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Abstract

In this paper we obtain boundedness results for Hardy-Littlewood
maximal operator and Hilbert transform in weighted grand L∞ space

L
∞)
w (Ω) with the weight w ∈ A∞.
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1 Introduction

Let I = (0, 1). The classical Hardy-Littlewood maximal operator M is defined
by

Mf(x) = sup
I⊃J∋x

1

|J |

∫

J
|f(t)|dt, x ∈ (0, 1),

where the supremum extends over all non-degenerate intervals, contained in I,
containing x and |J | denoted the Lebesgue measure of J .
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The Hilbert transform H is defined by

Hf(x) = p.v.
∫

I

f(t)

x− t
dt, x ∈ (0, 1),

where p.v. stands for principal value.
For some properties of Hardy-Littlewood maximal operator and Hilbert

transform, see [1].
Let w be a weight on I, that is, a positive almost everywhere integrable

function on I. Let 1 < p < ∞. We say that a weight w belongs to the
Muckenhoupt class Ap(I) (w ∈ Ap(I)) if

Ap(w, I) = sup
J

(

1

|J |

∫

J
w(x)dx

)(

1

|J |

∫

J
w1−p′(t)dt

)p−1

< ∞,

where the supremum is taken over all intervals J ⊂ I, and p′ : 1
p′
+ 1

p
= 1.

We define A∞ =
⋃

1<p<∞

Ap. For a weight w and a measurable set E, we define

w(E) =
∫

E w(x)dx. The weighted Lebesgue spaces with respect to the measure
w(x)dx are denoted by Lp

w(I) with 1 ≤ p < ∞.
Let w be a weight. The weighted grand L∞ space L∞)

w (I) is defined in [2]
by

L∞)
w (I) =







f(x) ∈
⋂

1<p<∞

Lp
w(I) : ‖f‖Lp

w(I) < ∞







,

where

‖f‖Lp

w(I) = sup
1<p<∞

1

p

(

1

w(I)

∫

I
|f(x)|pw(x)dx

)
1

p

.

For some properties of the weighted grand L∞
w spaces, we refer the reader

to [3].
The aim of this paper is to derive boundedness for the Hardy-Littlewood

maximal operator M and the Hilbert transform H in the weighted grand L∞

space L∞)
w (I).

2 Main Results

In order to prove the main theorems of this paper, we need a preliminary
lemma, which can be found in [3].

Lemma 2.1. If w ∈ A∞, then there exists q ∈ (1,∞) such that w ∈ Aq.

We first consider boundedness of the Hardy-Littlewood maximal opera-
tor in weighted grand L∞ space L∞)

w (I). In the framework of the standard
Lebesgue spaces, it is well-known that

‖Mf‖p,w ≤ c‖f‖p,w (2.1)
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is true if and only if w ∈ Ap, 1 < p < ∞.
Theorem 2.1. Let w ∈ A∞. Then

‖Mf‖∞),w ≤ cq‖f‖∞),w.

Proof. By Lemma 2.1, Hölder inequality and (2.1), we have

‖Mf‖∞),w

= sup
1<p<∞

1

p

(

1

w(I)

∫

I
|Mf(x)|pw(x)dx

)
1

p

= max







sup
1<p<q

1

p

(

1

w(I)

∫

I
|Mf(x)|pw(x)dx

)
1

p

, sup
q≤p<∞

1

p

(

1

w(I)

∫

I
|Mf(x)|pw(x)dx

)
1

p







≤ max







sup
1<p<q

1

p

(

1

w(I)

∫

I

(

|Mf(x)|pw(x)
p

q

)
q

p

dx

)
1

q

(

1

w(I)

∫

I

(

w(x)
q−p

q

)

q

q−p

dx

)

q−p

qp

,

sup
q≤p<∞

1

p

(

1

w(I)

∫

I
|Mf(x)|pw(x)dx

)
1

p







= max







sup
1<p<q

1

p

(

1

w(I)

∫

I
|Mf(x)|qw(x)dx

)
1

q

, sup
q≤p<∞

1

p

(

1

w(I)

∫

I
|Mf(x)|pw(x)dx

)
1

p







≤ max







sup
1<p<q

q

p
sup

q≤p<∞

1

p

(

1

w(I)

∫

I
|Mf(x)|pw(x)dx

)
1

p

,

sup
q≤p<∞

1

p

(

1

w(I)

∫

I
|Mf(x)|pw(x)dx

)
1

p







= q sup
q≤p<∞

1

p

(

1

w(I)

∫

I
|Mf(x)|pw(x)dx

)
1

p

≤ cq sup
q≤p<∞

1

p

(

1

w(I)

∫

I
|f(x)|pw(x)dx

)
1

p

≤ cq sup
1≤p<∞

1

p

(

1

w(I)

∫

I
|f(x)|pw(x)dx

)
1

p

= cq‖f‖∞),w.

This ends the proof of Theorem 2.1.
We next consider boundedness of Hilbert transform in weighted grand L∞

space L∞ space L∞)
w (I). It is known that a necessary and sufficient condition

for the boundedness of the Hilbert transform in Lp
w is that w satisfies the

Muckenhoupt condition Ap. That is,

‖Hf‖p,w ≤ c‖f‖p,w (2.2)

holds true if and only if w ∈ Ap.
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Theorem 2.2. Let w ∈ A∞. Then

‖Hf‖∞),w ≤ cq‖f‖∞),w.

Proof. The proof of Theorem 2.2 is similar to that of Theorem 2.1 with
H in place of M . We omit the details.

ACKNOWLEDGEMENTS. Research supported by NSFC(11371050).

References

[1] M.D.Cheng, D.G.Deng, R.L.Long, Real analysis, Higher Education Press,
Beijing, China, 1993.

[2] H.Y.Gao, C.Liu, H.Tian, A generalization of exponential class and its
applications, Abstract Appl. Anal., 2013, Article ID: 476309.

[3] M.Q.Zhou, Lectures on Harmonic Analysis, Beijing University Press, Bei-
jing, China, 1999. (In Chinese)

[4] A.Fiorenza, B.Gupta, P.Jain, The maximal theorem for weighted grand
Lebesgue spaces, Studia Math., 188 (2008), 123-133.

[5] V.Kokilashvill, A.Meskhi, A note on the boundedness of the Hilbert trans-
form in weighted grand Lebesgue spaces, Georgian Math. J., 16 (2009),
547-551.

Received: October, 2014


