Mathematica Aeterna, Vol. 3, 2013, no. 10, 883 - 897

Applications of method of integral equations and integral operators to Riemann-Hilbert problem for elliptic complex equations of first order

Guochun Wen

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

Yanhui Zhang

Department of Mathematics, Beijing Technology and Business University, Beijing 100048, China

Abstract

In this article, we first propose the Riemann-Hilbert problem for uniformly elliptic complex equations of first order and its well-posedness. Then we give the integral representation of solutions of Riemann-Hilbert problem for the complex equations. Moreover we shall obtain a priori estimates of solutions of the modified Riemann-Hilbert problem and verify its solvability by the method of integral equations. Finally the solvability results of the original boundary value problem can be obtained..

Mathematics Subject Classification: 35J55, 35A10, 35B45, 47G10.

Keywords: The method of integral equations and integral operators, Riemann-Hilbert problems, uniformly elliptic complex equations, A priori estimates and existence of solutions.

1 Formulation of Riemann-Hilbert problem for elliptic complex equations of first order

First of all, we introduce the linear elliptic equations of first order

 $w_{\bar{z}} = F(z, w, w_z), F = Q_1(z)w_z + Q_2(z)\bar{w}_{\bar{z}} + A_1(z)w + A_2(z)\bar{w} + A_3(z), z \in D, (1.1)$

where z = x + iy, $w_{\bar{z}} = [w_x + iw_y]/2$ (see [4,9,11]). We assume that equation (1.1) satisfy the following conditions.

Condition C 1) $Q_j(z)$, $A_j(z)$ (j = 1, 2, 3) are measurable in $z \in D$, and satisfy

$$L_p[A_j, \overline{D}] \le k_0, \ j = 1, 2, \ L_p[A_3, \overline{D}] \le k_1, \tag{1.2}$$

where $p_0, p (2 < p_0 \le p), k_0, k_1$ are non-negative constants.

2) The complex equation (1.1) satisfies the uniform ellipticity condition

$$|Q_1(z)| + |Q_2(z)| \le q_0 \,(<1),\tag{1.3}$$

 q_0 is a non-negative constant.

Let D be an N + 1 ($N \ge 1$)-connected bounded domain in \mathbb{C} with the boundary $\partial D = \Gamma = \bigcup_{j=0}^{N} \Gamma_j \in C^1_{\mu}$ ($0 < \mu < 1$). Without loss of generality, we assume that D is a circular domain in |z| < 1, bounded by the (N + 1)-circles $\Gamma_j : |z - z_j| = r_j, j = 0, 1, ..., N$ and $\Gamma_0 = \Gamma_{N+1} : |z| = 1, z = 0 \in D$. In this article, the notations are as the same in References [4-12]. Now we formulate the Riemann-Hilbert problem for equation (1.1) as follows.

Problem A The Riemann-Hilbert boundary value problem for (1.1) is to find a continuous solution w(z) in \overline{D} satisfying the boundary condition:

$$\operatorname{Re}[\lambda(z)w(z)] = c(z), \ z \in \Gamma,$$
(1.4)

where $\lambda(z), c(z)$ satisfy the conditions

$$C_{\alpha}[\lambda(z), \Gamma] \le k_{\theta}, \ C_{\alpha}[c(z), \Gamma] \le k_{\varrho}, \tag{1.5}$$

in which $\lambda(z) = a(z) + ib(z)$, $|\lambda(z)| = 1$ on Γ , and $\alpha (1/2 < \alpha < 1)$ ia a positive constant. The index K of Problems A is defined as follows:

$$K = K_1 + \dots + K_m = \sum_{j=0}^N \frac{1}{2\pi} \Delta_{\Gamma_j} \arg \lambda(z) \, (j = 0, 1, ..., N)$$
(1.6)

in which the partial indexes $K_j = \Delta_{\Gamma_j} \arg \lambda(z)/2\pi (j=0,1,...,N)$ of $\lambda(z)$ are integers.

Due to when the index K < 0, Problem A may not be solvable, when $K \ge 0$, the solution of Problem A is not necessarily unique. Hence we put forward a well-posed-ness of Riemann-Hilbert problem with modified boundary conditions.

Problem B Find a continuous solution w(z) of the complex equation (1.1) in \overline{D} satisfying the boundary condition

$$\operatorname{Re}[\overline{\lambda(z)}w(z)] = c(z) + h(z), \ z \in \Gamma,$$
(1.7)

where

$$h(z) = \begin{cases} 0, \ z \in \Gamma_0, \\ h_j, \ z \in \Gamma_j, \ j = 1, ..., N, \end{cases} & \text{if } K \ge 0 \\ h_j, \ z \in \Gamma_j, \ j = 1, ..., N, \\ h_0 + \operatorname{Re} \sum_{m=1}^{-K-1} (h_m^+ + \mathrm{i} h_m^-) z^m, \ z \in \Gamma_0, \end{cases} & \text{if } K < 0, \end{cases}$$
(1.8)

in which $h_j(j = 0, 1, ..., N + 1)$, $h_m^{\pm}(m = 1, ..., -K - 1)$ are unknown real constants to be determined appropriately. Moreover we assume that the solution w(z) satisfies the following point conditions

$$\operatorname{Im}[\overline{\lambda(a_j)}w(a_j)] = b_j, \ j \in J = \{1, ..., 2K+1\}, \ \text{if} \ K \ge 0,$$
(1.9)

where $a_j \in \Gamma_0$ $(j = 1, ..., 2K + 1, \text{ if } K \ge 0)$ are distinct fixed points; and $b_j (j \in J)$ are all real constants satisfying the conditions

$$\mid b_j \mid \le k_3, \ j \in J, \tag{1.10}$$

herein k_3 is a non-negative constant. Problem B with $A_3(z, w) = 0$ in D, c(z) = 0 on Γ and $b_j (j \in J)$ is called Problem B_0 .

We mention that the undetermined real constants h_j , h_m^{\pm} in (1.8) are for ensuring the existence of continuous solutions, and the point conditions in (1.9) are for ensuring the uniqueness of continuous solutions in \overline{D} . The advantages of the new well-posed-ness is simpler than others (see [4-6,11]).

2 Integral representation of solutions of Riemann-Hilbert problem for analytic functions

Now we transform the boundary condition (1.7) into the standard form and first find a solution S(z) of the modified Dirichlet problem with the boundary condition

We first transform the boundary condition (1.7) into the standard form and first find a solution S(z) of the modified Dirichlet problem with the boundary condition

$$\operatorname{Re}S(z) = S_{1}(z) - \theta(t), \ S_{1}(t) = \begin{cases} \arg \lambda(t) - K \arg t, \ t \in \Gamma_{0}, \\ \arg \lambda(t), \ t \in \Gamma_{j}, \ j = 1, ..., N, \end{cases}$$

$$\theta(t) = \begin{cases} 0, \ t \in \Gamma_{0}, \\ \theta_{j}, \ t \in \Gamma_{j}, \ j = 1, ..., N, \end{cases}$$

$$\operatorname{Im}[S(1)] = 0,$$

$$(2.1)$$

where $\theta_j (j = 1, ..., N)$ are real constants. Thus the boundary condition (1.7) into the standard boundary condition

$$\operatorname{Re}[\overline{\lambda(t)}w(t)] = \operatorname{Re}[\overline{\Lambda(t)}\Psi(t)] = c(t) + h(t), \ t \in \Gamma,$$

$$w(z) = e^{iS(z)}\Psi(z),$$

$$\Lambda(t) = \lambda(t)\overline{e^{iS(t)}} = \begin{cases} t^{K}, \ t \in \Gamma_{0}, \\ e^{i\theta_{j}}, \ t \in \Gamma_{j}, \ j = 1, \dots, N, \end{cases}$$

$$X(z) = \begin{cases} z^{K}e^{iS(z)}, \ z \in \Gamma_{0}, \\ e^{i\theta_{j}}e^{iS(z)}, \ z \in \Gamma_{j}, \ j = 1, \dots, N, \end{cases}$$

$$(2.2)$$

where the index is also equal to K, and the point constant (1.9) is also equal to

$$\operatorname{Im}[\overline{\Lambda(a_j)}\Psi(a_j)] = b_j, \ j \in J,$$
(2.3)

and $\Psi(z)$ satisfies the complex equation

$$\Psi_{\bar{z}} = \{ \Phi[z, \Psi(z)e^{iS(z)}, [\Psi(z)e^{iS(z)}]_z \} e^{-iS(z)} - iS'\Psi(z) \},$$

$$\Psi_{\bar{z}} = Q_1(z)\Psi_z + e^{-2i\operatorname{Re}S(z)}Q_2(z)\overline{\Psi}_{\bar{z}} + [A_1(z) + e^{-iS(z)}(e^{iS(z)})'Q_1]\Psi . \qquad (2.4)$$

$$+ [e^{-2i\operatorname{Re}S(z)}A_2 + e^{-i\overline{S(z)}}(e^{-i\overline{S(z)}})_{\bar{z}}]\overline{\Psi} + e^{-iS(z)}A_3, \ z \in D.$$

The above boundary value problem will be called Problem B'. It is easy to see the equivalence of Problem B with the boundary conditions (1.7), (1.9) for (1.1) and Problem B' with the boundary conditions (2.2), (2.3) for (2.4).

Theorem 2.1 Under the above conditions, Problem B with the index $K \ge 0$ for analytic functions has a unique solution, which can be expressed by the integral as stated in (2.10) below.

Proof In this case: the index $K \ge 0$, if there are two solutions $\Psi_1(z)$, $\Psi_2(z)$ two solutions of Problem B' for analytic functions, then $\Psi(z) = \Psi_1(z) - \Psi_2(z)$ satisfies the boundary conditions

$$\operatorname{Re}[\overline{\Lambda(t)}\Psi(t)] = h(t), \ t \in \Gamma,$$
$$\operatorname{Im}[\overline{\Lambda(a_j)}\Psi(a_j)] = 0, \ j \in J,$$

thus we can derive the contraction inequality

$$2K + 1 \le 2N_D + N_\Gamma = 2K,$$

where N_D , N_{Γ} are denoted the zero numbers of $\Psi(z)$ in D and Γ respectively, this zero points formula can be seen as in [1,5]. This contradiction verifies

 $\Psi(z) \equiv 0$ in *D*, and then $\Psi_1(z) = \Psi_2(z)$ in *D*. Hence the solution of Problem B for analytic functions is unique.

Next we shall find the solution of Problem B', and then obtain the solution of Problem B. We can introduce

$$P_{0}(z,t) = P_{N+1}(z,t) = \begin{cases} \frac{X(z)\lambda(z)c(t)(t+z)}{X(t)(t-z)t}, \ t \in \Gamma_{0}, \\ 0, \ t \in \Gamma_{j}, \ j = 1, ..., N, \end{cases}$$

$$P_{j}(z,t) = \begin{cases} \frac{e^{i\theta_{j}}X(z)\lambda(z)c(t)(t+z-2z_{j})}{X(t)(t-z)(t-z_{j})}, \ t \in \Gamma_{j}, \\ 0, \ t \in \Gamma \setminus \Gamma_{j}, \ j = 1, ..., N, \end{cases}$$
(2.5)

and find a solution of the boundary value problem with the boundary conditions _____

$$\operatorname{Re}[\Lambda(z)P_{*}(z,t)] = -\operatorname{Re}[\Lambda(z)Q(z,t)] + h(z,t), \ z \in \Gamma,$$

$$Q(z,t) = \sum_{m=1,m\neq j}^{N+1} P_{m}(z,t), \ z \in \Gamma_{j}, \ j=1, \dots, N+1,$$

$$\operatorname{Im}[\overline{\Lambda(a_{j})}P_{*}(a_{j},t)] = -\operatorname{Im}[\overline{\Lambda(a_{j})}Q(a_{j},t)], \ j \in J,$$
(2.6)

and

$$P(z,t) = \sum_{j=1}^{N+1} P_j(z,t) + P_*(z,t), \ t \in \Gamma$$
(2.7)

is the Schwarz kernel of Problem B'. Thus we get the representation of solutions of Problem B as follows:

$$\Psi(z) = \frac{1}{2\pi i} \int_{\Gamma} P(z,t)c(t)dt + \Psi_0(z), \qquad (2.8)$$

in which $\Psi_0(z)$ is the solution of corresponding homogeneous problem, which can be determined by some point conditions

$$\operatorname{Im}[\overline{\Lambda(a_j)}\Psi_0(a_j)] = b_j - \operatorname{Im}[\frac{\overline{\Lambda(a_j)}}{2\pi i} \int_{\Gamma} P(a_j, t)c(t)dt], \ j \in J.$$
(2.9)

Thus the solution of original boundary value problem (Problem B) can be expressed as

$$w(z) = \Phi(z) = \Psi(z)e^{iS(z)} = \frac{1}{2\pi i} \int_{\Gamma} T(z,t)c(t)dt + \Phi_0(z), \qquad (2.10)$$

where $T(z,t) = P(z,t)e^{iS(z)}$, T(z,t) is the Schwarz kernel, and $w_0(z) = \Phi_0(z) = \Psi_0(z)e^{iS(z)}$ is a solution of Problem B₀ with the point conditions

$$\operatorname{Im}[\overline{\lambda(a_j)}\Phi_0(a_j)] = b_j - \operatorname{Im}[\frac{\overline{\lambda(a_j)}}{2\pi i} \int_{\Gamma} T(a_j, t)c(t)dt], \ j \in J.$$
(2.11)

Theorem 2.2 Under the above conditions, Problem B with the index K < 0 for analytic functions has a unique solution, which can be expressed a integral as stated in (2.16) below.

Proof The unique of solutions of Problem B for analytic functions can seen as in [5]. Moreover similar to the proof of Theorem 2.1, we first find the solution of Problem B'. If K < 0, we introduce

$$P_{0}(z,t) = P_{N+1}(z,t) = \begin{cases} \frac{2z^{|K|}e^{iS(z)}\lambda(t)c(t)}{e^{iS(t)}(t-z)t^{|K|}}, \ t \in \Gamma_{0}, \\ 0, \ t \in \Gamma_{j}, \ j = 1, ..., N, \end{cases}$$

$$P_{j}(z,t) = \begin{cases} \frac{e^{i\theta_{j}}e^{iS(z)}\lambda(t)c(t)(t+z-2z_{j})}{e^{iS(t)}(t-z)(t-z_{j})}, \ t \in \Gamma_{j}, \\ 0, \ t \in \Gamma \backslash \Gamma_{j}, \ j = 1, ..., N, \end{cases}$$
(2.12)

Similarly to the proof of Theorem 2.1, we can find a solution of the boundary value problem with the boundary conditions

$$\operatorname{Re}[\overline{\Lambda(z)}P_{*}(z,t)] = -\operatorname{Re}[\overline{\Lambda(z)}Q(z,t)] + h(z,t), \ z \in \Gamma,$$

$$Q(z,t) = \sum_{m=1, m \neq j}^{N+1} P_{m}(z,t), \ z \in \Gamma_{j}, \ j = 1, ..., N+1,$$
(2.13)

and

$$P(z,t) = \sum_{j=1}^{N+1} P_j(z,t) + P_*(z,t), \ t \in \Gamma$$
(2.14)

is the Schwarz kernel of Problem B'. Thus we get the representation of solutions of Problem B' as follows:

$$\Psi(z) = \frac{1}{2\pi i} \int_{\Gamma} P(z,t)c(t)dt.$$
(2.15)

Thus the solution of original boundary value problem (Problem B) can be expressed as

$$w(z) = \Phi(z) = \Psi(z)e^{iS(z)} = \frac{1}{2\pi i} \int_{\Gamma} T(z,t)c(t)dt, \qquad (2.16)$$

in which $T(z,t) = P(z,t)e^{iS(z)}$, T(z,t) is the Schwaez kernel. In the above discussion, we have to use the N - 2K - 1 solvability conditions of Problem B, if K < 0.

3 Integral representation of solutions for homogeneous Riemann-Hilbert problem for elliptic complex equations

We first consider the homogeneous boundary problem (Problem B_0) for the complex equation (1.1), and give the integral representation of solutions of Problem B_0 for (1.1).

Introduce the two double integral operator of homogeneous Riemann-Hilbert problem in the simple connected domain D as follows

$$T_{1}F = -\frac{2}{\pi} \iint_{D} \left[\frac{F(\zeta)}{\zeta - z} - \frac{z^{2K+1}\overline{F(\zeta)}}{1 - \overline{\zeta}z} \right] d\sigma_{\zeta}, \text{ if } K \ge 0,$$

$$T_{2}F = -\frac{2}{\pi} \iint_{D} \left[\frac{F(\zeta)}{\zeta - z} - \frac{\overline{\zeta}^{-2K-1}\overline{F(\zeta)}}{1 - \overline{\zeta}z} \right] d\sigma_{\zeta} \text{ if } K < 0.$$
(3.1)

It is easy to see that

$$Re[\overline{z}^{K} T_{1} F(z)] = 0 \text{ on } \Gamma = \{|z| = 1\}, \text{ if } K \ge 0, Re[\overline{z}^{K} T_{2} F(z)] = 0 \text{ on } \Gamma = \{|z| = 1\}, \text{ if } K < 0,$$
(3.2)

if there are -2K-1 solvability conditions hold, namely -2K-1 real equalities hold, i.e.

$$ic_0 - \frac{2}{\pi} \iint_D \zeta^{-K-1} F(\zeta) d\sigma_{\zeta}, \ c_0 \text{ is a real constant},$$

$$-\frac{2}{\pi} \iint_D [\zeta^{-K-m-1} F(\zeta) + \overline{\zeta}^{-K+m-1} \overline{F(\zeta)}] d\sigma_{\zeta} = 0, \ m = 1, \dots, -K-1.$$
(3.3)

(see (1.33), Chapter II, [6]).

For the N+1-connected domain D(N > 0), the solution of homogeneous Riemman-Hilbert boundary value problem (Problem B₀) can be similarly represented by

$$\begin{split} \tilde{T}F &= -\frac{2}{\pi} \iint_{D} [P(z,\zeta)F(\zeta) + Q(z,\zeta)\overline{F(\zeta)}] d\sigma_{\zeta} = TF + \sum_{j=1}^{N+1} + T_*F, \\ P(z,\zeta) &= \frac{1}{2} [G_1(z,\zeta) + G_2(z,\zeta) + H_1(z,\zeta) - H_2(z,\zeta)], \ z,\zeta \in \overline{D}, \\ Q(z,\zeta) &= \frac{1}{2} [G_1(z,\zeta) - G_2(z,\zeta) + H_1(z,\zeta) + H_2(z,\zeta)], \ z,\zeta \in \overline{D}, \end{split}$$

$$G_{1}(z,\zeta) = \frac{1}{\zeta - z} + \sum_{j=1}^{N+1} g_{j}(z,\zeta), \ G_{2}(z,\zeta) = \frac{1}{\zeta - z} - \sum_{j=1}^{N+1} g_{j}(z,\zeta), \ z,\zeta \in D,$$

$$g_{0}(z,\zeta) = g_{N+1}(z,\zeta) = \frac{z^{2K+1}}{1 - \overline{\zeta}z} \text{ if } K \ge 0 \text{ and } \frac{\overline{\zeta}^{-2K-1}}{1 - \overline{\zeta}z} \text{ if } K < 0,$$

$$g_{j}(z,\zeta) = \frac{e^{2i\theta_{j}}(z - z_{j})}{r_{j}^{2} - (\overline{\zeta} - z_{j})(z - z_{j})}, \ j = 1, ..., N,$$

(3.4)

where $H_1(t,\zeta)$, $H_2(t,\zeta)$ are the solution with the boundary conditions

$$\operatorname{Re}[\overline{\Lambda(t)}H_{1}(t,\zeta)] + \operatorname{Re}[\overline{\Lambda(t)}\sum_{m=1,m\neq j}^{N+1}g_{m}(t,\zeta)] = h(t), \ t \in \Gamma,$$

$$\operatorname{Im}[\overline{\Lambda(a_{j})}H_{1}(a_{j},\zeta)] + \operatorname{Im}[\overline{\Lambda(a_{j})}\sum_{m=1,m\neq j}^{N+1}g_{m}(a_{j},\zeta)] = 0, \ j \in J,$$

$$\operatorname{Re}[\overline{\Lambda(t)}iH_{2}(t,\zeta)] + \operatorname{Re}[\overline{\Lambda(t)}i\sum_{m=1,m\neq j}^{N+1}g_{m}(t,\zeta)] = h(t), \ t \in \Gamma,$$

$$\operatorname{Im}[\overline{\Lambda(a_{j})}iH_{2}(a_{j},\zeta)] + \operatorname{Im}[\overline{\Lambda(a_{j})}i\sum_{m=1,m\neq j}^{N+1}g_{m}(a_{j},\zeta)] = 0, \ j \in J,$$

(3.5)

and

$$T F = -\frac{1}{\pi} \iint_{D} \frac{F(\zeta)}{\zeta - z} d\sigma_{\zeta},$$

$$T_{j} F = -\frac{1}{\pi} \iint_{D} \frac{e^{2i\theta_{j}}(z - z_{j})\overline{F(\zeta)}}{r_{j}^{2} - (\overline{\zeta} - z_{j})(z - z_{j})} d\sigma_{\zeta}, \quad j = 1, ..., N,$$

$$T_{0} F = T_{N+1} F = -\frac{1}{\pi} \iint_{D} g_{0}(z, \zeta) \overline{F(\zeta)} d\sigma_{\zeta},$$

$$T_{*} F = \frac{1}{2\pi} \iint_{D} [(H_{1} - H_{2})F(\zeta) + (H_{1} + H_{2})\overline{F(\zeta)}] d\sigma_{\zeta}.$$
(3.6)

In fact we only use the integral representation of Problem B_0 form equation (1.1) later on.

Theorem 3.1 Let the complex equation (1.1) satisfy Condition C. Then any solution w(z) ($w_{\overline{z}} \in L_{p_0}(\overline{D}), 2 < p_0 \leq p$) of Problem B for (1.1) possesses the representation

$$w(z) = \Phi(z) + \tilde{T}\rho, \qquad (3.7)$$

where $\rho(z) = w_{\bar{z}}$, $\Phi(z)$ is an analytic function as stated in (2.5) or (2.12) in D, and $\tilde{T}\rho$ is as stated in (3.6), and $\Phi(z)$ satisfies the estimates

$$C_{\beta}[\Phi(z),\overline{D}] \le M_1, \ L_{p_0}[\Phi'(z),\overline{D}] \le M_2, \tag{3.8}$$

in which $\beta = 1 - 2/P_0$, $M_j = M_j(p_0, \beta, k, D)$, $j = 1, 2, k = k(k_0, k_1, k_2, k_3)$. Moreover $\tilde{T}\rho$ satisfies the homogeneous boundary condition of Problem B, and $\tilde{S}F = \tilde{F}_z$ possesses the properties

$$||\tilde{S}F||_{L_{p_0}(\overline{D})} \le \tilde{\Lambda}||F||_{L_{p_0}(\overline{D})}, \ \tilde{\Lambda} \le 1, \ \text{if} \ K \le 0.$$
(3.9)

and for a positive number $q_0 < 1$ there exists a constant $2 < p_0 \leq P$ such that

$$q_0 \tilde{\Lambda}_{p_0} < 1. \tag{3.10}$$

By using (3.6), Chapter I, [1], Theorems 2.1 and 2.2, we can get (3.10), and (3.11),(3.12) can be obtained by the method of Theorem 3.5, Chapter I, [4] and Lemma 2.7, Chapter II, [6].

4 The method of integral equations for solving Riemann-Hilbert problem for elliptic complex equations in multiply connected domains

By using the method as in Theorems 4.6-4.7, Chapter II, [4] and Section 4, Chapter III, [11], we can derive the solvability results about Problem B for equation (1.1) with Condition C. First of all, we give the estimates of solutions of Problem B for the equation (1.1).

Theorem 4.1 Suppose that the first order complex equation (1.1) satisfies Condition C. Then any solution w(z) of Problem B for the complex equation (1.1) satisfies the conditions

$$C_{\beta}[w(z), \overline{D}] < M_3, \ L_{p_0}[|w_{\bar{z}}| + |w_z|, \overline{D}] \le M_4,$$
(4.1)

in which $\beta = 1 - 2/p_0$, $k = k(k_0, k_1, k_2, k_3)$, $M_j = M_j(q_0, p_0, \beta, k, D)$, j = 3, 4) are positive constants.

Proof Due to the solution w(z) of Problem B for the complex equation (1.1) can be expressed as (3.9), and the analytic function $\Phi(z)$ possesses the properties in (3.10), it is necessary to consider any solution W(z) of the complex equation of $W(z) = \tilde{T}\omega$:

$$W_{\bar{z}} = Q_1(z)W_z + Q_2(z)\overline{W}_{\bar{z}} + A_1(z)W + A_2(z)\overline{W} + A(z), A = Q_1(z)\Phi'(z) + Q_2(z)\overline{\Phi'(z)} + A_1(z)\Phi(z) + A_2(z)\overline{\Phi(z)} + A_3(z),$$

$$\left\{ z \in D, \right\}$$
(4.2)

where $A(z) \in L_{p_0}(\overline{D})$.

We first verify the uniqueness of solutions of the homogeneous problem B_0 with the index $K \ge 0$, i.e. the solution $W(z) \equiv 0$ of the homogeneous problem B_0 for the homogeneous equation

$$W_{\overline{z}} = Q_1(z)W_z + Q_2(z)\overline{W}_{\overline{z}} + A_1(z)W + A_2(z)\overline{W} \text{ in } D$$

$$(4.3)$$

with the index $K \ge 0$. The solution W(z) of (4.3) can be expressed as

$$W(z) = \Psi[\zeta(z)]e^{\phi(z)} \text{ in } D, \qquad (4.4)$$

where $\zeta(z) = \eta(\chi(z))$ is a homeomorphism in \overline{D} , which quasiconformally maps D onto the N + 1-connected circular domain G with boundary $L = \zeta(\Gamma)$ in $\{|\zeta| < 1\}$, such that three points on Γ onto three points on L respectively, $\Psi(\zeta)$ is an analytic function in G, $\phi(z) = i\tilde{T}_1g(z)$, $\chi(z) = z + Th$ are the solutions of the complex equations

$$\phi(z) = i\tilde{T}_1 g, \ \chi(z) = z + Th \tag{4.5}$$

of the complex equations

$$\phi_{\bar{z}} = [Q_1 + Q_2 \overline{W_z} / W_z] \phi_z + A_1 + A_2 \overline{W} / W, \ z \in D,$$

$$\chi_{\bar{z}} = [Q_1 + Q_2 \overline{W_z} / W_z] \chi_z, \ z \in D,$$
(4.6)

respectively, $\tilde{T}_1 g$ is a double integral satisfying the modified Dirichlet boundary condition in D, $\chi(z)$ is a homeomorphism in \overline{D} , $\zeta = \eta(\chi)$ is a univalent analytic function, which conformally maps $E = \chi(D)$ onto the domain G, $\zeta(z) = \eta[\chi(z)]$ in D, and $\Psi(\zeta)$ is an analytic function in G. Due to $\tilde{S}h = [\tilde{T}h]_z$ possesses the properties in (3.9) and (3.10), and $\Pi h = [Th]_z$ has the similar properties, we can get

$$\begin{split} & L_{p_0}[g(z),\overline{D}] \leq L_{p_0}[|A_1| + |A_2|,\overline{D}]/(1 - q_0\Lambda_{p_0}), \\ & L_{p_0}[h(z),\overline{D}] \leq L_{p_0}[|A_1| + |A_2|,\overline{D}]/(1 - q_0\Lambda_{p_0}), \end{split}$$

by the principle of contract mapping, we can obtain that $\psi(z)$, $\chi(z)$ of the equations in (4.6), and $\psi(z)$, $\chi(z)$, $\zeta(z)$ satisfy the estimates

$$C_{\beta}[\phi,\overline{D}] \leq k_{4}, \ L_{p_{0}}[|\phi_{\bar{z}}| + |\phi_{z}|,\overline{D}] \leq k_{4}, \ L_{p_{0}}[|\chi_{\bar{z}}| + |\chi_{z}|,\overline{D}] \leq k_{5},$$

$$C_{\beta}[\zeta(z),\overline{D}] \leq k_{4}, \ C_{\beta}[z(\zeta),\overline{G}] \leq k_{4},$$

$$(4.7)$$

in which $\beta = 1 - 2/p_0$, $p_0 (2 < p_0 \le p)$, $k_j = k_j(q_0, p_0, \beta, k_0, k_1, D) (j = 4, 5)$ are non-negative constants dependent on $q_0, p_0, \beta, k_0, k_1, D$, and $\Psi[\zeta(z)] = \tilde{T}\omega$ satisfies the the boundary condition

$$\operatorname{Re}[\overline{\lambda(z(\zeta))}\Psi(\zeta)] = h(z(\zeta)) \text{ in } L$$
(4.8)

of homogeneous Problem B for analytic functions. If $\Phi(\zeta) \neq 0$, thus we can derive the contraction inequality

$$2K + 1 \le 2N_D + N_\Gamma = 2K,$$

where N_G , N_L are denoted the zero numbers of $\Psi(\zeta)$ in G and L respectively, this zero points formula is the same as in the proof of Theorem 2.1. This contradiction verifies $\Psi(\zeta) \equiv 0$ in G, and then $W(z) \equiv 0$ in D. Hence the solution of Problem B₀ for (4.2) is unique.

If K < 0, we can use Theorem 4.12, [1], i.e. Problem B_0 has a solution $W(z) = \Psi[\zeta(z)]e^{i\phi(z)}$ in D if and only if $h[z(\zeta)]$ satisfies the conditions

$$\int_{L} [\overline{\Lambda(\zeta)}]^{-1} \Phi_n(\zeta) h[z(\zeta)] \zeta'(s) ds = 0, \ n = 1, ..., N - 2K - 1,$$
(4.10)

where $\Lambda(\zeta) = \lambda(z(\zeta))$, $\Phi_n(\zeta)$ (n = 1, ..., N-2K-1) are linearly independent solutions of the corresponding conjugate homogeneous problem B'_0 with the boundary condition

$$\operatorname{Re}[[\overline{\Lambda(\zeta)}]^{-1}\Phi_n(\zeta)\zeta'(s)] = 0, \ \zeta \in L, \ n = 1, ..., N - 2K - 1,$$
(4.11)

whose index is K' = N - K - 1. Thus

$$\sum_{j=0}^{N} h_j \int_{L_j} \operatorname{Im}[\overline{\Lambda(\zeta)}]^{-1} \Phi_n(\zeta) \zeta'(s) ds + \sum_{m=1}^{-K-1} \int_{L_0} \operatorname{Re}[(h_m^+ + ih_m^-)[z(\zeta)]^m] \operatorname{Im}[\overline{\Lambda(\zeta)}]^{-1} \Phi_n(\zeta) \zeta'(s)] ds = 0,$$
$$n = 1, \dots, N - 2K - 1.$$

If $h_j = 0 (1, ..., N)$, $h_m^{\pm} (m = 1, ..., -K - 1)$ are not all equal to zero, then the coefficients determinant of the above algebraic system certainly equals zero. Therefore we can find real constants $c_1, ..., c_{N-2K-1}$, which are not all equal to zero, such that

$$\int_{L_j} \operatorname{Im}[\overline{\Lambda(\zeta)}]^{-1} \Phi(\zeta)\zeta'(s) ds = 0, \ j = 0, 1, ..., N,$$
$$\int_{L_j} \operatorname{Im}[[\overline{\Lambda(\zeta)}]^{-1} \Phi(\zeta)\zeta'(s) \begin{cases} \cos[m \arg z(\zeta)]\\ \sin[m \arg z(\zeta)] \end{cases} ds = 0, \ m = 1, ..., -K - 1.$$

where $\Phi(z) = \sum_{n=1}^{N-2K-1} c_n \Phi_n(z)$ is a solution of Problem B'_0 and $\Phi(z) \neq 0$ in $G = \zeta(D)$. From the first formula in (4.13), there exists points $a_j^* \in L_j$ (j = 1, ..., N) so that

$$\overline{\Lambda(\zeta)}]^{-1}\Phi(\zeta)\zeta'(s)|_{\zeta=a_j^*}=0$$
, i.e. $\Phi^*(a_j^*)=0, \ j=1,...,N.$

In addition, let U(z) be a harmonic function in $D_0 = \{|z| < 1\}$, which satisfies the boundary condition

$$U(z) = \operatorname{Im}\left[\left[\overline{\Lambda(\zeta)}\right]^{-1} \Phi(\zeta) \zeta'(s)\right]|_{\zeta = \zeta(z)} \text{ on } |z| = 1.$$

Let $s = s(\theta)$ denote the corresponding relation between s and θ in $\zeta = e^{is} = \zeta(e^{i\theta})$. Then we have

$$U(z) = \frac{1}{2\pi} \int_0^{2\pi} U(t) \operatorname{Re} \frac{t+z}{t-z} ds(\theta) = \operatorname{Re} \frac{z^{|K|}}{\pi} \int_0^{2\pi} \frac{U(t) ds(\theta)}{t^{|K|-1}(t-z)} \quad \text{in } |z| < 1.$$
(4.12)

From the above formula and the second formula in (4.7), we can see that there exists the points $a_i^* \in L_0$ (j = N + 1, ..., N - 2K), so that

$$\overline{[\Lambda(\zeta)]}^{-1}\Phi(\zeta)\zeta'(s)]|_{\zeta=a_j^*} = 0, \text{ i.e. } \Phi(a_j^*) = 0, \ j = N+1, \dots N-2K.$$

Thus we get the absurd inequality

$$2N - 2K \le 2N_G + N_L = 2(N - K - 1) = 2N - 2K - 2$$

This contradiction proves that

$$h_j = 0 (j = 0, 1, ..., N), h_m^{\pm} = 0 (m = 1, ..., -K - 1)$$

in (4.7), and so $\Phi(\zeta) = 0$ in *G*. Consequently W(z) = 0 in *D*, and then $W_1(z) = W_2(z)$ in *D*. This prove the uniqueness of solutions of Problem B_0 with the index K < 0.

Denote $4d = \min_{z \in \Gamma} |z|$ and $D_1 = \{|z| \leq d\}$, $D_2 = \{d < |z| \leq 2d\}$, $D_3 = \{2d < |z| \leq 3d\}$, $D_4 = \{3d < |z| \leq 4d\}$, and construct two continuously differential functions

$$\tau_1(z) = \begin{cases} 0 \text{ in } D_1, \\ 1 \text{ in } \overline{D} \setminus \{D_1 \cup D_2\}, \ \tau_2(z) = \begin{cases} 1 \text{ in } D_1 \cup D_2, \\ 0 \text{ in } \overline{D} \setminus \{D_1 \cup D_2 \cup D_3\}, \\ \tau_1(z) \text{ in } D_2, \end{cases}$$

where $0 \leq \tau_1(z) \leq 1$ in D_2 and $0 \leq \tau_2(z) \leq 1$ in D_3 . From (4.2), we see that two functions $\tilde{W}(z) = \tau_1(z)z^{-K}W(z)$ and $\hat{W}(z) = \tau_2(z)W(z)$ are the solutions of following complex equations

$$\begin{split} \tilde{W}_{\bar{z}} &= Q_1 \tilde{W}_z + Q_2 \overline{\tilde{W}}_{\bar{z}} + A_1(z) \tilde{W} + [A_2(z)\tau_1 z^{-K}/\overline{\tau_1 z^{-K}}] \overline{\tilde{W}} + \tilde{A}, \\ \tilde{A} &= [(\tau_1 z^{-K})_{\bar{z}} - Q_1(\tau_1 z^{-K})_z] W - Q_2 \overline{(\tau_1 z^{-K})_z} \overline{W} + \tau_1 z^{-K} A(z) \text{ in } D, \\ \hat{W}_{\bar{z}} &= Q_1 \hat{W}_z + Q_2 \overline{\tilde{W}}_{\bar{z}} + A_1(z) \hat{W} + [A_2(z)\tau_2/\overline{\tau_2(z)}] \overline{\tilde{W}} + \hat{A}, \\ \hat{A} &= [\tau_{1\bar{z}} - Q_1 \tau_{1z}] W - Q_2 \overline{\tau_{1z}} \overline{W} + \tau_2 A(z) \text{ in } D, \end{split}$$
(4.13)

and satisfy the boundary conditions

$$\operatorname{Re}[\overline{\Lambda(z)}\tilde{W}(z)] = h(z) \text{ on } \Gamma,
\operatorname{Re}[\overline{\Lambda(z)}\hat{W}(z)] = 0 \text{ on } \Gamma,$$
(4.14)

respectively, the indexes of above boundary value problems are equal to $\kappa = 0$, and the function W(z) is bounded in \overline{D} from (3.8),(3.9),(4.4),(4.7). Moreover by using Theorem 4.3, Chapter II, [4], or the the reduction to absurdity as stated in the second method below, we can obtain the estimates

$$C_{\beta}[\tilde{W}(z),\overline{D}] \leq M_5, \ L_{p_0}[|\tilde{W}_{\bar{z}}| + |\tilde{W}_z|,\overline{D}] \leq M_6,$$

$$C_{\beta}[\hat{W}(z),\overline{D}] \leq M_7, \ L_{p_0}[|\hat{W}_{\bar{z}}| + |\hat{W}_z|,\overline{D}] \leq M_8,$$

where $M_j = M_j(q_0, p, \beta, k, D) (j = 5, 6, 7, 8)$ are positive constants. In particular we have

$$C_{\beta}[W(z), \overline{D} \setminus \{D_1 \cup D_2\}] \le M_5, \ L_{p_0}[|W_{\bar{z}}| + |W_z|, \overline{D} \setminus \{D_1 \cup D_2\}] \le M_6,$$

$$C_{\beta}[W(z), D_1 \cup D_2] \le M_7, \ L_{p_0}[|W_{\bar{z}}| + |W_z|, D_1 \cup D_2] \le M_8.$$

Combining the above estimates, we get

$$C_{\beta}[W(z), \overline{D}] \leq M_9 = M_9(M_5, M_7, \tau_1, \tau_2, K),$$

$$L_{p_0}[|W_{\overline{z}}| + |W_z|, \overline{D}] \leq M_{10} = M_{10}(M_6, M_8, \tau_1, \tau_2, K).$$
(4.15)

Next we prove the solvability of Problem B for the equation (1.1).

Theorem 4.2 Under the conditions in Theorem 4.1, Problem B for (1.1) is solvable.

Proof We use the Fredholm theorem of integral equation

$$\omega(z) = Q_1(z)\tilde{S}w + Q_2(z)\overline{\tilde{S}\omega} + A_1(z)\tilde{T}\omega + A_2(z)\overline{\tilde{T}\omega(z)} + A(z), \ \omega(z) \in L_{p_0}(\overline{D}),$$
(4.16)

which is corresponding to the complex equation (4.2) trough the relation $W(z) = \tilde{T}\omega$. Because $\tilde{T}\omega$ is a complete continuous operator, the inverse operator of homogeneous integral equation

$$\omega(z) = Q_1(z)\tilde{S}w + Q_2(z)\overline{\tilde{S}\omega} + A_1(z)\tilde{T}\omega + A_2(z)\overline{\tilde{T}\omega(z)}$$
(4.17)

is also complete continuous. Provided we verify that the homogeneous integral equation only has the trivial solution, then the above nonhomogeneous integral equation has a unique solution. In the following we shall prove that the above Problem B₀ has no non-zero solution. Let W(z) be any solution of Problem

 B_0 , we shall verify $W(z) \equiv 0$ in D. In fact from the proof of Theorem 4.1, W(z) can be represed as

$$W(z) = [\Psi(\zeta(z)) + \psi(z)]e^{\phi(z)}$$
 in D ,

where $\phi(z)$, $\Psi[\zeta(z)]$ are as sated as in (4.5), $\psi(z) = Th = 0$ is the solution of the equation

$$\psi_{\bar{z}} = [Q_1 + Q_2 W_z / W_z] \psi_z$$
 in D ,

and $\Psi(\zeta)$ is an analytic function in G satisfying the homogeneous boundary condition of Problem B₀, hence by the proof of Theorem 4.1, $\Psi(\zeta) \equiv 0$ in D and then $W(z) \equiv 0$ in D. This show that the above homogeneous integral equation only has zero solution, and then the nonhomogeneous integral equation has a unique solution.

Theorem 4.3 Let the system (1.1) satisfies Condition C. Then Problem A $(K \leq 0)$ has -2K + N - 1 solvability conditions and its solution w(z) can be written in the form $w(z) = \Phi(z) + \tilde{T}\rho$, where $\Phi(z)$, $\tilde{T}\rho$ are as stated in (3.9). Moreover if $K \geq 0$, under N solvability conditions, the general solution of Problem A can be written as

$$w(z) = w_0(z) + \sum_{k=1}^{2K+1} d_k w_k(z), \qquad (4.18)$$

where $w_0(z)$ is a solution of nonhomogeneous boundary value problem (Problem A) forb (1.1), and d_k (k = 1, ..., 2K + 1) are the arbitrary real constants, $w_k(z)$ (k = 1, ..., 2K + 1) are linearly independent solutions of homogeneous boundary value problem (Problem A₀) for (1.1).

Proof The above theorem shows that the general solution of Problem B for (1.1) includes the number of arbitrary real constants as stated in the above theorem. In fact, for the linear case of the complex equation (1.1) satisfying Condition C, under N solvability conditions, its general solution of Problem A with the index $K \ge 0$ can be written as (4.18), where $w_0(z)$ is a solution of nonhomogeneous boundary value problem (Problem A), and d_k (k = 1, ..., 2K + 1) are the arbitrary real constants, $w_k(z)$ (k = 1, ..., 2K + 1) are linearly independent solutions of homogeneous boundary value problem (Problem A₀), which can be satisfied the point conditions

$$\operatorname{Im}[\overline{\lambda(a_j)}w_k(a_j)] = \delta_{jk}, \ j, k = 1, ..., 2K + 1,$$

where $\delta_{jk} = 1$, if j = k = 1, ..., g and $\delta_{jk} = 0$, if $j \neq k, 1 \leq j, k \leq 2K + 1$.

References

- [1] Vekua I.N., Generalized Analytic Functions, Pergamon, Oxford, 1962.
- [2] Lavrent'ev M.A. and Shabat B.V., Methods of Function Theory of a Complex Variable, GITTL, Moscow, 1958 (Russian).
- [3] Bitsadze A.V., Some Classes of Partial Differential Equations, Gordon and Breach, New York, 1988.
- [4] Wen G.C. and Begehr, H., Boundary Value Problems for Elliptic Equations and Systems, Longman Scientific and Technical Company, Harlow, 1990.
- [5] Wen G.C., Conformal Mappings and Boundary Value Problems, Translations of Mathematics Monographs 106, Amer. Math. Soc., Providence, RI, 1992.
- [6] Wen G.C., Linear and Nonlinear Elliptic Complex Equations, Shanghai Scientific and Technical Publishers, Shanghai, 1986 (Chinese).
- [7] Wen G.C., Tai C.W. and Tian M.Y., Function Theoretic Methods of Free Boundary Problems and Their Applications to Mechanics, Higher Education Press, Beijing, 1996 (Chinese).
- [8] Behehr H. and Wen G.C., Nonlinear Elliptic Boundary Value Problems and Their Applications, Pitman Monographs 80, Addison Wesley Longman, Harlow, 1996.
- [9] Wen G.C., Approximate Methods and Numerical Analysis for Elliptic Complex Equations, Gordon and Breach, Amsterdam, 1999.
- [10] Wen G.C., Recent Progress in Theory and Applications of Modern Complex Analysis, Science Press, Beijing, 2010.
- [11] Wen G.C., Chen D.C. and Xu Z.L., Nonlinear Complex Analysis and its Applications, Mathematics Monograph Series 12, Science Press, Beijing, 2008.
- [12] Huang S., Qiao Y.Y. and Wen G.C., Real and Complex Clifford Analysis, Springer Verlag, Heidelberg, 2005.

Received: November, 2013