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Abstract
The two-component µ-Hunter-Saxton system is considered in the

spatially periodic setting. Firstly, a wave-breaking criterion is derived
by employing the localization analysis of the transport equation the-
ory. Using this criterion, then we prove the global existence of strong
solutions for the system.
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1 Introduction

In this article, we will consider the periodic two-component µ-Hunter-Saxton
system derived by Zuo [11]

µ(ut)− utxx = −2µ(u)ux + 2uxuxx + uuxxx + ρρx − γ1uxxx, t > 0, x ∈ R,
ρt = (uρ)x + 2γ2ρx, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,
ρ(0, x) = ρ0(x), x ∈ R,
u(t, x+ 1) = u(t, x), t > 0, x ∈ R,
ρ(t, x+ 1) = ρ(t, x), t > 0, x ∈ R,

(1)
where u(t, x) and ρ(t, x) are time-dependent functions on the unit circle S = R/Z,
µ(u) =

∫
S udx denotes its mean and γi ∈ R, i = 1, 2. It is shown in [11] that

system (1) is an Euler equation with bi-Hamilton structure

Γ1 =

(
∂xA 0

0 ∂x

)
, Γ2 =

(
A(u)∂x + ∂xA(u)− γ1∂3x ρ∂x

∂xρ 2γ2∂x

)
,
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where A(u) = µ(u) − uxx, and also be viewed as a bi-variational equation.
Moreover, for γi = 0, i = 1, 2, system (1) has a Lax pair given by

ψxx = λ(A(u)− λ2ρ2)ψ, ψt = (u− 1

2λ
)ψx −

1

2
uxψ,

where λ is a spectral parameter (see [11]).
In fact, system (1) is a generalization of the generalized Hunter-Saxton

equation [5, 6]

µ(ut)− utxx = −2µ(u)ux + 2uxuxx + uuxxx, (2)

which describes the geodesic flow on Ds(S) with the right-invariant metric
given at the identity by the inner product 〈u, v〉 = µ(u)µ(v) +

∫
S uxvxdx, and

models the propagation of weakly nonlinear orientation waves in a massive ne-
matic liquid crystal with external magnetic nematic field and self-interaction.
Here, the solution u(t, x) denotes the director field of a nematic liquid crys-
tal. It was observed in [5, 6] that the µ-Hunter-Saxton equation is formally
integrable, has bi-Hamiltonian structure and infinite hierarchy of conserva-
tion laws. Further, the development of singularities in finite time and geo-
metric descriptions of the system from nonstretching invariant curve flows in
centro-equiaffine geometries, pseudo-spherical surfaces and affine surfaces are
described by Fu et al [3] .

Recently, Liu and Yin [7, 8] investigated the Cauchy problem for system
(1). In [7], the local well-posedness and several precise blow-up criteria for the
system were obtained. Under the conditions µ0 = 0 and µ0 6= 0, the sufficient
conditions of blow-up solutions were presented. The global existence for strong
solution for system (1) in the Sobolev space Hs(S) × Hs−1(S) with s = 2
is also given [7], and in [8], existence of global weak solution is established
for the periodic two-component µ-Hunter-Saxton system. The objective of
the present paper is to focus mainly on wave-breaking criterion and several
sufficient conditions of blow-up solutions.

Motivated by the works in [4, 9], in the present paper, the localization anal-
ysis in the transport equation theory is employed to derive a new wave-breaking
criterion of solutions for the system (1) in the Sobolev space Hs(S)×Hs−1(S)
with s ≥ 2. It implies that the wave-breaking criterion is determined only by
the slope of the component u of solution definitely. Further, by using the wave-
breaking criterion, we also present a sufficient condition for the existence of
global strong solutions. Motivated by the work in [2]. These results obtained
in this paper are new and different from those in Liu and Yin’s work [7].

The rest of this paper is organized as follows. Section 2 states several
properties for the periodic two-component µ-Hunter-Saxton system and gives
several lemmas. In Section 3, we present a wave-breaking criterion in the
Soblev space Hs(S) × Hs−1(S) with s ≥ 2. An improved result of the global
existence of solutions for system (1) is given in Section 4.
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2 Preliminary

Lemma 2.1 ([7]) Given z0 = (u0, ρ0) ∈ Hs(S) × Hs−1(S), s ≥ 2, then there
exists a maximal T = T (‖ z0 ‖Hs(S)×Hs−1(S)) > 0 and an unique solution
z = (u, ρ) to system (1) such that

z = z(·, z0) ∈ C([0, T );Hs(S))
⋂

C1([0, T );Hs−1(S)).

Lemma 2.2 ([1]) For every f(x) ∈ H1(a, b) periodic and with zero average,

i.e.such that
∫ b
a
f(x)dx = 0, it holds that∫ b

a

f 2(x)dx ≤ (
b− a
2π

)2
∫ b

a

| f ′(x) |2 dx,

and equality holds if and only if

f(x) = A cos(
2πx

b− a
) +B sin(

2πx

b− a
).

Integrating the first equation of system (1) over the circle S = R/Z and
noting the periodicity of u, we have µ(ut) = 0. Making use of system (1),
we have that

∫
S(u

2
x + ρ2)dx is conserved in time (see [7]). In what follows we

denote

µ0 = µ(u0) = µ(u) =

∫
S
u(t, x)dx (3)

and

µ1 =

(∫
S
u2x(t, x) + ρ2(t, x)dx

) 1
2

=

(∫
S
u2x(0, x) + ρ2(0, x)dx

) 1
2

. (4)

Then µ0 and µ1 are constants and independent of time t.
Notice that

∫
S(u(t, x)− µ0)dx = µ0 − µ0 = 0. From Lemma 2.5, we get

max
x∈S

[u(t, x)− µ0]
2 ≤ 1

12

∫
S
u2x(t, x)dx ≤ 1

12

∫
S
u2x(t, x) + ρ2(t, x)dx

=
1

12

∫
S
u2x(0, x) + ρ2(0, x)dx =

1

12
µ2
1, (5)

which implies that the amplitude of wave remains bounded in any time. Namely,
we have

‖ u(t, ·) ‖L∞(S) −|µ0| ≤‖ u(t, ·)− µ0 ‖L∞(S)≤
√

3

6
µ1, (6)
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which results in

‖ u(t, ·) ‖L∞(S)≤ |µ0|+
√

3

6
µ1. (7)

In fact, the initial-value problem (1) can be recast in the following

ut − (u+ γ1)ux = A−1∂x(2µ0u+ 1
2
u2x + 1

2
ρ2), t > 0, x ∈ R,

ρt − (u+ 2γ2)ρx = ρux, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,
ρ(0, x) = ρ0(x), x ∈ R,
u(t, x+ 1) = u(t, x), t > 0, x ∈ R,
ρ(t, x+ 1) = ρ(t, x), t > 0, x ∈ R,

(8)

where A = µ − ∂2x is an isomorphism between Hs and Hs−2 with the inverse
ν = A−1ω given explicitly by

ν(x) = (
x2

2
− x

2
+

13

12
)µ(ω) + (x− 1

2
)

∫ 1

0

∫ y

0

ω(s)dsdy

−
∫ x

0

∫ y

0

ω(s)dsdy +

∫ 1

0

∫ y

0

∫ s

0

ω(r)drdsdy. (9)

Commuting A−1 and ∂x, we get

A−1∂xω(x) = (x− 1

2
)

∫ 1

0

ω(x)−
∫ x

0

ω(y)dy +

∫ 1

0

∫ x

0

ω(y)dydx (10)

and

A−1∂2xω(x) = −ω(x) +

∫ 1

0

ω(x)dx. (11)

Note that if f ∈ L2(S), we have A−1f = (µ−∂2x)−1f = g ∗f , where we denotes
by ∗ convolution and g is the Green’s function of the operator A−1, given by

g(x) =
1

2
(x− 1

2
)2 +

23

24
, (12)

and the derivative of g can be assigned

gx(x) =

{
0, x = 0,
x− 1

2
, x ∈ (0, 1).

(13)

Now, consider the initial value problem for the Lagrangian flow map:{
ηt = u(t,−η) + 2γ2, t ∈ [0, T ),
η(0, x) = x, x ∈ R, (14)
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where u denotes the first component of the solution z = (u, ρ) to system (1).
Applying classical results from ordinary differential equations, one can obtain
the result.

Lemma 2.3 ([7]) Let u ∈ C([0, T );Hs(R))
⋂
C1([0, T );Hs−1(R)), s ≥ 2.

Then Eq.(14) has an unique solution η ∈ C1([0, T ) × R;R). Moreover, the
map η(t, ·) is an increasing diffeomorphism of R with

ηx(t, x) = exp(−
∫ t

0

ux(s,−η(s, x))ds) > 0, (t, x) ∈ [0, T )× R. (15)

Lemma 2.4 ([7]) Let z0 = (u0, ρ0) ∈ Hs(S) × Hs−1(S), s ≥ 2 and let
T > 0 be the maximal existence time of the corresponding solution z = (u, ρ)
to system (1). Then it has

ρ(t,−η(t, x))ηx(t, x) = ρ0(−x), (t, x) ∈ [0, T )× R. (16)

3 Wave-breaking criterion

Theorem 3.1 Let z0 = (u0, ρ0) ∈ Hs(S)×Hs−1(S) with s ≥ 2, and z = (u, ρ)
be the corresponding solution to (1). Assume that T > 0 is the maximal
existence time. Then

T <∞⇒
∫ T

0

‖ ux ‖L∞(S) dτ =∞. (17)

Proof. The proof is similar with that of Theorem 1 in [12] , hence, we
omit the proof of Theorem 3.1.

4 Global existence

In this section, using the above criterion of wave breaking, we provide a suffi-
cient condition for the global solution of system (1).

Theorem 4.1 Let z0 = (u0, ρ0) ∈ Hs(S)×Hs−1(S) with s ≥ 2 and let T be
the maximal time of existence. If γ1 = 2γ2 and ρ0(−x) 6= 0, then the solution
z = (u, ρ) of system (1) with initial value z0 = (u0, ρ0) is global.

Proof. Applying a simple density argument, we only need to consider
the case s = 3. From Lemma 2.3, we know that η(t, ·) is an increasing dif-
feomorphism of R. Setting M(t) = ux(t,−η(t, x)) and ψ(t) = ρ(t,−η(t, x))
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and applying the assumption of theorem and (14), system (8) becomes the
following ordinary differential equations

M ′(t) =
1

2
M2 − 1

2
ψ2(t) + f(t,−η(t.x)), a.e. t ∈ [t0, T ),

ψ′(t) = ψM, a.e. t ∈ [t0, T ), (18)

where f = −2µ0u + 2µ2
0 + 1

2
µ2
1. For every x ∈ S, we know from Lemma 2.4

that ψ(0) and ψ(t) are of the same sign. Define the Lyapunov function

ω(t) = ψ(0)ψ(t) +
ψ(0)

ψ(t)
(1 +M2(t)), (t, x) ∈ [0, T )×R, (19)

which is a positive function of t ∈ [0, T ). From (18), it yields

ω′(t) = ψ(0)ψ′(t)− ψ(0)

ψ2(t)
ψ′(t)(1 +M2(t)) +

2ψ(0)

ψ(t)
MM ′

=
2ψ(0)

ψ(t)
M(f(t,−η(t, x))− 1

2
)

≤ ψ(0)

ψ(t)
(1 +M2)(|f(t,−η(t, x))|+ 1

2
)

≤ (4µ2
0 +

1

2
µ2
1 +

√
3

3
|µ0|µ1 +

1

2
)ω(t), (t, x) ∈ [0, T )×R. (20)

Using the Gronwall’s inequality, we have

ω(t) ≤ ω(0)e(4µ
2
0+

1
2
µ21+

√
3

3
|µ0|µ1+ 1

2
)t

= C3e
C2t, t ∈ [0, T ), (21)

where ω(0) = ρ2(−x) + 1 + u20,x(−x) ≤ 1+ ‖ ρ0 ‖2L∞ + ‖ u0,x ‖2L∞= C3 and

C2 = 4µ2
0 + 1

2
µ2
1 +

√
3
3
|µ0|µ1 + 1

2
.

Since ψ(t) and ψ(0) are of the same sign. The definition of ω(t) implies
|ψ(0)||M(t)| ≤ ω(t) and ψ(0)ψ(t) ≤ ω(t). From (21), we obtain

|ux(t,−η(t, x))| = |M(t)| ≤ 1

|ψ(0)|
ω(t)

≤ 1

|ρ0(−x)|
C3e

C2t, t ∈ [0, T ) (22)

and

|ρ(t,−η(t, x))| = |ψ(t)| ≤ 1

|ψ(0)|
ω(t)

≤ 1

|ρ0(−x)|
C3e

C2t, t ∈ [0, T ). (23)
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Now, we assume on the contrary that T <∞ and the solution blows up in
finite time. It follows from Theorem 3.1 that∫ T

0

‖ ux(t, x) ‖L∞ dt =∞. (24)

From (22), we have

|ux(t, x)| ≤ 1

|ρ0(−x)|
C3e

C2t <∞, (t, x) ∈ [0, T )×R, (25)

which leads to a contradiction. Thus, T = +∞, and the solution z = (u, ρ) is
global. This completes the proof of Theorem 4.1.
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