New application of power increasing sequences

Hüseyin Bor
P. O. Box 121, 06502 Bahçelievler, Ankara, TURKEY
E-mail: hbor33@gmail.com

Abstract

In the present paper, a main theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors has been generalized to the $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability factors using a new general class of power increasing sequences. Some new results have also been obtained.

Mathematics Subject Classification: 40D15, 40F05, 40G99, 46A45
Keywords: Summability factors, increasing sequences, infinite series , sequence spaces.

1 Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). We write $\mathcal{B} \mathcal{V}_{\mathcal{O}}=\mathcal{B} \mathcal{V} \cap \mathcal{C}_{\mathcal{O}}$, where $\mathcal{C}_{\mathcal{O}}=$ $\left\{x=\left(x_{k}\right) \in \Omega: \lim _{k}\left|x_{k}\right|=0\right\}, \mathcal{B} \mathcal{V}=\left\{x=\left(x_{k}\right) \in \Omega: \sum_{k}\left|x_{k}-x_{k+1}\right|<\infty\right\}$ and Ω being the space of all real or complex-valued sequences. A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi- δ-power increasing sequence if there exists a constant $K=K(\delta, X) \geq 1$ such that $K n^{\delta} X_{n} \geq m^{\delta} X_{m}$ holds for all $n \geq m \geq 1$ (see [9]). Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by t_{n} the nth (C,1) mean of the sequence $\left(n a_{n}\right)$, that is, $t_{n}=\frac{1}{n} \sum_{v=1}^{n} v a_{v}$. A series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [6], [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty . \tag{1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{3}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [7]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \sigma_{n-1}=\sigma_{n}-\sigma_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 \tag{5}
\end{equation*}
$$

In the special case $p_{n}=1$ for all values of $\mathrm{n},\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ summability. Let $\left(\theta_{n}\right)$ be any sequence of positive constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, if (see [11])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{6}
\end{equation*}
$$

If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also, if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability.
Furthermore, if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ (see [4]) summability.
2. Known Result. In [5], we have proved the following main theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors.
Theorem A. Let $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}_{\mathcal{O}}$ and $\left(X_{n}\right)$ be a quasi- δ-power increasing sequence for some $\delta(0<\delta<1)$. Suppose also that there exist sequences $\left(\delta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n}, \tag{7}\\
\beta_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty, \tag{8}\\
\sum_{n=1}^{\infty} n\left|\Delta \beta_{n}\right| X_{n}<\infty, \tag{9}\\
\left|\lambda_{n}\right| X_{n}=O(1) . \tag{10}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left|s_{v}\right|^{k}}{v}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{11}
\end{equation*}
$$

and $\left(p_{n}\right)$ is a sequence such that

$$
\begin{align*}
P_{n} & =O\left(n p_{n}\right), \tag{12}\\
P_{n} \Delta p_{n} & =O\left(p_{n} p_{n+1}\right), \tag{13}
\end{align*}
$$

then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$. If we take $\left(X_{n}\right)$ as an almost increasing sequence in Theorem A , then we get a result which was published in [3]. In this case the condition $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}_{\mathcal{O}}$ is not needed .
Remark. In Theorem A, we can take $\left(\lambda_{n}\right) \in \mathcal{B V}$ instead of $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}_{\mathcal{O}}$, because it s sufficient to prove the theorem .

2 Main Results

The aim of this paper is to generalize Theorem A for $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability. Now, we shall prove the following general theorem.
Theorem. Let $\left(\lambda_{n}\right) \in \mathcal{B V}$ and $\left(X_{n}\right)$ be a quasi- δ-power increasing sequence for some $\delta(0<\delta<1)$. If the conditions (7)-(10), (12)-(13) and

$$
\begin{equation*}
\sum_{v=1}^{n} \theta_{v}^{k-1} v^{-k}\left|s_{v}\right|^{k}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{14}
\end{equation*}
$$

are satisfied and $\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence, then the series $\sum_{n=1}^{\infty} a_{n} \frac{P_{n} \lambda_{n}}{n p_{n}}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$. If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then we obtain Theorem A. In this case, condition (14) reduces to the condition (12) and the condition $"\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence " is automatically satisfied.
We require the following lemmas for the proof of the theorem.
Lemma $1([9])$. Except for the condition $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$, under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as expressed in the statement of the theorem, we have the following :

$$
\begin{align*}
& n X_{n} \beta_{n}=O(1), \tag{15}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty . \tag{16}
\end{align*}
$$

Lemma 2 ([10]). If the conditions (12) and (13) are satisfied, then we have that

$$
\begin{equation*}
\Delta\left(\frac{P_{n}}{n p_{n}}\right)=O\left(\frac{1}{n}\right) . \tag{17}
\end{equation*}
$$

4. Proof of the theorem. Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ mean of the series $\sum_{n=1}^{\infty} \frac{a_{n} P_{n} \lambda_{n}}{n p_{n}}$. Then, by definition, we have

$$
\begin{equation*}
T_{n}=\frac{1}{P_{n}} \sum_{v=1}^{n} p_{v} \sum_{r=1}^{v} \frac{a_{r} P_{r} \lambda_{r}}{r p_{r}}=\frac{1}{P_{n}} \sum_{v=1}^{n}\left(P_{n}-P_{v-1}\right) \frac{a_{v} P_{v} \lambda_{v}}{v p_{v}} . \tag{18}
\end{equation*}
$$

Then, for $n \geq 1$

$$
\begin{equation*}
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} P_{v} a_{v} \lambda_{v}}{v p_{v}}, n \geq 1 . \tag{19}
\end{equation*}
$$

Using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} \Delta\left(\frac{P_{v-1} P_{v} \lambda_{v}}{v p_{v}}\right)+\frac{\lambda_{n} s_{n}}{n} \\
& =\frac{s_{n} \lambda_{n}}{n}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} \frac{P_{v+1} P_{v} \Delta \lambda_{v}}{(v+1) p_{v+1}} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \lambda_{v} \Delta\left(\frac{P_{v}}{v p_{v}}\right)-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} s_{v} P_{v} \lambda_{v} \frac{1}{v} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4} .
\end{aligned}
$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{20}
\end{equation*}
$$

Firstly, by using Abel's transformation, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k} & =\sum_{n=1}^{m} \theta_{n}^{k-1} n^{-k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \theta_{n}^{k-1} n^{-k}\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \theta_{v}^{k-1} v^{-k}\left|s_{v}\right|^{k} \\
& +O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \theta_{n}^{k-1} n^{-k}\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the theorem and Lemma 1.
Now, using the fact that $P_{v+1}=O\left((v+1) p_{v+1}\right)$ by (12), and applying Hölder's inequality we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}}\left|s_{v}\right| p_{v}\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left(\beta_{v}\right)^{k} \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left(\beta_{v}\right)^{k} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k} p_{v}\left(\beta_{v}\right)^{k}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left|s_{v}\right|^{k}\left(\beta_{v}\right)^{k}\left(\frac{p_{v}}{P_{v}}\right) \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(v \beta_{v}\right)^{k-1} v \beta_{v} \frac{1}{v^{k}} \theta_{v}^{k-1}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v \beta_{v} \theta_{v}^{k-1} v^{-k}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \theta_{r}^{k-1} r^{-k}\left|\Delta\left(v \beta_{v}\right)\right| x_{v}+\left.O(1) m\right|_{m} ^{k}+O(1) m \beta_{m} \sum_{v=1}^{m} \theta_{v}^{k-1} v^{-k}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1) m \beta_{m} X_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by virtue of the hypotheses of the theorem and Lemma 1. Again, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} P_{v}\left|s_{v} \| \lambda_{v}\right| \frac{1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} v^{-k} p_{v}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} v^{-k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1} v^{-k} \theta_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \theta_{v}^{k-1} v^{-k}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

in view of the hypotheses of the theorem, Lemma 1 and Lemma 2.
Finally, using Hölder's inequality, as in $T_{n, 3}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 4}\right|^{k} & =\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v} \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} s_{v} \frac{P_{v}}{v p_{v}} p_{v} \lambda\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k}\left(\frac{P_{v}}{p_{v}}\right)^{k} v^{-k} p_{v}\left|\lambda_{v}\right|^{k} \\
& \times\left(\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} v^{-k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|^{k} \frac{1}{P_{v}}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1} v^{-k}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} \theta_{v}^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \theta_{v}^{k-1} v^{-k}\left|s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty .
\end{aligned}
$$

This completes the proof of the theorem. If we take $p_{n}=1$ for all values of n, then we have a new result for $\left|C, 1, \theta_{n}\right|_{k}$ summability. Furthermore, if we take $\theta_{n}=n$, then we have another new result for $\left|R, p_{n}\right|_{k}$ summability. Finally, if we take $p_{n}=1$ for all values of n and $\theta_{n}=n$, then we get a new result dealing with $|C, 1|_{k}$ summability factors of infinite series.

References

[1] S. Aljancic and D. Arandelovic, O-regularly varying functions, Publ. Inst. Math., 22 (1977), 5-22.
[2] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc., 98 (1986), 81-84.
[3] H. Bor, A note on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Indian J. Pure Appl. Math. 18 (1987), 330-336.
[4] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009-1012.
[5] H. Bor, A general note on increasing sequences, J. Inequal. Pure Appl.Math., 8 (2007), Article 82 , (electronic).
[6] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[7] G. H. Hardy, Divergent Series, Oxford Univ. Press., Oxford, (1949).
[8] E. Kogbetliantz, Sur les séries absolument par la méthode des moyannes arithmétiques, Bull. Sci. Math., 49 (1925), 234-256.
[9] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58 (2001), 791-796.
[10] K. N. Mishra and R. S. L. Srivastava, On $\left|\bar{N}, p_{n}\right|$ summability factors of infinite series, Indian J. Pure Appl. Math. 15 (1984), 651-656.
[11] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115 (1992), 313-317.

Received: June, 2012

