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Abstract

In this article, we first propose the Riemann-Hilbert problem for
uniformly elliptic complex equations of first order and its well-posed-
ness. Then we give the integral representation of solutions of Riemann-
Hilbert problem for the complex equations. Moreover we shall obtain a
priori estimates of solutions of the modified Riemann-Hilbert problem
and verify its solvability by the method of integral equations. Finally
the solvability results of the original boundary value problem can be
obtained..
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1 Formulation of Riemann-Hilbert problem for
elliptic complex equations of first order

First of all, we introduce the linear elliptic equations of first order

wz=F(z,w,w,), F=Q1(2)wA+Q2(2)wAA; (2)w+As(z)w+As(2), z€ D, (1.1)
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where z =2 +iy, w; = [w, + 1w,]/2 (see [4,9,11]). We assume that equation
(1.1) satisty the following conditions.

Condition C 1) Q;(2), A4;(z) (j = 1,2, 3) are measurable in z € D, and
satisfy B B
L,[A;, D] <k, j=1,2, L,[As, D] < ky, (1.2)

where po, p (2 < po < p), ko, k1 are non-negative constants.
2) The complex equation (1.1) satisfies the uniform ellipticity condition

|Q1(2)] +1Q2(2)] < q (< 1), (1.3)

Qo 1s a non-negative constant.

Let D be an N + 1 (N > 1)-connected bounded domain in C with the
boundary 0D = I' = U;V:()Fj € Ci (0 < p < 1). Without loss of generality, we
assume that D is a circular domain in |z| < 1, bounded by the (N + 1)-circles
Iy |lz—z|=r;,j=0,1,.,Nand Iy =I'yt1: |2 =1, 2=0¢€ D. In this
article, the notations are as the same in References [4-12]. Now we formulate

the Riemann-Hilbert problem for equation (1.1) as follows.

Problem A The Riemann-Hilbert boundary value problem for (1.1) is to
find a continuous solution w(z) in D satisfying the boundary condition:

Re[A(z)w(2)] =¢(z), z € T, (1.4)
where \(z), ¢(z) satisfy the conditions
Ca[A(2), I < ko, Cale(2), I < ke, (1.5)

in which A(z) = a(z)+ib(z), |M(z)| =1 on I', and o (1/2 < o < 1) ia a positive
constant. The index K of Problems A is defined as follows:

N
1
K=K+ +EK,=)Y_ 5-AnargA(2) (j =0,1,..., N) (1.6)
j=0

in which the partial indexes K; = Ap, argA\(2)/27 (j=0,1,..., N) of A(z) are
integers.

Due to when the index K < 0, Problem A may not be solvable, when
K > 0, the solution of Problem A is not necessarily unique. Hence we put for-
ward a well-posed-ness of Riemann—Hilbert problem with modified boundary
conditions.

Problem B Find a continuous solution w(z) of the complex equation (1.1)
in D satisfying the boundary condition

Re[A(z)w(2)] = ¢(z) + h(z), z €T, (1.7)
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where
( 07 KAS FOv
} if K>0
hj, Zerj,j:]_,...,N,
hMz)=19 hj, z€ T}, j=1,..,N, (1.8)
—-K-1 .
f K <0,
ho+Re S (hh+ihy)z" 2 €T, [
\ m=1

in which h;(j =0,1,.., N+1), bt (m=1,...,—K — 1) are unknown real con-
stants to be determined appropriately. Moreover we assume that the solution
w(z) satisfies the following point conditions

M a;)w(a;)] = by, j € J ={1,..,2K+1}, if K >0, (1.9)

where a; € I'g(j = 1,...,2K + 1, if K > 0) are distinct fixed points; and
b;j(j € J) are all real constants satisfying the conditions

| b |[< ks, jeJ, (1.10)

herein k3 is a non-negative constant. Problem B with A3(z, w) = 0in D, ¢(z) =
0 on I" and b, (j € J) is called Problem By.

We mention that the undetermined real constants hj, b in (1.8) are for
ensuring the existence of continuous solutions, and the point conditions in (1.9)
are for ensuring the uniqueness of continuous solutions in D. The advantages
of the new well-posed-ness is simpler than others (see [4-6,11]).

2 Integral representationof solutionsof Riemann-
Hilbert problem for analytic functions

Now we transform the boundary condition (1.7) into the standard form and
first find a solution S(z) of the modified Dirichlet problem with the boundary
condition

We first transform the boundary condition (1.7) into the standard form and
first find a solution S(z) of the modified Dirichlet problem with the boundary
condition

arg \(t)— K argt, t € Ty,

ReS(2)=S1(2)—0(t), Si(t)=
eS(z)=251(2)—0(t), Si(t) {arg/\(t% telyj=L...N, (2.1)
O’ te F07 |
o) - { | Im[S(1)] = 0,
9]_’ tel—‘]’] :1,...,N,
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where 6, (j = 1,..., N) are real constants. Thus the boundary condition (1.7)
into the standard boundary condition

Re[M#)w(t)]| =Re[A()U (1) =c(t)+h(t), tel,
w(z) = eSEW(2),

th t ey,
{ e tely,j=1,...,N,

¥ KeSG) 2ely,
(2)= e zely, j=1,.., N,

A(t) = A(t)eis® =

where the index is also equal to K, and the point constant (1.9) is also equal
to

Im[A(a;)¥(a;)] = bj, j € J, (2.3)
and W(z) satisfies the complex equation
Ue={P[z, U(2)e?, [W(2)eP] }e =) —iS"U(2)},
Uz =Q1(2) V. +e M DQp(2) U+ [As(2) +e7 P (eE)Y QW . (2.4)
+[ —2iReS(z) A _l_e—zS(z (e—zS(z) ]\I/—FQ_ZS(Z A3 2eD.

The above boundary value problem will be called Problem B’. It is easy to
see the equivalence of Problem B with the boundary conditions (1.7), (1.9) for
(1.1) and Problem B’ with the boundary conditions (2.2), (2.3) for (2.4).

Theorem 2.1 Under the above conditions, Problem B with the index K >
0 for analytic functions has a unique solution, which can be expressed by the
integral as stated in (2.10) below.

Proof In this case: the index K > 0, if there are two solutions ¥y (z), WUs(z
two solutions of Problem B’ for analytic functions, then ¥ (z) = ¥y(z) — Uy(2)
satisfies the boundary conditions

)

Re[A[)(1)] = h(t), teT,
A(a;)¥(a;)] =0, j € J,

Im

—

thus we can derive the contraction inequality
2K +1<2Np+ Np = 2K,

where Np, Nr are denoted the zero numbers of U(z) in D and I" respectively,
this zero points formula can be seen as in [1,5]. This contradiction verifies



Applications of integral operators and method of integral equations 887

U(z) =0 in D, and then Wy(2) = ¥y(z) in D. Hence the solution of Problem
B for analytic functions is unique.
Next we shall find the solution of Problem B’, and then obtain the solution
of Problem B. We can introduce
X(2)A(2)e(t)(t + 2)
Py(z,t)=Pny1(z2,t)= { X(t)(t—2)t
0, t € Fj, j - 1,...,N,
e X (2)A\(2)c(t)(t + z — 2z;)
Pi(z,t) = X()(t—2)(t—z)
0,tel’'\l';, j=1,...,N,

, tero,

 tely,

and find a solution of the boundary value problem with the boundary condi-
tions

Re[A(2) P, (2, t)]=—Re[A(2)Q(z, )]+ h(z,1), z€T,
N+1
Q(z,t) = Y Pulzt), z€Tyj=1,. N+, (2.6)
m=1,m#j
(A& P (a5, 0] = —ImfA(a,Q(a. 1), 7 € J,

and
N+1

P(z,t) =Y Pi(z,t)+ Pu(z,t), t €T (2.7)
j=1
is the Schwarz kernel of Problem B’. Thus we get the representation of solutions
of Problem B as follows:
1
27

(2) /F Pe,t)e(t)dt + To(2), (2.8)

in which Wy(z) is the solution of corresponding homogeneous problem, which
can be determined by some point conditions

Alay)
21

Im(A (@ Wo(a,)] = b; — | / Plaj,0)e(t)dl], j€ J. (2.9)
r

Thus the solution of original boundary value problem (Problem B) can be

expressed as

1

1 / Tz, )e(t)dt + Dol2), (2.10)

w(z) = B(z) = V(2)e¥® = 57

where T'(z,t)=P(z,t)e"*?) T(z,t) is the Schwarz kernel, and wq(z) = ®(z)=
Wo(2)e™¥®) is a solution of Problem By with the point conditions

Im[A(a;)Po(a;)] = b; — Im[M/FT(aj,t)c(t)dt], jeJ (2.11)

271
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Theorem 2.2 Under the above conditions, Problem B with the inder K <
0 for analytic functions has a unique solution, which can be expressed a integral
as stated in (2.16) below.

Proof The unique of solutions of Problem B for analytic functions can
seen as in [5]. Moreover similar to the proof of Theorem 2.1, we first find the
solution of Problem B’. If K < 0, we introduce

221Kl X\ (1) c(t)
Py(z,t) = Pyi1(z,t) = eSO (t — 2)tiKl
0, tel, j=1,.,N.
ePieSEN(#)e(t)(t + 2 — 2z;)
Pt =4 0= 2)
0, te\[,, j=1,.. N,

teTly,

(2.12)

, tely,

Similarly to the proof of Theorem 2.1, we can find a solution of the boundary
value problem with the boundary conditions

Re[A(z)Pi(z,t)]=—Re[A(2)Q(z, t)]+h(z, 1), z€T,

iy ‘ (2.13)
Q(z,t)= Y Pulzt), z€Ty, j=1,..,N+1,
m=1,m#j
and
N+1
P(z,t) =Y Pi(z,t)+ Pu(z,t), t €T (2.14)
j=1

is the Schwarz kernel of Problem B’. Thus we get the representation of solutions
of Problem B’ as follows:

@@)—-li/z%@tp@yu. (2.15)

2w

Thus the solution of original boundary value problem (Problem B) can be
expressed as

- 1
w(z) = O(2) = U(2)e¥®) = — [ T(z,t)c(t)dt, (2.16)
2m Jr
in which T'(z,t) = P(z,1)e*®), T(z,t) is the Schwaez kernel. In the above

discussion, we have to use the N — 2K — 1 solvability conditions of Problem
B,if K <0.
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3 Integral representation of solutions for homo-
geneous Riemann-Hilbert problem for elliptic
complex equations

We first consider the homogeneous boundary problem (Problem Bg) for the
complex equation (1.1), and give the integral representation of solutions of
Problem By for (1.1).

Introduce the two double integral operator of homogeneous Riemann-Hilbert
problem in the simple connected domain D as follows

2 F(¢)  2fMF(Q)
TlF_—%// [C—z 1_<Z |doc, it K >0, -
Fo RO |
TQF_——// — 1_@ }da if K <0
It is easy to see that
Re[zZX Ty F(2)] =0 on T' = {|z| = 1}, if K >0, 52)

Re[ZX Ty F(2)] =0 on I' = {|z| = 1}, if K <0,

if there are —2K — 1 solvability conditions hold, namely —2K—1 real equalities
hold, i.e.

zco——/ (ETIF(¢)dog, g is a real constant,
——//CK"”F O +¢ TR F(Q)]do;=0,m=1,...,—K—1.

(see (1.33), Chapter II, [6]).

For the N+ 1-connected domain D (N > 0), the solution of homogeneous
Riemman-Hilbert boundary value problem (Problem By) can be similarly rep-
resented by

-2 / / QU OF@do; = TF + 3 4T F

7j=1

P(z,¢) = §[G1(2, ¢) + Ga(2,¢) + Hi(z,¢) — Ha(2,¢)], 2, € D,

Q=) = 51G1(2:0) = Gal2,Q) + Hi(=,Q) + Hal2, ), % ¢ € D,
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N+1 N+1
G :—+Zgj Zgj 7Z7CED7
2K +1 _—2K 1
%@Q:MH@Q:Z__ﬁKEOwd __ifK<0, (34
1—-(z 1—-(z

e2i(z — 2.
52 Q) = A
15— (C—2)(z = %)
where H;(t, (), Hs(t, () are the solution with the boundary conditions

N+1

Re[A(H (1, Q)] + Re[A(t) > gm(t, O] =h(t), t€T,

N+1

Im[mHl(aj’C)]+Im[m Z gm(aj>C)]:0aj€J>

m=1,m#j
N+1 (3.5)

Re[A()iHa(t,C)] + Re[A(t)i > gm(t,Q)]=h(t), t €T,

N+1

Im[A(a;)iHs(az, Q)] +Im[A(a;)i Y gmla;, )]=0, j€J,

m:17m7é.]

e
_ __//D et Z—_zjj Wi)d% j=1,.. N, .

ToF =Ty F = ——// 90(2, Q) F({)dor,

T, :%/D [(Hy — H)F(C) + (Hy + Hy)F(C)]doy.

j=1,...,N,

and

In fact we only use the integral representation of Problem By form equation
(1.1) later on.

Theorem 3.1 Let the complex equation (1.1) satisfy Condition C. Then
any solution w(z) (wz € Lyy(D),2 < po < p) of Problem B for (1.1) possesses
the representation .

w(z)=0(2)+Tp, (3.7)
where p(z) = wz, ®(z) is an analytic function as stated in (2.5) or (2.12) in
D, and Tp is as stated in (3.6), and ®(2) satisfies the estimates

Cﬁ[q)(z)vﬁ] < M17 Lpo[q)/(z)vﬁ] < M27 (38)
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7;’/”& which 5~: 1-— 2/P0, Mj = Mj(po,ﬁ, k‘,D)),] = 1,2, k’ = k(ko,kl,kg,k‘g).
Moreover Tp satisfies the homogeneous boundary condition of Problem B, and
SE = F, possesses the properties

||§F||L,,O(ﬁ) < ]\||F||L,,O(ﬁ)> A<1, i K<0. (3.9)
and for a positive number gy < 1 there exists a constant 2 < py < P such that
qoh,, < 1. (3.10)

By using (3.6), Chapter I, [1|, Theorems 2.1 and 2.2, we can get (3.10),
and (3.11),(3.12) can be obtained by the method of Theorem 3.5, Chapter I,
[4] and Lemma 2.7, Chapter II, [6].

4 The method of integral equations for solving
Riemann-Hilbert problem for elliptic complex
equations in multiply connected domains

By using the method as in Theorems 4.6-4.7, Chapter II, [4] and Section 4,
Chapter III, [11]|, we can derive the solvability results about Problem B for
equation (1.1) with Condition C. First of all, we give the estimates of solutions
of Problem B for the equation (1.1).

Theorem 4.1 Suppose that the first order complex equation (1.1) satisfies
Condition C. Then any solution w(z) of Problem B for the complex equation
(1.1) satisfies the conditions

Colw(2), D] < My, , Ly, [lws| + w.|, D] < M,, (4.1)

in which B =1- 2/p07 k= k(k07k17k27k3)7 Mj = Mj(q07p0757 k7D>7.] = 374)

are positive constants.

Proof Due to the solution w(z) of Problem B for the complex equation
(1.1) can be expressed as (3.9), and the analytic function ®(z) possesses the
properties in (3.10), it is necessary to consider any solution W (z) of the com-
plex equation of W(z) = Tw:

W:=Q1(2)W, + Qa2(2)W: + A1 (2)W + A (2)W + A(2), }z cD
A=Q1(2)P'(2)+Qa(2)¥ (2)+ A1(2)P(2)+ Az (2)P(2) + As3(2), 7

where A(z) € L,, (D).



892 Guochun Wen and Yanhui Zhang

We first verify the uniqueness of solutions of the homogeneous problem B
with the index K > 0, i.e. the solution W (z) = 0 of the homogeneous problem
By for the homogeneous equation

W:=Q1(2)W, 4+ Qa(2)W: + A1 (2)W + As(2)W in D (4.3)
with the index K > 0. The solution W(z) of (4.3) can be expressed as
W(z) = U[¢(2)]e’® in D, (4.4)

where ((z) = n(x(z)) is a homeomorphism in D, which quasiconformally maps
D onto the N + 1-connected circular domain G with boundary L = ((I') in
{|¢] < 1}, such that three points on I" onto three points on L respectively, ¥(()
is an analytic function in G, ¢(z) = iT1g(2), x(2) = z4+Th are the solutions of
the complex equations

¢(2) = iTvg, x(2) =2+ Th (4.5)
of the complex equations

¢z = [Q1 + QoW /W], + Ay + AW /W, z€ D,

4.6
Xz = [Ql + Q2WZ/WZ]XZ7 ZED, ( )

respectively, T} ¢ is a double integral satisfying the modified Dirichlet boundary
condition in D, x(z) is a homeomorphism in D, ¢ = 7(x) is a univalent
analytic function, which conformally maps F = x(D) onto the domain G,
¢(2) = n[x(2)] in D, and ¥(¢) is an analytic function in G. Due to Sh = [Th].
possesses the properties in (3.9) and (3.10), and IIh = [T'h], has the similar
properties, we can get

Lpo [g(z>7 D] SLpo[|Al|+|A2‘7E]/(1_ qOAPO)7
Lpo [h(Z),E] SLpo[|Al|+|A2‘7E]/(1_ qOAP())v

by the principle of contract mapping, we can obtain that ¥(z), x(z) of the
equations in (4.6), and ©(z), x(2), ((z) satisfy the estimates

Cg[¢,b] S k47 LPOH¢2| + |¢z|vb] S k47 LPO[|X§| + |XZ‘7ﬁ] S k57

(4.7)
Cﬁ[C(z>vD] < k47 Cﬁ[z(C)v G] < k47

in which 8 =1-2/po, po(2<po <p), kj = k;j(qo,po, B, ko, k1, D) (j = 4,5)

are non-negative constants dependent on g, po, 3, ko, k1, D, and V[((z)] = Tw
satisfies the the boundary condition

Re[AMz(0)W(Q)] = h(2(¢)) in L (4.8)
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of homogeneous Problem B for analytic functions. If ®({) # 0, thus we can
derive the contraction inequality

2K +1 < 2Np + Np = 2K,

where Ng, N are denoted the zero numbers of U({) in G and L respectively,
this zero points formula is the same as in the proof of Theorem 2.1. This
contradiction verifies ¥(¢) = 0 in G, and then W(z) = 0 in D. Hence the
solution of Problem By for (4.2) is unique.

If K < 0, we can use Theorem 4.12, [1], i.e. Problem By has a solution
W(z) = W[((2)]e"® in D if and only if h[z(¢)] satisfies the conditions

/L[m]_lfbn(g)h[z@)]c/(s)ds =0,n=1,..,N—2K—1, (4.10)

where A(¢) = A(2(€)), ®n(¢) (n = 1,...,N—2K —1) are linearly independent
solutions of the corresponding conjugate homogeneous problem B with the
boundary condition

Re[[A(Q)] ' ®,(0)¢'(s)] =0, € L,n=1,..,N-2K—1, (4.11)

whose index is K/ = N — K — 1. Thus

>ty [ QR0 (5)ds

+ _Z_l /LORe[(h; + ih ) [2(O]™Im[A ()] 1@, ()¢ (s)]ds =0,

n=1,.,N—2K —1.

If hy =0(1,..,N), ht (m=1,...,—K — 1) are not all equal to zero, then the
coefficients determinant of the above algebraic system certainly equals zero.
Therefore we can find real constants cy, ..., cy_ox_1, which are not all equal to
zero, such that

/L Im[A()]'®(¢)¢'(s)ds =0, j =0,1,..., N,

J

/Lj Im[[@]”@(g)g/(s){

cos{marg 2(¢)] }]ds =0, m=1,...,.—K—1.

sin[m arg z(¢)]

where ®(2) = 2V 257 ¢ @,,(2) is a solution of Problem B) and ®(z) # 0 in

G = (D). From the first formula in (4.13), there exists points a} € L; (j =
1,...,N) so that

AT RO (8)|c—ar = 0, ie. D*(a}) = 0, j = 1,..., N.
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In addition, let U(z) be a harmonic function in Dy={|z| <1}, which satisfies
the boundary condition

U(z) = Im[[A(Q)] ()¢ (5)]le=¢(z) om |2| = 1.

Let s = s(6) denote the corresponding relation between s and 0 in ( = e =
¢(e?). Then we have

06 = o [ U s = meZ [T OO

———————— in < 1.
27 t—2 T Jo tESLt—2) in |2]

(4.12)
From the above formula and the second formula in (4.7), we can see that there
exists the points a € Lo (j = N +1,..., N=2K), so that

AT R(O)C (5)][¢=az = 0, Pe. ®(aj) =0, j=N+1,..N-2K.
Thus we get the absurd inequality
2N — 2K <2Ng+ N, =2(N - K —1) =2N — 2K — 2
This contradiction proves that
hj=0(j=0,1,...,N), hf=0m=1,..,—K —1)

in (4.7), and so ®(¢) = 0 in G. Consequently W(z) = 0 in D, and then
Wi(z) = Wa(z) in D. This prove the uniqueness of solutions of Problem B
with the index K < 0.

Denote 4d = min,er |2| and Dy = {|z| < d}, Dy = {d < |2| < 2d}, D3 =
{2d < |z| < 3d}, Dy = {3d < |z] < 4d}, and construct two continuously
differential functions

0 in Dl, 1 in D1 U Dg,
Tl(Z) = 1 in E\{Dl U DQ}, TQ(Z) = 0 in B\{Dl U D2 U Dg},
71(z) in Dy, T2(z) in Ds,

where 0 < 71(2) < 1in Dy and 0 < 73(2) < 1in Ds. From (4.2), we see that
two functions W (z) = 71(2)z " EW(2) and W (z) = m(2)W () are the solutions
of following complex equations

Ve = QiWot QoW+ Ay ()W + [As(2)miz 5 frz KW + 4,

A= [(11275); = Qi(nz X)W = Qs (1 oK), W+727KA(2) in D,

z

X R . X I (4.13)
W = QW+ QoW+ A1 (2)W + [Ag(2)72/72(2)[W + A,

A =[r: — Qi)W — QoW + 1 A(2) in D,
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and satisfy the boundary conditions

Re[A(z)W(z)] = h(z) on T,

Re[A(z)W(2)] =0 on T,

(4.14)

—

respectively, the indexes of above boundary value problems are equal to k = 0,
and the function W(z) is bounded in D from (3.8),(3.9),(4.4),(4.7). Moreover
by using Theorem 4.3, Chapter II, [4], or the the reduction to absurdity as
stated in the second method below, we can obtain the estimates

Cﬁ[W(Z)’E] < Ms, LPOHWE| + |WZ|>E] < Ms,
Cﬁ[W(Z)’E] < Mz, LPOHWE| + |WZ|>E] < Ms,

where M; = M;(qo,p, 8,k,D) (j = 5,6,7,8) are positive constants. In partic-
ular we have

Cs[W (2), D\{D1 U Da}] < Ms, Ly, [|[Ws| + |W.|, D\{D; U Do}] < M,
Cs[W (2), Dy U Dy] < My, Ly [|[Ws| + |[W.|, D1 U Do) < M.

Combining the above estimates, we get

CB[W(Z)7D] S M9 = MQ(ME)’M'??TDTQ’K)’

_ (4.15)
Ly [[Wz] + [W-[, D] < Mg = Mio(Mg, Mg, 71, 75, K).
Next we prove the solvability of Problem B for the equation (1.1).

Theorem 4.2 Under the conditions in Theorem 4.1, Problem B for (1.1)
is solvable.

Proof We use the Fredholm theorem of integral equation

w(2)=Q1(2)Sw+Qa(2)Sw+ Ay (2)Tw Ay (2)Tw(2) + A(2), w(z) € Ly, (D),
(4.16)
which is corresponding to the complex equation (4.2) trough the relation
W(z) = Tw. Because Tw is a complete continuous operator, the inverse oper-
ator of homogeneous integral equation

w(z) = Qu(2)Sw + Qa(2)Sw + Ay (2)Tw + Ax(2)Tw(z)  (4.17)

is also complete continuous. Provided we verify that the homogeneous integral
equation only has the trivial solution, then the above nonhomogeneous integral
equation has a unique solution. In the following we shall prove that the above
Problem By has no non-zero solution. Let W(z) be any solution of Problem
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Bg, we shall verify W(z) = 0 in D. In fact from the proof of Theorem 4.1,
W (z) can be repressed as

W(z) = [¥(¢(2)) +¢(2)]e”™ in D,

where ¢(z), U[((z)] are as sated as in (4.5), ¢¥(z) = Th = 0 is the solution of
the equation

wz = [Ql + Q2W2/Wz]1/}z in D,

and ¥(() is an analytic function in G satisfying the homogeneous boundary
condition of Problem By, hence by the proof of Theorem 4.1, ¥(¢) = 0in D and
then W (z) = 0in D. This show that the above homogeneous integral equation
only has zero solution, and then the nonhomogeneous integral equation has a
unique solution.

Theorem 4.3 Let the system (1.1) satisfies Condition C. Then Problem
A(K <0) has —2K + N — 1 solvability conditions and its solution w(z) can
be written in the form w(z) = ®(2) + Tp, where &(2), Tp are as stated in
(3.9). Moreover if K >0, under N solvability conditions, the general solution
of Problem A can be written as

2K+1

w(z) = wy(z) + Z drwi(z), (4.18)

where wo(z) is a solution of nonhomogeneous boundary value problem (Prob-
lem A) forb (1.1), and di, (k = 1,...,2K + 1) are the arbitrary real constants,
wi(z) (B = 1,...,2K 4+ 1) are linearly independent solutions of homogeneous
boundary value problem (Problem Ag) for (1.1).

Proof The above theorem shows that the general solution of Problem
B for (1.1) includes the number of arbitrary real constants as stated in the
above theorem. In fact, for the linear case of the complex equation (1.1)
satisfying Condition C, under N solvability conditions, its general solution
of Problem A with the index K > 0 can be written as (4.18), where wy(z)
is a solution of nonhomogeneous boundary value problem (Problem A), and
dp (k =1,...,2K +1) are the arbitrary real constants, wg(z) (k =1,...,2K +1)
are linearly independent solutions of homogeneous boundary value problem
(Problem Ap), which can be satisfied the point conditions

Im[A(aj)wi(a;)] =0k, j,k=1,...,2K + 1,

where 0;;, =1, if j=k=1,...,gand 0;;, =0, if 1 #k, 1 <j,k <2K + 1.
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