Mathematica Aeterna, Vol. 5, 2015, no. 2, 351-356

$\mathrm{BG} / \mathrm{BF}_{1} / \mathrm{B} / \mathrm{BM}$-algebras

 are congruence permutableAndrzej Walendziak
Institute of Mathematics and Physics Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland
email: walent@interia.pl

Abstract

We show that every pair of congruences on a BG-algebra (also on a $\mathrm{BF}_{1} / \mathrm{B} / \mathrm{BM}$-algebra) permutes. This result implies that if A is a $\mathrm{BG} / \mathrm{BF}_{1} / \mathrm{B} / \mathrm{BM}$-algebra, then the lattice of all congruences on A is modular. Moreover, it is proved that BF-algebras and BCK-algebras ($\mathrm{BCI} / \mathrm{BCH} / \mathrm{BH}$-algebras, too) are not congruence permutable, in general.

Mathematics Subject Classification: 06F35.
Keywords: $\mathrm{BH} / \mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK} / \mathrm{BM} / \mathrm{B} / \mathrm{BG} / \mathrm{BF} / \mathrm{BF}_{1}$-algebra, congruence, congruence premutable algebra.

1 Introduction

In 1966, Y. Imai and K. Iséki [6] introduced the notion of a BCK-algebra. It is well known that BCK-algebras are inspired by some implicational logic. There exist several generalizations of BCK-algebras such as BCI-algebras ([7]), BCH-algebras ([5]), BH-algebras ([8]) and many others. J. Neggers and H. S. Kim [12] introduced the notion of a B-algebra. In [14], A. Walendziak defined $\mathrm{BF} / \mathrm{BF}_{1}$-algebras which are a generalization of B-algebras. C. B. Kim and H. S. Kim introduced BM-algebras ([9]) and BG-algebras ([10]).

In this paper, we prove that every pair of congruences on a BG-algebra (also on a $\mathrm{BF}_{1} / \mathrm{B} / \mathrm{BM}$-algebra) permutes. This result implies that if A is a $\mathrm{BG} / \mathrm{BF}_{1} / \mathrm{B} / \mathrm{BM}$-algebra, then the lattice of all congruences on A is modular. Moreover we show that BF-algebras and BCK-algebras (BCI/BCH/BHalgebras, too) are not congruence permutable, in general.

2 Preliminaries

An algebra $(A ; *, 0)$ of type $(2,0)$ (i.e., a nonempty set A with a binary operation $*$ and a constant 0) is said to be a $B H$-algebra ([8]) if it satisfies the following axioms:
(B1) $x * x=0$,
(B2) $x * 0=x$,
(BH) $\quad x * y=y * x=0 \Longrightarrow x=y$.
A BCH-algebra ([5]) is a BH-algebra $(A ; *, 0)$ verifying the axiom
$(\mathrm{BCH}) \quad(x * y) * z=(x * z) * y$.
A BH-algebra $(A ; *, 0)$ satisfying the identity
$(\mathrm{BCI}) \quad((x * y) *(x * z)) *(z * y)=0$
is called a BCI-algebra. Recall that according to the H. S. Li's axiom system ([11]), an algebra $(A ; *, 0)$ of type $(2,0)$ is a BCI-algebra if and only if it obeys (B2), (BH), and (BCI).

A BCK-algebra is a BCI-algebra $(A ; *, 0)$ satisfying the following additional axiom:
(BCK) $0 * x=0$.
Remark 2.1. We know that every BCK-algebra is a BCI-algebra and every BCI -algebra is a BCH -algebra and every BCH -algebra is a BH -algebra.

Let $(A ; *, 0)$ be an algebra of type $(2,0)$ verifying identities (B1) and (B2). We say that A is a B-algebra (resp. $B F / B G$-algebra) if A satisfies axiom (B) (resp., (BF)/(BG)), where:
(B) $(x * y) * z=x *[z *(0 * y)]$,
(BF) $0 *(x * y)=y * x$,
(BG) $\quad x=(x * y) *(0 * y)$.
From Proposition 1.5 (b) of [13] and Proposition 2.2 (ii) of [3] we have
Proposition 2.2. Every B-algebra satisfies the identities (BF) and (BG).
Lemma 2.4 (ii) of [10] gives
Proposition 2.3. If $(A ; *, 0)$ is a $B G$-algebra, then $0 *(0 * x)=x$ for all $x \in A$.

An algebra $(A ; *, 0)$ of type $(2,0)$ is called a BM-algebra ([9]) if it satisfies (B2) and the following axiom:
(BM) $(x * y) *(x * z)=z * y$.
Remark 2.4. From Theorem 2.6 of [9] it follows that every BM-algebra is a B-algebra. By Proposition 2.8 of [10], every BG-algebra is a BH-algebra. It is easy to see that (BM) implies (BCI). Therefore the class of BM-algebras is a subclass of the class of BCI-algebras.

A $B F_{1}$-algebra ([14]) is a BF-algebra $(A ; *, 0)$ such that (BG) holds for all $x, y \in A$.

Proposition 2.5. ([14]) An algebra $\mathbf{A}=(A ; *, 0)$ of type $(2,0)$ is a $B F_{1^{-}}$ algebra if and only if it satisfies the laws (B1), (BF), and (BG).

Remark 2.6. Propositions 2.2 and 2.5 show that every B -algebra is a $\mathrm{BF}_{1^{-}}$ algebra and every BF_{1}-algebra is a BG-algebra.

We will denote by $\mathbf{B H}$ (resp., $\mathbf{B C H} / \mathbf{B C I} / \mathbf{B C K} / \mathbf{B M} / \mathbf{B} / \mathbf{B G} / \mathbf{B F} / \mathbf{B F}_{1}$) the class of all BH -algebras (resp., $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK} / \mathrm{BM} / \mathrm{B} / \mathrm{BG} / \mathrm{BF} / \mathrm{BF}_{1}-$ algebras). We get by Remark 2.1 that

$$
\begin{equation*}
\mathrm{BCK} \subset \mathrm{BCI} \subset \mathrm{BCH} \subset \mathrm{BH} \tag{1}
\end{equation*}
$$

and by Remark 2.4 we have

$$
\begin{equation*}
\mathbf{B M} \subset \mathbf{B}, \mathbf{B M} \subset \mathbf{B C I}, \text { and } \mathbf{B G} \subset \mathbf{B H} . \tag{2}
\end{equation*}
$$

Remark 2.6 shows that

$$
\begin{equation*}
\mathbf{B} \subset \mathbf{B F}_{1} \subset \mathbf{B G} . \tag{3}
\end{equation*}
$$

From (1)-(3) we obtain the interrelatioships (see Figure 1) between some of the concepts mentioned above (An arrow indicates proper inclusion, that is, if \mathbf{X} and \mathbf{Y} are classes of algebras, then $\mathbf{X} \rightarrow \mathbf{Y}$ means $\mathbf{X} \subset \mathbf{Y}$.).

3 Results

We shall say that an algebra A has permuting congruences, or that A is congruence permutable, if every pair of congruences on A permutes, that is, $\alpha \circ \beta=\beta \circ \alpha$ for every $\alpha, \beta \in \operatorname{Con} A$ (where $\operatorname{Con} A$ denotes the set of all congruences on A). A variety \mathbf{V} of algebras is said to be congruence permutable if all the algebras in \mathbf{V} have permuting congruences.

Lemma 3.1 (see e.g. [2]) Let \mathbf{V} be a variety of algebras. The variety \mathbf{V} is congruence permutable if and only if there is a 3-ary term t such that the identities $t(x, y, y)=x$ and $t(x, x, y)=y$ are valid in \mathbf{V}.

Figure 1
The class $\mathbf{B M}$ of all BM-algebras is a variety. Similarly, the classes \mathbf{B}, $\mathbf{B G}, \mathbf{B F}$ and $\mathbf{B F}_{1}$ are varieties.

Theorem 3.2. The variety BG is congruence permutable.
Proof. Let $(A ; *, 0)$ be a BG-algebra and let $t(x, y, z)=(x * y) *(0 * z)$. By (BG),

$$
t(x, y, y)=(x * y) *(0 * y)=x
$$

From (B1) and Proposition 2.3 we have

$$
t(x, x, y)=0 *(0 * y)=y
$$

Applying Lemma 3.1 we conclude that the variety $\mathbf{B G}$ is congruence permutable.

Corollary 3.3. The varieties $\mathbf{B F}_{1}, \mathbf{B}$ and $\mathbf{B M}$ are congruence permutable.
Let A be an algebra. With respect to the set inclusion, $\operatorname{Con}(A)$ forms a lattice. The least and largest congruences of A are denoted by 0_{A} and 1_{A}, that is, $0_{A}=\{(a, a): a \in A\}$ and $1_{A}=A^{2}$. It is known (see for an example [1]) that if an algebra A has permuting congruences, then $\operatorname{Con}(A)$ is a modular lattice. From this we have

Theorem 3.4. Let A be $a \mathrm{BG} / \mathrm{BF}_{1} / \mathrm{B} / \mathrm{BM}$-algebra. Then the lattice $\operatorname{Con}(A)$ is modular.

Example 3.5. Let $A=\{0,1,2,3\}$ and $*$ be defined by the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

From [4] it follows that $(A, *, 0)$ is a BCK-algebra. Let $\alpha=0_{A} \cup\{(0,1),(1,0)\}$ and $\beta=0_{A} \cup\{(0,2),(2,0)\}$. It is easy to check that $\alpha, \beta \in \operatorname{Con} A$. We have $(1,2) \in \alpha \circ \beta$ but $(1,2) \notin \beta \circ \alpha$. Therefore $\alpha \circ \beta \neq \beta \circ \alpha$.

Remark 3.6. From the above example we conclude that there is a BCKalgebra which is not congruence permutable. Hence $\mathrm{BCI} / \mathrm{BCH} / \mathrm{BH}$-algebras are not congruence permutable, in general.

Proposition 3.7. There is a BF-algebra which is not congruence permutable.

Proof. Let $A=\{0,1,2,3\}$ and $*$ be defined by the following table:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	0	0
2	2	0	0	0
3	3	0	0	0

It is easy to see that $(A, *, 0)$ is a BF-algebra. Set $\alpha=0_{A} \cup\{(1,2),(2,1)\}$ and $\beta=0_{A} \cup\{(2,3),(3,2)\}$. Obviously, $\alpha, \beta \in \operatorname{Con} A$. We get $(1,3) \in \alpha \circ \beta$ but $(1,3) \notin \beta \circ \alpha$. Then $\alpha \circ \beta \neq \beta \circ \alpha$. Thus A is not congruence permutable.

References

[1] G. Birkhoff, Lattice Theory, 3rd ed., Amer. Math. Soc., Providence, RI, 1967.
[2] S. Burris, H.P. Sankappanavar, A course in Universal Algebra, SpingerVerlag (Berlin 1981).
[3] J.R. Cho, H.S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1-6.
[4] W.A. Dudek, A computer method of computation of BCK and BCIalgebras of small orders, XI Conference on Applied Mathematics, Novi Sad, 1997, pp. 41-64.
[5] Q.P. Hu, X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.
[6] Y. Imai, K. Iséki, On axiom system of propositional calculi, Proc. Japan Acad. 42 (1966), 19-22.
[7] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[8] Y.B. Jun, E.H. Roh, H.S. Kim, On BH-algebras, Sci. Math. Jpn. 1 (1998), 347-354.
[9] C.B. Kim, H.S. Kim, On BM-algebras, Sci. Math. Jpn. 63 (2006), 421-427.
[10] C.B. Kim, H.S. Kim, On BG-algebras, Demonstratio Math. 41 (2008), 497-505.
[11] H.S. Li, An axiom system of BCI-algebras, Math. Japonica 30 (1985), 351-352.
[12] J. Neggers, H.S. Kim, On B-algebras, Mat. Vesnik 54 (2002), 21-29.
[13] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Jpn. 62 (2005), 1-5.
[14] A. Walendziak, On BF-algebras, Math. Slovaca 57 (2007), 119-128.
Received: April, 2015

