Boundedness for Hardy-Littlewood Maximal Operator and Hilbert Transform in Weighted Grand L^{∞} Space

GAO Hongya

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Cui Yi

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Liang Shuang

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China

Abstract

In this paper we obtain boundedness results for Hardy-Littlewood maximal operator and Hilbert transform in weighted grand L^{∞} space $L_w^{\infty}(\Omega)$ with the weight $w \in A_{\infty}$.

Mathematics Subject Classification: 42B25

Keywords: Boundedness, Hardy-Littlewood maximal operator, Hilbert transform, weighted grand L^{∞} space.

1 Introduction

Let I = (0, 1). The classical Hardy-Littlewood maximal operator M is defined by

$$Mf(x) = \sup_{I \supset J \ni x} \frac{1}{|J|} \int_{J} |f(t)| dt, \quad x \in (0, 1).$$

where the supremum extends over all non-degenerate intervals, contained in I, containing x and |J| denoted the Lebesgue measure of J.

The Hilbert transform H is defined by

$$Hf(x) = \text{p.v.} \int_{I} \frac{f(t)}{x-t} dt, \quad x \in (0,1),$$

where p.v. stands for principal value.

For some properties of Hardy-Littlewood maximal operator and Hilbert transform, see [1].

Let w be a weight on I, that is, a positive almost everywhere integrable function on I. Let 1 . We say that a weight <math>w belongs to the Muckenhoupt class $A_p(I)$ ($w \in A_p(I)$) if

$$A_{p}(w,I) = \sup_{J} \left(\frac{1}{|J|} \int_{J} w(x) dx \right) \left(\frac{1}{|J|} \int_{J} w^{1-p'(t)} dt \right)^{p-1} < \infty$$

where the supremum is taken over all intervals $J \subset I$, and $p': \frac{1}{p'} + \frac{1}{p} = 1$. We define $A_{\infty} = \bigcup_{1 . For a weight <math>w$ and a measurable set E, we define $w(E) = \int_E w(x) dx$. The weighted Lebesgue spaces with respect to the measure w(x) dx are denoted by $L^p_w(I)$ with $1 \le p < \infty$.

Let w be a weight. The weighted grand L^{∞} space $L_w^{\infty}(I)$ is defined in [2] by

$$L_w^{\infty)}(I) = \left\{ f(x) \in \bigcap_{1$$

where

$$||f||_{L^p_w(I)} = \sup_{1$$

For some properties of the weighted grand L_w^{∞} spaces, we refer the reader to [3].

The aim of this paper is to derive boundedness for the Hardy-Littlewood maximal operator M and the Hilbert transform H in the weighted grand L^{∞} space $L_w^{\infty}(I)$.

2 Main Results

In order to prove the main theorems of this paper, we need a preliminary lemma, which can be found in [3].

Lemma 2.1. If $w \in A_{\infty}$, then there exists $q \in (1, \infty)$ such that $w \in A_q$.

We first consider boundedness of the Hardy-Littlewood maximal operator in weighted grand L^{∞} space $L_w^{\infty}(I)$. In the framework of the standard Lebesgue spaces, it is well-known that

$$\|Mf\|_{p,w} \le c \|f\|_{p,w} \tag{2.1}$$

Boundedness in Weighted Grand L^{∞} Space

is true if and only if $w \in A_p$, 1 .**Theorem 2.1.** $Let <math>w \in A_\infty$. Then

$$|Mf||_{\infty),w} \le cq ||f||_{\infty),w}$$

Proof. By Lemma 2.1, Hölder inequality and (2.1), we have

This ends the proof of Theorem 2.1.

We next consider boundedness of Hilbert transform in weighted grand L^{∞} space L^{∞} space $L^{\infty}_{w}(I)$. It is known that a necessary and sufficient condition for the boundedness of the Hilbert transform in L^{p}_{w} is that w satisfies the Muckenhoupt condition A_{p} . That is,

$$||Hf||_{p,w} \le c ||f||_{p,w} \tag{2.2}$$

holds true if and only if $w \in A_p$.

Theorem 2.2. Let $w \in A_{\infty}$. Then

$$||Hf||_{\infty),w} \le cq||f||_{\infty),w}.$$

Proof. The proof of Theorem 2.2 is similar to that of Theorem 2.1 with H in place of M. We omit the details.

ACKNOWLEDGEMENTS. Research supported by NSFC(11371050).

References

- M.D.Cheng, D.G.Deng, R.L.Long, Real analysis, Higher Education Press, Beijing, China, 1993.
- [2] H.Y.Gao, C.Liu, H.Tian, A generalization of exponential class and its applications, Abstract Appl. Anal., 2013, Article ID: 476309.
- [3] M.Q.Zhou, Lectures on Harmonic Analysis, Beijing University Press, Beijing, China, 1999. (In Chinese)
- [4] A.Fiorenza, B.Gupta, P.Jain, The maximal theorem for weighted grand Lebesgue spaces, Studia Math., 188 (2008), 123-133.
- [5] V.Kokilashvill, A.Meskhi, A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces, Georgian Math. J., 16 (2009), 547-551.

Received: October, 2014