)\right)\right\|_{q^{\prime}(1-\varepsilon)}^{1-\varepsilon}
\end{array}\right.
$$

(2.3) and (2.4) imply

$$
\begin{equation*}
\left\|d^{*} \beta_{1}\right\|_{p^{\prime}} \leq c(n) p^{\prime}\|\mathcal{C}\|_{p^{\prime}(1-\varepsilon)}^{1-\varepsilon} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|d \alpha_{2}\right\|_{q^{\prime}} \leq c(n) q^{\prime}\left\|d\left(\psi\left(u-u_{B_{R}}\right)\right)\right\|_{q^{\prime}(1-\varepsilon)}^{1-\varepsilon} \tag{2.6}
\end{equation*}
$$

respectively.
Let us introduce a differential $\ell$-form

$$
E=\left|d\left(\psi\left(u-u_{B_{R}}\right)\right)\right|^{-\varepsilon} d\left(\psi\left(u-u_{B_{R}}\right)\right)-|\psi d u|^{-\varepsilon} \psi d u,
$$

then by Lemma 2.5 one has

$$
\begin{equation*}
|E| \leq \frac{2^{\varepsilon}(1+\varepsilon)}{1-\varepsilon}\left|d \psi \wedge\left(u-u_{B_{R}}\right)\right|^{1-\varepsilon} . \tag{2.7}
\end{equation*}
$$

Since coclosed forms are orthogonal to exact forms, then

$$
\begin{align*}
& \int_{B_{R}} \psi^{1-\varepsilon} \frac{\langle\mathcal{C}, \mathcal{E}\rangle}{|\mathcal{C}|^{\varepsilon}|\mathcal{E}|^{\varepsilon}} d x \\
= & \left.\left.\int_{B_{R}}\langle | \mathcal{C}\right|^{-\varepsilon} \mathcal{C},|\psi d u|^{-\varepsilon} \psi d u\right\rangle d x \\
= & \left.\left.\int_{B_{R}}\langle | \mathcal{C}\right|^{-\varepsilon} \mathcal{C},\left|d\left(\psi\left(u-u_{B_{R}}\right)\right)\right|^{-\varepsilon} d\left(\psi\left(u-u_{B_{R}}\right)\right)-E\right\rangle d x  \tag{2.8}\\
= & \left.\int_{B_{R}}\left\langle d \alpha_{1}+d^{*} \beta_{1}, d \alpha_{2}+d^{*} \beta_{2}\right\rangle d x-\left.\int_{B_{R}}\langle | \mathcal{C}\right|^{-\varepsilon} \mathcal{C}, E\right\rangle d x \\
= & \left.\int_{B_{R}}\left\langle d \alpha_{1}, d \alpha_{2}\right\rangle d x+\int_{B_{R}}\left\langle d^{*} \beta_{1}, d^{*} \beta_{2}\right\rangle d x-\left.\int_{B_{R}}\langle | \mathcal{C}\right|^{-\varepsilon} \mathcal{C}, E\right\rangle d x \\
= & I_{1}+I_{2}+I_{3} .
\end{align*}
$$

Our nearest goal is to estimate $\left|I_{1}\right|,\left|I_{2}\right|$ and $\left|I_{3}\right|$ for sufficiently small $\varepsilon$, say $2 \varepsilon \leq \min \left\{\frac{p^{\prime}}{p^{\prime}-1}, \frac{q^{\prime}}{q^{\prime}-1}, \frac{r^{\prime}}{r^{\prime}-1}, \frac{s^{\prime}}{s^{\prime}-1}\right\} .\left|I_{1}\right|$ can be estimated by (2.3) and (2.6) as

$$
\begin{align*}
\left|I_{1}\right| & =\left|\int_{B_{R}}\left\langle d \alpha_{1}, d \alpha_{2}\right\rangle d x\right| \leq\left\|d \alpha_{1}\right\|_{p^{\prime}}\left\|d \alpha_{2}\right\|_{q^{\prime}}  \tag{2.9}\\
& \leq c\left(n, p^{\prime}\right)|\varepsilon|\|\mathcal{C}\|_{p^{\prime}(1-\varepsilon)}^{1-\varepsilon}\left\|d\left(\psi\left(u-u_{B_{R}}\right)\right)\right\|_{q^{\prime}(1-\varepsilon)}^{1-\varepsilon} .
\end{align*}
$$

$\left|I_{2}\right|$ can be estimated by (2.4) and (2.5) as

$$
\begin{align*}
\left|I_{2}\right| & =\left|\int_{B_{R}}\left\langle d^{*} \beta_{1}, d^{*} \beta_{2}\right\rangle d x\right| \leq\left\|d^{*} \beta_{1}\right\|_{p^{\prime}}\left\|d^{*} \beta_{2}\right\|_{q^{\prime}}  \tag{2.10}\\
& \leq c\left(n, p^{\prime}\right)|\varepsilon|\|\mathcal{C}\|_{p^{\prime}(1-\varepsilon)}^{1-\varepsilon}\left\|d\left(\psi\left(u-u_{B_{R}}\right)\right)\right\|_{q^{\prime}(1-\varepsilon)}^{1-\varepsilon} .
\end{align*}
$$

$\left|I_{3}\right|$ can be estimated by (2.7) and Lemma 2.4 as

$$
\begin{align*}
\left|I_{3}\right| & \left.=\left|\int_{B_{R}}\langle | \mathcal{C}\right|^{-\varepsilon} \mathcal{C}, E\right\rangle d x \mid \\
& \leq \frac{2^{\varepsilon}(1+\varepsilon)}{1-\varepsilon} \int_{B_{R}}|\mathcal{C}|^{1-\varepsilon}\left|d \psi \wedge\left(u-u_{B_{R}}\right)\right|^{1-\varepsilon} d x \\
& \leq c(n)\|\nabla \psi\|_{\infty}^{1-\varepsilon} \int_{B_{R}}|\mathcal{C}|^{1-\varepsilon}\left|u-u_{B_{R}}\right|^{1-\varepsilon} d x \\
& \leq c(n)\|\nabla \psi\|_{\infty}^{1-\varepsilon}\left(\int_{B_{R}}|\mathcal{C}|^{(1-\varepsilon) r^{\prime}} d x\right)^{1 / r^{\prime}}\left(\int_{B_{R}}\left|u-u_{B_{R}}\right|^{r^{\prime}(1-\varepsilon) /\left(r^{\prime}-1\right)} d x\right)^{\left(r^{\prime}-1\right) / r^{\prime}} \\
& \leq c\left(n, r^{\prime}\right)\|\nabla \psi\|_{\infty}^{1-\varepsilon}\|\mathcal{C}\|_{r^{\prime}(1-\varepsilon)}^{1-\varepsilon}\|d u\|_{s^{\prime}(1-\varepsilon)}^{1-\varepsilon}, \tag{2.11}
\end{align*}
$$

where we recall that $\frac{1}{r^{\prime}}+\frac{1}{s^{\prime}}=1+\frac{1-\varepsilon}{n}$. Combining (2.8)-(2.11) we arrive at (2.1), completing the proof of Theorem 2.1.

Proof of Theorem 2.2 Similar to the proof of Theorem 2.1.

## 3 An Application to Weakly Quasiregular Mappings

We now give an application of Theorem 2.1 to quasiregular mappings. Let $\Omega \subset \mathrm{R}^{n}, n \geq 2$, and $f=\left(f^{1}, f^{2}, \cdots, f^{n}\right) \in W_{l o c}^{1, r}\left(\Omega, \mathrm{R}^{n}\right), 1 \leq r<\infty$. The differential $D f(x): \Omega \rightarrow G L(n)$ and its determinant $\mathcal{J}_{f}(x)=\operatorname{det} D f(x)$ are, therefore, defined almost everywhere in $\Omega$. We assume that $\mathcal{J}_{f}(x)$ is nonnegative.

Definition 3.1 A mapping $f \in W_{l o c}^{1, r}\left(\Omega, R^{n}\right)$ is said to be weakly $K$-quasiregular, $1 \leq K<\infty$, if

$$
\max _{|\xi|=1}|D f(x) \xi| \leq K \min _{|\xi|=1}|D f(x) \xi|
$$

for almost every $x \in \Omega$. It is called $K$-quasiregular if $r$ is equal to the dimension of the domain, thus $\mathcal{J}_{f}(x) \in L_{\text {loc }}^{1}(\Omega)$.

The theory of quasiregular mappings is a central topic in modern analysis with important connections to a variety of topics as elliptic partial differential equations, complex dynamics, differential geometry and calculus of variations; see $[7,8]$ and the references therein. For the recent developments of quasiregular mapping theory, see [7-12].

If we introduce, for every $K$-quasiregular mapping $f$, a metric tensor $G(x)$ on $\Omega$,

$$
G(x)= \begin{cases}\mathcal{J}_{f}^{-2 / n}(x) D^{t} f(x) D f(x), & \text { for } \mathcal{J}_{f}(x) \neq 0 \\ \operatorname{Id}, & \text { for } \mathcal{J}_{f}(x)=0\end{cases}
$$

where $D^{t} f(x)$ and Id are the transpose of $D f(x)$ and the identity matrix, respectively, then quasiregular mappings are simply weak solutions to the differential system

$$
D^{t} f(x) D f(x)=\mathcal{J}_{f}^{2 / n}(x) G(x),
$$

commonly called the $n$-dimensional Beltrami equation.
Fix an ordered $\ell$-tuple $I=\left(i_{1}, i_{2}, \cdots, i_{\ell}\right)$ and its complementary $(n-1)$ tuple $J=\left(j_{1}, j_{2}, \cdots, j_{n-\ell}\right)$ ordered in such a way that $d x_{I}=* d x_{J}$. Suppose that $r \geq \max \{\ell, n-\ell\}$. To each such pair $(I, J)$ we assign the differential form

$$
u_{I}=f^{i_{\ell}} d f^{i_{1}} \wedge \cdots \wedge d f^{i_{\ell-1}} \in L_{l o c}^{n /(n-1)}\left(\Omega, \bigwedge^{\ell-1}\right)
$$

and the conjugate form

$$
v_{J}=* f^{j_{1}} d f^{j_{2}} \wedge \cdots \wedge d f^{j_{n-\ell}} \in L_{l o c}^{n /(n-1)}\left(\Omega, \bigwedge^{\ell+1}\right)
$$

The degree of local integrability is verified by the Sobolev embedding theorem. Clearly,

$$
d u_{I}=(-1)^{\ell-1} d f^{i_{1}} \wedge \cdots \wedge d f^{i_{\ell}} \in L_{l o c}^{1}\left(\Omega, \bigwedge^{\ell}\right)
$$

and

$$
d^{*} v_{J}=(-1)^{\ell+1} * d f^{j_{1}} \wedge \cdots \wedge d f^{j_{n-\ell}} \in L_{l o c}^{1}\left(\Omega, \bigwedge^{\ell}\right)
$$

From [3], we know that the differential forms $d u_{I}, d^{*} v_{j} \in L_{l o c}^{1}\left(\Omega, \Lambda^{\ell}\right)$ satisfy the $p$-harmonic and the conjugate $q$-harmonic equations

$$
\begin{gather*}
d^{*} \mathcal{A}\left(x, d u_{I}\right)=0  \tag{3.1}\\
d \mathcal{A}^{-1}\left(x, d^{*} v_{J}\right)=0 \tag{3.2}
\end{gather*}
$$

respectively, where

$$
\begin{gathered}
\mathcal{A}(x, \xi)=\left\langle\left(G_{\#}^{\ell}\right)^{-1}(x) \xi, \xi\right\rangle^{(p-2) / 2}\left(G_{\#}^{\ell}\right)^{-1}(x) \xi, \quad p=\frac{n}{\ell} \\
\mathcal{A}^{-1}(x, \xi)=\left\langle\left(G_{\#}^{\ell}\right)(x) \xi, \xi\right\rangle^{(q-2) / 2}\left(G_{\#}^{\ell}\right)(x) \xi, \quad q=\frac{n}{n-\ell},
\end{gathered}
$$

and the following estimates hold

$$
\begin{gather*}
\left\langle\mathcal{A}\left(x, d u_{I}\right), d u_{I}\right\rangle \geq c_{1}\left|d u_{I}\right|^{p},  \tag{3.4}\\
\left|\mathcal{A}\left(x, d u_{I}\right)\right| \leq c_{2}\left|d u_{I}\right|^{p-1} . \tag{3.5}
\end{gather*}
$$

We recall a famous regularity result due to T.Iwaniec, see [3, Theorem 3].
Theorem 3.2 There exist exponents $q=q(n, K)<n<p(n, K)=p$ such that every weakly $K$-quasiregular mapping of class $W_{\text {loc }}^{1, q}\left(\Omega, R^{n}\right)$ belongs to $W_{l o c}^{1, p}\left(\Omega, R^{n}\right)$ and so is $K$-quasiregular.

We now give an alternative proof of Theorem 3.1 by using Theorem 2.1. Similarly, Theorem 3.1 can also be proved by using Theorem 2.2.

An examination of [3] reveals that Theorem 3.1 is based on a weak reverse Hölder inequality. Instead of rewriting all the needed steps, we only prove the following lemma, which is sufficient to the proof of Theorem 3.1.

Lemma 3.3 For every weakly $K$-quasiregular mapping of class $W_{\text {loc }}^{1, n(1-\varepsilon)}\left(\Omega, R^{n}\right)$, we have the weakly reverse Hölder inequality

$$
\begin{equation*}
f_{B_{R / 2}}\left|d u_{I}\right|^{p(1-\varepsilon)} d x \leq \theta f_{B_{R}}\left|d u_{I}\right|^{p(1-\varepsilon)} d x+\left(f_{B_{R}}\left|d u_{I}\right|^{\frac{n p(1-\varepsilon)}{n+1-\varepsilon}} d x\right)^{\frac{n+1-\varepsilon}{n}} . \tag{3.6}
\end{equation*}
$$

provided that $\varepsilon$ small enough, where $f_{B_{R}}=\frac{1}{\left|B_{R}\right|} \int_{B}$ is the integral mean over $B_{R}$.

Proof. For quasiregular mapping $f \in W_{l o c}^{1, n(1-\varepsilon)}\left(\Omega, \mathrm{R}^{n}\right)$, we introduce two differential $\ell$-forms $\mathcal{C}=\mathcal{A}\left(x, d u_{I}\right)$ and $\mathcal{E}=d u_{I}$, then by (3.1), it is obvious that $\mathcal{F}=(\mathcal{C}, \mathcal{E})$ is a coclosed-exact pair. For $B_{R} \subset \subset \Omega$, take $\psi \in C_{0}^{\infty}\left(B_{R}\right)$ such that $0 \leq \psi \leq 1, \psi \equiv 1$ on $B_{R / 2}$ and $|\nabla \psi| \leq \frac{c(n)}{R}$. Then by (3.4) and (3.5),

$$
\begin{equation*}
\int_{B_{R}} \psi^{1-\varepsilon} \frac{\mathcal{J}(x, \mathcal{F})}{|\mathcal{C}|^{\varepsilon}|\mathcal{E}|^{\varepsilon}} d x=\int_{B_{R}} \psi^{1-\varepsilon} \frac{\left\langle\mathcal{A}\left(x, d u_{I}\right), d u_{I}\right\rangle}{\left|\mathcal{A}\left(x, d u_{I}\right)\right|^{\varepsilon}\left|d u_{I}\right|^{\varepsilon}} d x \geq c \int_{B_{R / 2}}\left|d u_{I}\right|^{p(1-\varepsilon)} d x \tag{3.7}
\end{equation*}
$$

Take $p^{\prime}=\frac{p}{p-1}$ and $q^{\prime}=p$ we obtain from Lemma 2.4 that

$$
\begin{align*}
& \varepsilon\|\mathcal{C}\|_{p^{\prime}(1-\varepsilon)}^{1-\varepsilon}\left\|d\left(\psi\left(u_{I}-\left(u_{I}\right)_{B_{R}}\right)\right)\right\|_{q^{\prime}(1-\varepsilon)}^{1-\varepsilon} \\
\leq & \varepsilon\|\mathcal{C}\|_{p^{\prime}(1-\varepsilon)}^{1-\varepsilon}\left[\left\|\psi d u_{I}\right\|_{q^{\prime}(1-\varepsilon)}^{1-\varepsilon}+\left\|d \psi \wedge\left(u_{I}-\left(u_{I}\right)_{B_{R}}\right)\right\|_{q^{\prime}(1-\varepsilon)}^{1-\varepsilon}\right] \\
\leq & c \varepsilon\|\mathcal{C}\|_{p^{\prime}(1-\varepsilon)}^{1-\varepsilon}\left[\left\|d u_{I}\right\|_{q^{\prime}(1-\varepsilon)}^{1-\varepsilon}+\frac{1}{R^{1-\varepsilon}}\left\|\left(u_{I}-\left(u_{I}\right)_{B_{R}}\right)\right\|_{q^{\prime}(1-\varepsilon)}^{1-\varepsilon}\right]  \tag{3.8}\\
\leq & c \varepsilon\left\|d u_{I}\right\|_{p(1-\varepsilon)}^{(p-1)(1-\varepsilon)}\left[\left\|d u_{I}\right\|_{p(1-\varepsilon)}^{1-\varepsilon}+\frac{1}{R^{1-\varepsilon}}\left\|\left(u_{I}-\left(u_{I}\right)_{B_{R}}\right)\right\|_{p(1-\varepsilon)}^{1-\varepsilon}\right] \\
\leq & c \varepsilon\left\|d u_{I}\right\|_{p(1-\varepsilon)}^{p(1-\varepsilon)} .
\end{align*}
$$

Take $r^{\prime}=\frac{n p}{(p-1)(n+1-\varepsilon)}$ and $s^{\prime}=\frac{n p}{n+1-\varepsilon}$, we obtain

$$
\begin{align*}
& \|\nabla \psi\|_{\infty}^{1-\varepsilon}\|\mathcal{C}\|_{r^{\prime}(1-\varepsilon)}^{1-\varepsilon}\left\|d u_{I}\right\|_{s^{\prime}(1-\varepsilon)}^{1-\varepsilon} \\
\leq & \frac{c}{R^{1-\varepsilon}}\left\|d u_{I}\right\|_{\frac{p-1)(1)-\varepsilon}{p+\varepsilon)}}^{p+\varepsilon}\left\|d u_{I}\right\|_{\frac{n p(1-\varepsilon)}{1-\varepsilon}}^{n+1-\varepsilon}  \tag{3.9}\\
= & \frac{c}{R^{1-\varepsilon}}\left\|d u_{I}\right\|_{\frac{n p(1-\varepsilon}{p+1-\varepsilon)}}^{n+1-\varepsilon} .
\end{align*}
$$

Combining (2.1) with (3.7), (3.8) and (3.9) we get that

$$
\int_{B_{R / 2}}\left|d u_{I}\right|^{p(1-\varepsilon)} d x \leq c \varepsilon \int_{B_{R}}\left|d u_{I}\right|^{p(1-\varepsilon)} d x+\frac{c}{R^{1-\varepsilon}}\left(\int_{B_{R}}\left|d u_{I}\right|^{\frac{n p(1-\varepsilon)}{n+1-\varepsilon}} d x\right)^{\frac{n+1-\varepsilon}{n}} .
$$

Divide both sides of the above inequality by $\left|B_{R / 2}\right|=\omega_{n}(R / 2)^{n}$ we obtain

$$
f_{B_{R / 2}}\left|d u_{I}\right|^{p(1-\varepsilon)} d x \leq c \varepsilon f_{B_{R}}\left|d u_{I}\right|^{p(1-\varepsilon)} d x+c\left(f_{B_{R}}\left|d u_{I}\right|^{\frac{n p(1-\varepsilon)}{n+1-\varepsilon}} d x\right)^{\frac{n+1-\varepsilon}{n}} .
$$

Take $\varepsilon$ small enough such that $\theta=c \varepsilon<1$, we arrive at (3.7). Lemma 3.3 has been proved.

ACKNOWLEDGEMENT. This research is supported by NSF of Hebei Province (A2011201011).

## References

[1] T.Iwaniec and A.Lutoborski, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal., 1993, 125, 25-79.
[2] T.Iwaniec, Nonlinear differential forms, Lectures in Jyväskylä, 1998.
[3] T.Iwaniec, $p$-harmonic tensors and quasiregular mappings, Ann. of Math., 1992, 136, 589-624.
[4] B.Stroffolini, On weakly $\mathcal{A}$-harmonic tensors, Studia Math., 1995, 114(3), 289-301.
[5] H.Y.Gao and H.L.Zhao, Integrability for the Jacobian of orientationpreserving forms, Science in China, 2005, 35(9), 1060-1070.
[6] T.Iwaniec, L.Migliaccio, L.Nania and C.Sbordone, Integrability and removability results for quasiregular mappings in high dimensions, Math. Scand., 1994, 75, 263-279.
[7] T.Iwaniec and G.Martin, Geometric function theory and non-linear analysis, Clarendon Press, Oxford, 2001.
[8] Yu.G.Reshetnyak, Space mappings with bounded distortion, Trans. Math. Monographs, 73, Amer. Math. Soc., 1989.
[9] O.Martio, V.Ryazanov, U.Srebro and E.Yakubov, Moduli in modern mapping theory, Springer, 2009.
[10] K.Astala, T.Iwaniec and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton University Press, 2009.
[11] H.Y.Gao, Regularity for weakly ( $K_{1}, K_{2}$ )-quasiregular mappings, Science in China, 2003, 46(4), 499-505.
[12] C.Sbordone, New estimates for Div-Curl products and very weak solutions of PDEs, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1997, XXV, 739-756.

Received: January, 2014

