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Abstract

In the present paper, a main theorem dealing with | N̄ , pn |k summa-

bility factors has been generalized to the | N̄ , pn, θn |k summability fac-

tors using a new general class of power increasing sequences. Some new

results have also been obtained.
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1 Introduction

A positive sequence (bn) is said to be almost increasing if there exists a
positive increasing sequence (cn) and two positive constants A and B such
that Acn ≤ bn ≤ Bcn (see [1]). We write BVO = BV ∩ CO, where CO =
{ x = (xk) ∈ Ω : limk |xk| = 0 }, BV={ x = (xk) ∈ Ω :

∑

k |xk − xk+1| < ∞ }
and Ω being the space of all real or complex-valued sequences. A positive se-
quence X = (Xn) is said to be a quasi-δ-power increasing sequence if there
exists a constant K = K(δ,X) ≥ 1 such that KnδXn ≥ mδXm holds for all
n ≥ m ≥ 1 (see [9]). Let

∑

an be a given infinite series with partial sums
(sn). We denote by tn the nth (C,1) mean of the sequence (nan), that is ,
tn = 1

n

∑n
v=1 vav . A series

∑

an is said to be summable | C, 1 |k, k ≥ 1 , if (see
[6], [8])

∞
∑

n=1

1

n
| tn |k< ∞. (1)

Let (pn) be a sequence of positive real numbers such that

Pn =
n
∑

v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1). (2)
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The sequence-to-sequence transformation

σn =
1

Pn

n
∑

v=0

pvsv (3)

defines the sequence (σn) of the Riesz mean or simply the (N̄, pn) mean of
the sequence (sn), generated by the sequence of coefficients (pn) (see [7]). The
series

∑

an is said to be summable | N̄ , pn |k, k ≥ 1, if (see [2])

∞
∑

n=1

(Pn/pn)
k−1 | ∆σn−1 |

k< ∞, (4)

where

∆σn−1 = σn − σn−1 = −
pn

PnPn−1

n
∑

v=1

Pv−1av, n ≥ 1. (5)

In the special case pn = 1 for all values of n, | N̄ , pn |k summability is the same
as | C, 1 |k summability. Let (θn) be any sequence of positive constants. The
series

∑

an is said to be summable | N̄ , pn, θn |k, k ≥ 1, if (see [11])

∞
∑

n=1

θk−1

n | ∆σn−1 |
k< ∞. (6)

If we take θn = Pn

pn
, then | N̄, pn, θn |k summability reduces to | N̄, pn |k

summability. Also, if we take θn = n and pn = 1 for all values of n, then we
get | C, 1 |k summability.
Furthermore, if we take θn = n, then | N̄, pn, θn |k summability reduces to
| R, pn |k (see [4]) summability.
2. Known Result. In [5], we have proved the following main theorem dealing
with | N̄, pn |k summability factors.
Theorem A. Let (λn) ∈ BVO and (Xn) be a quasi-δ-power increasing sequence
for some δ (0 < δ < 1) . Suppose also that there exist sequences (δn) and (λn)
such that

| ∆λn |≤ βn, (7)

βn → 0 as n → ∞, (8)

∞
∑

n=1

n | ∆βn | Xn < ∞, (9)

| λn | Xn = O(1). (10)

If
n
∑

v=1

| sv |
k

v
= O(Xn) as n → ∞, (11)
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and (pn) is a sequence such that

Pn = O(npn), (12)

Pn∆pn = O(pnpn+1), (13)

then the series
∑

∞

n=1 an
Pnλn

npn
is summable | N̄ , pn |k ,k ≥ 1. If we take (Xn) as

an almost increasing sequence in Theorem A, then we get a result which was
published in [3]. In this case the condition (λn) ∈ BVO is not needed .
Remark. In Theorem A , we can take (λn) ∈ BV instead of (λn) ∈ BVO ,
because it s sufficient to prove the theorem .

2 Main Results

The aim of this paper is to generalize Theorem A for | N̄, pn, θn |k summability.
Now , we shall prove the following general theorem.
Theorem. Let (λn) ∈ BV and (Xn) be a quasi-δ-power increasing sequence
for some δ (0 < δ < 1). If the conditions (7)-(10), (12)-(13) and

n
∑

v=1

θk−1

v v−k | sv |
k= O(Xn) as n → ∞, (14)

are satisfied and
(

θnpn
Pn

)

is a non-increasing sequence, then the series
∑

∞

n=1 an
Pnλn

npn

is summable | N̄, pn, θn |k, k ≥ 1. If we take θn = Pn

pn
, then we obtain Theorem

A. In this case, condition (14) reduces to the condition (12) and the condition

”
(

θnpn
Pn

)

is a non-increasing sequence ” is automatically satisfied.
We require the following lemmas for the proof of the theorem.
Lemma 1([9]). Except for the condition (λn) ∈ BV , under the conditions
on (Xn), (βn) and (λn) as expressed in the statement of the theorem, we have
the following :

nXnβn = O(1), (15)

∞
∑

n=1

βnXn < ∞. (16)

Lemma 2 ([10]). If the conditions (12) and (13) are satisfied, then we have
that

∆

(

Pn

npn

)

= O
(

1

n

)

. (17)



426 H. Bor

4. Proof of the theorem. Let (Tn) be the sequence of (N̄, pn) mean of the
series

∑

∞

n=1
anPnλn

npn
. Then, by definition, we have

Tn =
1

Pn

n
∑

v=1

pv
v
∑

r=1

arPrλr

rpr
=

1

Pn

n
∑

v=1

(Pn − Pv−1)
avPvλv

vpv
. (18)

Then , for n ≥ 1

Tn − Tn−1 =
pn

PnPn−1

n
∑

v=1

Pv−1Pvavλv

vpv
, n ≥ 1. (19)

Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n−1
∑

v=1

sv∆

(

Pv−1Pvλv

vpv

)

+
λnsn
n

=
snλn

n
+

pn
PnPn−1

n−1
∑

v=1

sv
Pv+1Pv∆λv

(v + 1)pv+1

+
pn

PnPn−1

n−1
∑

v=1

Pvsvλv∆

(

Pv

vpv

)

−
pn

PnPn−1

n−1
∑

v=1

svPvλv

1

v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

∞
∑

n=1

θk−1

n | Tn,r |
k< ∞, for r = 1, 2, 3, 4. (20)

Firstly , by using Abel’s transformation, we have that

m
∑

n=1

θk−1

n | Tn,1 |
k =

m
∑

n=1

θk−1

n n−k | λn |k−1| λn || sn |k

= O(1)
m
∑

n=1

| λn | θk−1

n n−k | sn |k

= O(1)
m−1
∑

n=1

∆ | λn |
n
∑

v=1

θk−1

v v−k | sv |
k

+ O(1) | λm |
m
∑

n=1

θk−1

n n−k | sn |k

= O(1)
m−1
∑

n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)
m−1
∑

n=1

βnXn +O(1) | λm | Xm = O(1) as m → ∞



Application of power increasing sequences 427

by virtue of the hypotheses of the theorem and Lemma 1.
Now, using the fact that Pv+1 = O((v+1)pv+1) by (12), and applying Hölder’s
inequality we have that

m+1
∑

n=2

θk−1

n | Tn,2 |
k = O(1)

m+1
∑

n=2

θk−1

n

(

pn
Pn

)k 1

P k
n−1

|
n−1
∑

v=1

Pvsv∆λv |
k

= O(1)
m+1
∑

n=2

θk−1

n

(

pn
Pn

)k 1

P k
n−1

{

n−1
∑

v=1

Pv

pv
| sv | pv | ∆λv |

}k

= O(1)
m+1
∑

n=2

θk−1

n

(

pn
Pn

)k 1

Pn−1

n−1
∑

v=1

(

Pv

pv

)k

| sv |
k pv (βv)

k

×

(

1

Pn−1

n−1
∑

v=1

pv

)k−1

= O(1)
m
∑

v=1

(

Pv

pv

)k

| sv |
k pv (βv)

k
m+1
∑

n=v+1

(

θnpn
Pn

)k−1
pn

PnPn−1

= O(1)
m
∑

v=1

(

Pv

pv

)k

| sv |
k pv (βv)

k

(

θvpv
Pv

)k−1 m+1
∑

n=v+1

pn
PnPn−1

= O(1)
m
∑

v=1

(

Pv

pv

)k

| sv |
k (βv)

k

(

pv
Pv

)

θk−1

v

(

pv
Pv

)k−1

= O(1)
m
∑

v=1

(vβv)
k−1vβv

1

vk
θk−1

v | sv |
k

= O(1)
m
∑

v=1

vβvθ
k−1

v v−k | sv |
k

= O(1)
m−1
∑

v=1

∆(vβv)
v
∑

r=1

θk−1

r r−k | sr |
k +O(1)mβm

m
∑

v=1

θk−1

v v−k | sv |
k

= O(1)
m−1
∑

v=1

| ∆(vβv) | Xv +O(1)mβmXm

= O(1)
m−1
∑

v=1

v | ∆βv | Xv +O(1)
m−1
∑

v=1

βvXv +O(1)mβmXm = O(1)

as m → ∞, by virtue of the hypotheses of the theorem and Lemma 1. Again,
we have that

m+1
∑

n=2

θk−1

n | Tn,3 |
k = O(1)

m+1
∑

n=2

θk−1

n

(

pn
Pn

)k 1

P k
n−1

{

n−1
∑

v=1

Pv | sv || λv |
1

v

}k

= O(1)
m+1
∑

n=2

θk−1

n

(

pn
Pn

)k 1

Pn−1

n−1
∑

v=1

(

Pv

pv

)k

v−kpv | sv |
k| λv |

k
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×

{

1

Pn−1

n−1
∑

v=1

pv

}k−1

= O(1)
m
∑

v=1

(

Pv

pv

)k

v−k | sv |
k pv | λv |

k
m+1
∑

n=v+1

(

θnpn
Pn

)k−1
pn

PnPn−1

= O(1)
m
∑

v=1

(

Pv

pv

)k−1

v−kθk−1

v

(

pv
Pv

)k−1

| λv |
k−1| λv || sv |

k

= O(1)
m
∑

v=1

| λv | θ
k−1

v v−k | sv |
k

= O(1)
m−1
∑

v=1

βvXv +O(1) | λm | Xm = O(1) as m → ∞,

in view of the hypotheses of the theorem , Lemma 1 and Lemma 2.
Finally, using Hölder’s inequality, as in Tn,3, we have that

m+1
∑

n=2

θk−1

n | Tn,4 |
k =

m+1
∑

n=2

θk−1

n

(

pn
Pn

)k 1

P k
n−1

|
n−1
∑

v=1

sv
Pv

v
λv |

k

= O(1)
m+1
∑

n=2

θk−1

n

(

pn
Pn

)k 1

P k
n−1

|
n−1
∑

v=1

sv
Pv

vpv
pvλ |k

= O(1)
m+1
∑

n=2

θk−1

n

(

pn
Pn

)k 1

Pn−1

n−1
∑

v=1

| sv |
k

(

Pv

pv

)k

v−kpv | λv |
k

×

(

1

Pn−1

n−1
∑

v=1

pv

)k−1

= O(1)
m
∑

v=1

(

Pv

pv

)k

v−k | sv |
k pv | λv |

k 1

Pv

(

θvpv
Pv

)k−1

= O(1)
m
∑

v=1

(

Pv

pv

)k−1

v−k

(

pv
Pv

)k−1

θk−1

v | λv |
k−1| λv || sv |

k

= O(1)
m
∑

v=1

| λv | θ
k−1

v v−k | sv |
k

= O(1)
m−1
∑

v=1

βvXv +O(1) | λm | Xm = O(1) as m → ∞.

This completes the proof of the theorem. If we take pn = 1 for all values of n,
then we have a new result for | C, 1, θn |k summability. Furthermore, if we take
θn = n, then we have another new result for | R, pn |k summability. Finally, if
we take pn = 1 for all values of n and θn = n, then we get a new result dealing
with | C, 1 |k summability factors of infinite series.
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