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The implicit expression for interest rate (R) involving principal loan amount (P), monthly payment 
(M) and time period in months (T) is studied for historical approximations, exact infinite series 
solution involving two arbitrary parameters, H-function solution, approximations including for large 
values of T in terms of infinite series as well as involving Lambert’s W-function. A new 
approximation for R is obtained from the main result which resulted in better numerical values for 
R than that obtained by Cantrell (2007). Three numerical Tables for R are given in 7 Appendices 
along with mathematical derivations of several results derived in this paper. 
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1. Introduction and historical background 

 
The problem is to find monthly interest rate R knowing the monthly payment M for a principal loan 
amount P for a time period T months. The governing compound interest equation is: 
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R
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.          (1) 

 
The equation (1) is valid when payments are made at the end of each month. If payments are made 
at the beginning of each month, then replace T by T-1 and P by P-M in (1), as the end of each 
month is the start of the next month. 
Next, we briefly describe available interest rate approximations to (1). 
 
(a) Simpson’s approximation (Simpson (1767), p. 242): 
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(b) Baily’s approximation (Baily (1808), p. 127): 
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(c) M approximation (M, (1855)): 
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(d) Henderson’s approximation (Henderson (1907)): 
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with a defined in (7). 
 
(e) Lenzi’s approximation (Lenzi (1936)): 
 
(Note: Lenzi reviewed the Baily equation, validating it for T ≤ 50 and proposing the change below 
for T>50) 
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(f) Evan’s approximation (Evans (1946)): 
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(g) Karpin’s approximation (Karpin (1967)): 
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(h) Cantrell’s approximation (Cantrell (2007)): 
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(i) Fayed’s approximation (Fayed (2011)): 
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It was observed that Cantrell’s approximation is the best among all the approximations mentioned 
above. As Hawawini and Vora (1981) report, this problem has engaged mathematicians, actuaries 
and financial analysists for about three centuries. 
 
The rest of the paper is divided as follow: Section 2 deals with the exact expressions for interest rate 
R in general as an infinite series as well as a H-function. The closed form results are given for T=2 
and 3. In Section 3, approximate results are obtained, one of them involving Lambert’s W-function. 
Section 4 deals with other approximate results, one of which is used to calculate the interest rate R 
resulting in better numerical Tables as compared to that given earlier by Cantrell (2007). The proofs 
of various results are given in Appendices 2 to 6. Appendix 1 includes Lagrange’s inversion 
theorem and the definition of the H-function. Appendix 7 gives various Tables of numerical results 
involving the interest rate R comparing with the results derived from Cantrell (2007) 
approximation. The paper ends with a conclusion section and a list of references. 
 
 

2. Exact expression for interest rate 

 
In this section, we indicate closed-form solutions for interest rate Equation (1) in terms of an 
infinite series, using Lagrange’s Method (see Theorem 1 below) along with other exact results. The 
proofs for easy results are omitted, and for the other results are given in Appendices. 
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Denoting m = M/P, Eq. (1) is written as 
 

  T
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.          (20) 

 
Note that R = m when T→∞. 
 
Eq. (20) is written as 
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Considering y = RT, Eq. (21) changes to 
 

  T
T/y

RT
mT 


11

.         (22) 

 
For simple cases, Eq. (20) can be solved in closed form. For example, for T=1 month, solution of 
Eq. (20) yields 
 

1mR .           (23) 
 
For T = 2 months, Eq. (20) gives 
 

  02122  mRmR .         (24) 

 
Solving Eq. (24) as a quadratic equation, we have 
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For T = 3 months, Eq. (20) transforms to 
 

    031133 23  mRmRmR .       (26) 

 
Solution of Eq. (26) is obtained as 
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Theorem 1 (see Appendix 2). 
 
For B > 0 and α > 0, the following result is valid: 
 

     B,m,T,AmBRB   ,        (30) 
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For B=1, 
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For α = 1, (32) yields 
 
 

 11 ,m,T,AmR  .          (33) 

 
The result in terms of H-function (see Appendix 3) is 
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where H-function is defined in Appendix 1. 
 
For the proof of the following result, see Appendix 4: 
 

  1111 ,m,,A .           (35) 

 
The equation (35) implies that R = m-1. 
 
 

3. Approximate expressions for interest rate 

 
In this section, we obtain approximate solutions. The proofs of the results are given in Appendices. 
 
Talking limit T→∞, Eq. (22) reduces to 
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The solution of Eq. (36) using Lagrange series (see, Appendix 5) is 
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On the other hand, the solution of (36) involving W function (see, Appendix 6) is 
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where Lambert’s W-function is given in Appendix 1. 
 
 

4. Computation of approximate interest rates 

 
Cantrell (2007) approximation with error less than 1%, is 
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Eq. (39) is rewritten as  
  ሺͳ + 𝑅ሻ1 ≅ ሺͳ + ݉ሻ1 − ͳ.         (41) 

                                                            
Comparing equations (32) and (41), we have 
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From (42) and (43), one gets 
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Several sets of values for B, α and A (α, T, m, B) are tried to reduce the error in approximate values 

of R. Talking B=1.000018, α=log2(1+1/T) and A (α, T, m, B)1 in (30), we get 
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resulting in a better result than what was indicated by Cantrell (2007). 
 
The percentage error is calculated using the expression: 
 
Error (%) = abs[(calculated rate - exact rate)/(exact rate)] x 100. 
 
The numerical calculations using (45) along with Cantrell’s (2007) approximation are given in 
Appendix 7, for comparison purposes. 
 
 
Notations 

 

The following symbols are used in this paper: 
 

R = interest rate ($/$ per month);  
M = monthly payment ($); 
P = principal loan amount ($); 
T = time period (months); 
m = normalized monthly payment M/P; 
 

5. Conclusions 

 
The exact numerical results for R may be obtained from Eq. (30). However, the approximate 
expression for R given in Eq. (45) result in better numerical values as compared to that obtained 
earlier by Cantrell (2007). In addition, several new mathematical results involving interest rates are 
derived. 
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Appendix 1 - Known results 

 

(A) Lagrange's inversion theorem 

Let ݕ be defined as the following function of constant ܽ, function 𝜙, and a parameter 𝜃 ݕ = ܽ + 𝜃𝜙ሺݕሻ. 
Then any function ݂ሺݕሻ is expressed as the following power series 𝜃 (Whittaker and Watson 
(1990)) 

݂ሺݕሻ = ݂ሺܽሻ +∑𝜃݊!∞
=ଵ

𝜕−ଵ𝜕ݔ−ଵ [݂′ሺݔሻ𝜙ሺݔሻ]|𝑥=. 
(B) H-function 

The H-function is defined as 𝐻, ,  ሺ 1, 1ሻ, … ,ሺ , ሻ,ሺ +1, +1ሻ, … ,ሺ , ሻሺ 1, 1ሻ, … ,ሺ , ሻ,ሺ +1, +1ሻ, … ,ሺ , ሻ|ݖ] ]= ͳʹ𝜋݅ ∫ ∏ 𝛤=ଵ ሺ ܾ − ∏𝑠ሻܤ 𝛤=ଵ ሺͳ − ܽ + ∏𝑠ሻܣ 𝛤=+ଵ ሺͳ − ܾ + ∏𝑠ሻܤ 𝛤=+ଵ ሺ ܽ − 𝑠ሻ𝐿ܣ  .𝑠݀𝑠ݖ
where ݖ ≠ Ͳ, an empty product is interpreted as unity, Ͳ  ݉  ܽ, Ͳ  ݊  𝑝 (not both ݉ and ݊ 
are zeros simultaneously). The parameters are such that no poles of ∏ 𝛤=ଵ ሺ ܾ −  𝑠ሻ coincidesܤ

with any pole of ∏ 𝛤=ଵ ሺͳ − ܽ + ߙ𝑠ሻ and contour 𝐿ሺܣ − ݅∞, ߙ + ݅∞ሻ separates these two types 

of poles. For more details, see (Mathai et al. (2010)). 

(C) The single valued-function 𝑊ሺݔሻ as the solution of 𝑊ሺݔሻ݁𝑊ሺ𝑥ሻ =  ,ݔ
for ݔ  ଵ𝑒 and 𝑊ሺݔሻ  ͳ, is used in this article. 

 

Appendix 2 - Theorem 1, proof of result (30) 

The equation (20) is 𝑅 = ݉ −݉ሺͳ + 𝑅ሻ−𝑇. 

Using Lagrange's inversion theorem [eqs. (46) and (47)] for ݂ሺݕሻ = ሺߚ +݉ሻ𝛼, ߚ > Ͳ, ߙ > Ͳ, we 
have 

ሺܤ + 𝑅ሻ𝛼 = ሺܤ +݉ሻ𝛼 + ∞!ሺ−݉ሻ𝑠𝑠∑ߙ
𝑠=ଵ

𝜕𝑠−ଵ𝜕ݔ𝑠−ଵ [ሺܤ + ሻ𝛼−ଵሺͳݔ +  ሻ−𝑇𝑠]|𝑥=ݔ

= ሺܤ +݉ሻ𝛼 + ∞!ሺ−݉ሻ𝑠𝑠∑ߙ
𝑠=ଵ ∑ሺͳ− ሻሺͳߙ − ∞!ሻ݆ܤ

=
𝜕𝑠−ଵ𝜕ݔ𝑠−ଵ [ሺͳ +  ሻ𝛼−ଵ−𝑇𝑠−]|𝑥=ݔ

= ሺܤ +݉ሻ𝛼 − 𝑠ሺͳ݉∑∑ߙ − ሻሺͳߙ − ሻ𝛤ሺ𝑇𝑠ܤ + ݆ + 𝑠 − !ሻ𝑠ߙ ݆! 𝛤ሺ𝑇𝑠 + ݆ + ͳ − ∞ሻߙ
=

∞
𝑠=ଵ ሺͳ + ݉ሻ−ሺ𝑇𝑠++𝑠−𝛼ሻ 
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Another solution can be obtained by taking specific values of the parameters in (1) and (10) in an 

article by Rathie and Ozelim (2012). 

Appendix 3 - Result in H-function (Proof of result (34)) 

We have, from (32)   

,ߙሺܣ 𝑇,݉, ͳሻ = ሺͳߙ + ݉ሻ𝛼∑݉𝑠+ଵ𝛤ሺሺ𝑠 + ͳሻ𝑇 − ߙ + 𝑠 + ͳሻሺͳ + ݉ሻ−ሺ𝑠+ଵሻሺ𝑇+ଵሻሺ𝑠 + ͳሻ! 𝛤ሺሺ𝑠 + ͳሻ𝑇 − ߙ + ͳሻ∞
𝑠=  

= ሺͳߙ݉ +݉ሻ𝛼−𝑇−ଵ∑( ݉ሺͳ +݉ሻ𝑇+ଵ)𝑠∞
𝑠=

𝛤ሺ𝑠 + ͳሻ𝛤ሺ𝑠ሺ𝑇 + ͳሻ + 𝑇 + ͳ − !ሻ𝑠ߙ 𝛤ሺ𝑠 + ʹሻ𝛤ሺ𝑠𝑇 + 𝑇 + ͳ − ሻߙ  

Comparing with H-function series (Mathai et al. (2010)), we have: ℎ = ͳ, ܾℎ = Ͳ, ܤℎ = ͳ, ݉ = ͳ, ݖ = ݉ሺͳ +݉ሻ−ሺ𝑇+ଵሻ, 𝑠 = ͵, 𝑝 = ʹ, ݊ = ʹ, ܾଶ = −ͳ, ܤଶ = ͳ, ܾଷ = ߙ − 𝑇, ܤଷ = 𝑇, ܽଵ = Ͳ, ܣଵ = ͳ, ܽଶ = ߙ − 𝑇, ܣଶ = 𝑇 + ͳ. 

Hence ܣሺߙ, 𝑇,݉, ͳሻ = ሺͳߙ݉ + ݉ሻ𝛼−𝑇−ଵ𝐻ଶ, ଷଵ, ଶ [ ݉ሺͳ + ݉ሻ𝑇+ଵ |ሺ,ଵሻ,ሺ−ଵ,ଵሻ,ሺ𝛼−𝑇, 𝑇ሻሺ,ଵሻ,ሺ𝛼−𝑇, 𝑇+ଵሻ ] 
As 𝑇 is a positive integer, the H-function may be written as a Meijer's G-function which is 
computable by using the softwares Mathematica or Maple. 

Appendix 4 - Proof of result (35) 

We take ܤ = ͳ and ߙ = logଶሺͳ + ଵ𝑇ሻ = ͳ for 𝑇 = ͳ in (31) to get 

,݉,ሺͳ,ͳܣ ͳሻ =∑݉𝑠𝛤ሺʹ𝑠 − ͳሻሺͳ + ݉ሻ−ሺଶ𝑠−ଵሻ𝑠! 𝛤ሺ𝑠ሻ∞
𝑠=ଵ . 

Using the duplication formula, 𝛤ሺʹ𝑠 − ͳሻ = ʹଶ𝑠−ଶ𝜋−ଵଶ𝛤 (𝑠 − ͳʹ) 𝛤ሺ𝑠ሻ 
we have 

,݉,ሺͳ,ͳܣ ͳሻ = ሺͳ + ݉ሻͶ𝜋ଵଶ ∑[ Ͷ݉ሺͳ +݉ሻଶ]𝑠∞
𝑠=ଵ

𝛤ሺ𝑠 − ͳʹሻ𝑠!  

= ሺͳ +݉ሻͶ𝜋ଵଶ { ∑∞𝑠= [ Ͷ݉ሺͳ + ݉ሻଶ]𝑠 ሺ− ͳʹሻ𝑠𝑠! 𝛤ሺ− ͳʹሻ − 𝛤ሺ− ͳʹሻ} 

= ሺͳ +݉ሻ𝛤ሺ− ͳʹሻͶ𝜋ଵଶ [ ଵ𝐹ሺ− ͳʹ ; ; Ͷ݉ሺͳ + ݉ሻଶሻ − ͳ] 
= −ሺͳ +݉ሻʹ {[ͳ − Ͷ݉ሺͳ +݉ሻଶ]ଵଶ − ͳ} 
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= −ሺͳ +݉ሻʹ [݉ − ͳ݉ + ͳ − ͳ] = ͳ 

Cantrell (2007) did not provide any explication as to why he took the approximation to interest rate 𝑅 as given in eq. (39). In our infinite series expression (30) for interest rate, ܤ ,ߙ are arbitrary to 
choose. As ܣሺߙ, 𝑇,݉, ሻܤ = ͳ for ߙ = ͳ, 𝑇 = ͳ and ܤ = ͳ, we approximate ܣሺߙ, 𝑇,݉,  .ሻ by 1ܤ
This type of approximation does not add to the error in calculation of 𝑅 for large values of 𝑇. We 

take ߙ = logଶሺͳ + ଵ𝑇ሻ so that ߙ = ͳ, for 𝑇 = ͳ. Thus, the arbitrary parameter ܤ may be choosen in 

such a way that the approximate interest rate became as close as possible to the exact interest rate. 

Appendix 5 - Proof of (37) 

Equation (36) is 𝑅 = ݉ −݉expሺ−𝑅𝑇ሻ. 
Applying Lagrange's inversion theorem, we get 

𝑅 = ݉ +∑ሺ−݉ሻ݇!∞
=ଵ

𝜕−ଵ𝜕𝑅−ଵ [expሺ−𝑅𝑇݇ሻ]|𝑅= 

= ݉ − ͳ𝑇∑[݉𝑇expሺ−𝑇݉ሻ]݇−ଵ݇!∞
=ଵ , 

on simplification. 

Appendix 6 - Proof of (38) 

Equation (36) is rewritten as 𝑅 −݉ = −݉expሺ−𝑅𝑇ሻ. 
Multiplying both sides by 𝑇expሺ−݉𝑇ሻ, we have 𝑇ሺ𝑅 −݉ሻexpሺ𝑇ሺ𝑅 −݉ሻሻ = −݉𝑇expሺ−݉𝑇ሻ. 
Hence, using the definition of Lambert's W-function, we have 𝑇ሺ𝑅 − ݉ሻ = 𝑊ሺ−݉𝑇expሺ−݉𝑇ሻሻ. 
Thus, 𝑅 = ݉ + ͳ𝑇𝑊ሺ−݉𝑇expሺ−݉𝑇ሻሻ. 
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Appendix 7. 

The following are the Tables with numerical values of the rate and respective percent errors in 

relation to the exact value. 

 

Table 1: Cantrell Equation (39). 

T 

Exact Rate 

0.005 0.01 0.02 0.03 0.04 0.05 0.075 0.10 

R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) 

2 0.005000 0.00534 0.009999 0.01062 0.019996 0.02106 0.029991 0.03132 0.039983 0.04141 0.049974 0.05132 0.074943 0.07537 0.099902 0.09841 

3 0.005000 0.00945 0.009998 0.01879 0.019993 0.03714 0.029983 0.05504 0.039971 0.07251 0.049955 0.08955 0.074902 0.13033 0.099831 0.16862 

4 0.004999 0.01318 0.009997 0.02616 0.019990 0.05151 0.029977 0.07607 0.039960 0.09985 0.049939 0.12287 0.074867 0.17720 0.099773 0.22712 

5 0.004999 0.01673 0.009997 0.03314 0.019987 0.06503 0.029971 0.09568 0.039950 0.12514 0.049923 0.15342 0.074836 0.21917 0.099722 0.27821 

6 0.004999 0.02017 0.009996 0.03990 0.019984 0.07800 0.029966 0.11435 0.039940 0.14900 0.049909 0.18199 0.074807 0.25749 0.099676 0.32359 

12 0.004998 0.03992 0.009992 0.07810 0.019970 0.14938 0.029936 0.21408 0.039891 0.27249 0.049838 0.32488 0.074676 0.43149 0.099493 0.50706 

18 0.004997 0.05891 0.009989 0.11400 0.019957 0.21311 0.029911 0.29812 0.039852 0.36989 0.049785 0.42936 0.074602 0.53057 0.099424 0.57622 

24 0.004996 0.07740 0.009985 0.14813 0.019946 0.27039 0.029889 0.36863 0.039822 0.44493 0.049749 0.50149 0.074571 0.57162 0.099432 0.56753 

36 0.004994 0.11308 0.009979 0.21149 0.019927 0.36708 0.029858 0.47319 0.039785 0.53710 0.049717 0.56646 0.074598 0.53648 0.099567 0.43326 

48 0.004993 0.14712 0.009973 0.26863 0.019912 0.44172 0.029839 0.53516 0.039773 0.56675 0.049723 0.55407 0.074682 0.42452 0.099728 0.27188 

60 0.004991 0.17956 0.009968 0.31981 0.019901 0.49635 0.029831 0.56193 0.039780 0.55118 0.049752 0.49543 0.074774 0.30109 0.099849 0.15088 

75 0.004989 0.21790 0.009962 0.37572 0.019892 0.53975 0.029833 0.55711 0.039803 0.49203 0.049803 0.39450 0.074868 0.17633 0.099935 0.06464 

100 0.004986 0.27651 0.009955 0.45023 0.019888 0.56170 0.029853 0.48858 0.039858 0.35585 0.049884 0.23225 0.074954 0.06109 0.099987 0.01340 

120 0.004984 0.31875 0.009951 0.49433 0.019891 0.54521 0.029878 0.40823 0.039899 0.25198 0.049931 0.13849 0.074982 0.02383 0.099996 0.00352 

150 0.004981 0.37469 0.009946 0.53752 0.019903 0.48508 0.029914 0.28539 0.039946 0.13603 0.049971 0.05762 0.074996 0.00533 0.100000 0.00045 

180 0.004979 0.42209 0.009944 0.55702 0.019919 0.40452 0.029945 0.18453 0.039973 0.06763 0.049989 0.02215 0.074999 0.00113 0.100000 0.00005 

220 0.004976 0.47286 0.009945 0.55364 0.019941 0.29468 0.029972 0.09474 0.039990 0.02451 0.049997 0.00575 0.075000 0.00014 0.100000 0.00000 

250 0.004975 0.50227 0.009947 0.53442 0.019955 0.22257 0.029984 0.05490 0.039996 0.01100 0.049999 0.00203 0.075000 0.00003 0.100000 0.00000 

300 0.004973 0.53636 0.009952 0.48153 0.019974 0.13112 0.029994 0.02085 0.039999 0.00276 0.050000 0.00035 0.075000 0.00000 0.100000 0.00000 

360 0.004972 0.55574 0.009960 0.40077 0.019987 0.06455 0.029998 0.00613 0.040000 0.00050 0.050000 0.00004 0.075000 0.00000 0.100000 0.00000 

AVERAGE ERROR = 0.21790 - 0.28270 - 0.27200 - 0.24620 - 0.22863 - 0.21620 - 0.19616 - 0.18424 

 

 

 

Table 2: Proposed Equation (45).  

T 

Exact Rate 

0.005 0.01 0.02 0.03 0.04 0.05 0.075 0.10 

R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) 

2 0.005006 0.11382 0.010005 0.04854 0.020002 0.00810 0.029996 0.01214 0.039989 0.02722 0.049980 0.04013 0.074949 0.06816 0.099907 0.09317 

3 0.005008 0.16865 0.010007 0.06933 0.020001 0.00602 0.029992 0.02686 0.039979 0.05180 0.049963 0.07332 0.074910 0.12004 0.099839 0.16128 

4 0.005010 0.19981 0.010008 0.07886 0.020000 0.00044 0.029987 0.04295 0.039970 0.07568 0.049948 0.10405 0.074876 0.16546 0.099781 0.21888 

5 0.005011 0.21910 0.010008 0.08274 0.019998 0.00905 0.029982 0.05962 0.039960 0.09900 0.049933 0.13320 0.074845 0.20677 0.099730 0.26964 

6 0.005012 0.23163 0.010008 0.08341 0.019996 0.01885 0.029977 0.07651 0.039951 0.12175 0.049919 0.16105 0.074816 0.24485 0.099685 0.31499 

12 0.005013 0.25222 0.010006 0.06204 0.019983 0.08485 0.029948 0.17444 0.039902 0.24507 0.049848 0.30463 0.074685 0.42041 0.099500 0.50022 

18 0.005012 0.24364 0.010003 0.02816 0.019970 0.15027 0.029922 0.26104 0.039862 0.34525 0.049794 0.41188 0.074609 0.52189 0.099429 0.57135 

24 0.005011 0.22729 0.009999 0.00787 0.019958 0.21087 0.029900 0.33490 0.039831 0.42339 0.049757 0.48681 0.074576 0.56501 0.099436 0.56417 

36 0.005009 0.18745 0.009992 0.07872 0.019937 0.31515 0.029866 0.44604 0.039792 0.52110 0.049722 0.55639 0.074600 0.53276 0.099568 0.43169 

48 0.005007 0.14522 0.009986 0.14468 0.019921 0.39703 0.029846 0.51361 0.039778 0.55503 0.049726 0.54726 0.074683 0.42246 0.099729 0.27117 

60 0.005005 0.10325 0.009980 0.20471 0.019908 0.45810 0.029837 0.54492 0.039783 0.54265 0.049755 0.49085 0.074775 0.29995 0.099849 0.15055 

75 0.005003 0.05241 0.009973 0.27121 0.019898 0.50837 0.029837 0.54450 0.039805 0.48631 0.049804 0.39173 0.074868 0.17579 0.099935 0.06452 

100 0.004999 0.02689 0.009964 0.36160 0.019892 0.53925 0.029856 0.48097 0.039859 0.35294 0.049884 0.23106 0.074954 0.06094 0.099987 0.01337 

120 0.004996 0.08500 0.009958 0.41680 0.019894 0.52809 0.029879 0.40317 0.039900 0.25028 0.049931 0.13788 0.074982 0.02377 0.099996 0.00351 

150 0.004992 0.16319 0.009953 0.47421 0.019905 0.47369 0.029915 0.28264 0.039946 0.13527 0.049971 0.05740 0.074996 0.00531 0.100000 0.00045 

180 0.004988 0.23092 0.009949 0.50537 0.019921 0.39696 0.029945 0.18304 0.039973 0.06730 0.049989 0.02207 0.074999 0.00112 0.100000 0.00005 

220 0.004985 0.30594 0.009949 0.51432 0.019942 0.29031 0.029972 0.09408 0.039990 0.02440 0.049997 0.00574 0.075000 0.00014 0.100000 0.00000 

250 0.004982 0.35156 0.009950 0.50240 0.019956 0.21968 0.029984 0.05454 0.039996 0.01095 0.049999 0.00202 0.075000 0.00003 0.100000 0.00000 

300 0.004980 0.40930 0.009954 0.45882 0.019974 0.12967 0.029994 0.02072 0.039999 0.00275 0.050000 0.00034 0.075000 0.00000 0.100000 0.00000 

360 0.004977 0.45227 0.009961 0.38574 0.019987 0.06391 0.029998 0.00609 0.040000 0.00050 0.050000 0.00004 0.075000 0.00000 0.100000 0.00000 

AVERAGE ERROR = 0.20848 - 0.23898 - 0.24043 - 0.22814 - 0.21693 - 0.20789 - 0.19174 - 0.18145 
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Table 3: Comparison of Errors. 

Exact Rate 
Average Error (%) 

Cantrell Equation Proposed Equation 

0.005 0.21790 0.20848 

0,010 0.28270 0.23898 

0.020 0.27200 0.24043 

0.030 0.24620 0.22814 

0.040 0.22863 0.21693 

0.050 0.21620 0.20789 

0.075 0.19616 0.19174 

0.100 0.18424 0.18145 

Global Average Error (%) = 0.23050 0.21426 
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