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Abstract

The implicit expression for interest rate (R) involving principal loan amount (P), monthly payment
(M) and time period in months (T) is studied for historical approximations, exact infinite series
solution involving two arbitrary parameters, H-function solution, approximations including for large
values of T in terms of infinite series as well as involving Lambert’s W-function. A new
approximation for R is obtained from the main result which resulted in better numerical values for
R than that obtained by Cantrell (2007). Three numerical Tables for R are given in 7 Appendices
along with mathematical derivations of several results derived in this paper.

MSC Subject Classification: 90A09, 33C60

Keywords: Interest rate, H-function, Lambert’s W-function, Lagrange’s Inversion Theorem

1. Introduction and historical background

The problem is to find monthly interest rate R knowing the monthly payment M for a principal loan
amount P for a time period T months. The governing compound interest equation is:

P-R
M=——" " 1
1-(1+R) " W

The equation (1) is valid when payments are made at the end of each month. If payments are made
at the beginning of each month, then replace T by T-1 and P by P-M in (1), as the end of each
month is the start of the next month.

Next, we briefly describe available interest rate approximations to (1).

(a) Simpson’s approximation (Simpson (1767), p. 242):

30h—4(2T +1)

R:6h(5h—3T—4)+1/6~(11T+13)(T+2) ’ @
where

_ T(T+1)

2AT-M/P) ©

(b) Baily’s approximation (Baily (1808), p. 127):
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| 2=(T-1n
R=h [12—2(T—1)h}’ .
where
2
b (%jm _1. (5)
P

(c) M approximation (M, (1855)):

B 8(T —a) 6
R T BarT) ©
where
az%. %)

(d) Henderson’s approximation (Henderson (1907)):

o [rer (@-vn T
R=h { 2T +6+2(T—1)1J ’ ®

where

p=t-L )
a T

with a defined in (7).
(e) Lenzi’s approximation (Lenzi (1936)):

(Note: Lenzi reviewed the Baily equation, validating it for 7 < 50 and proposing the change below
for T>50)

_12h—6k—(T—1)n°

) 10
6—(T—1)h (10
where
2z
Th T+1
k=|—————1| -1, (11)
=i
and
2
N z(%jm 1. (12)
P

(f) Evan’s approximation (Evans (1946)):

]
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where
12
p=lid] 1 +1.(TM) . (14)
5 3|(T+1) 10\ P

(g) Karpin’s approximation (Karpin (1967)):

R 2h(3 + h) ’ (15)
2T -h+3(T +1)

where

p=IM_, (16)
P

(h) Cantrell’s approximation (Cantrell (2007)):

R:K]+A;)1/q—l}q—l’ (17)

where

_ log(1+1/T)

log (2) (18)

(1) Fayed’s approximation (Fayed (2011)):

R:1)[3—£9—24(T_2XT_P/M)JI/2]‘ (19)

2T -2 T(T-1)

It was observed that Cantrell’s approximation is the best among all the approximations mentioned
above. As Hawawini and Vora (1981) report, this problem has engaged mathematicians, actuaries
and financial analysists for about three centuries.

The rest of the paper is divided as follow: Section 2 deals with the exact expressions for interest rate
R in general as an infinite series as well as a H-function. The closed form results are given for T=2
and 3. In Section 3, approximate results are obtained, one of them involving Lambert’s W-function.
Section 4 deals with other approximate results, one of which is used to calculate the interest rate R
resulting in better numerical Tables as compared to that given earlier by Cantrell (2007). The proofs
of various results are given in Appendices 2 to 6. Appendix 1 includes Lagrange’s inversion
theorem and the definition of the H-function. Appendix 7 gives various Tables of numerical results
involving the interest rate R comparing with the results derived from Cantrell (2007)
approximation. The paper ends with a conclusion section and a list of references.

2. Exact expression for interest rate
In this section, we indicate closed-form solutions for interest rate Equation (1) in terms of an

infinite series, using Lagrange’s Method (see Theorem 1 below) along with other exact results. The
proofs for easy results are omitted, and for the other results are given in Appendices.
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Denoting m = M/P, Eq. (1) is written as

R
S 20
" 1-(1+R)" 0

Note that R = m when T—oo0.
Eq. (20) is written as

ml = BT Q1)

1-(1+RYT
Considering y = RT, Eq. (21) changes to

mr=— (22)
1-(1+y/T)

For simple cases, Eq. (20) can be solved in closed form. For example, for T=1 month, solution of
Eq. (20) yields

R=m-1. (23)
For T = 2 months, Eq. (20) gives
R*+(2-m)R+1-2m=0. (24)

Solving Eq. (24) as a quadratic equation, we have

R=m—2+1/m(m+45. 25)

2

For T = 3 months, Eq. (20) transforms to
R +(B3-m)R* +3(1-m)R+1-3m=0. (26)
Solution of Eq. (26) is obtained as

/ 3
R=2 —Ecosh larcosh —M 3 —1+ﬂ, 27
3 3 2p p 3

where

p:—%(m+3), (28)

and

q:—z—”;(zm2 +9m+27). (29)
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Theorem 1 (see Appendix 2).
For B > 0 and a > 0, the following result is valid:
(B+R)* =(B+m)* — Ala,T,m,B), (30)
where

2 2m'(l-a) (1-BY I(sT+ j—a+s\ +m)‘("T+f"“”)

Ale,T,m,B)=a €1y
( ) SZ:;EO sl j! I'(sT+j-a+1)
For B=1,
2m* I(sT —a + s )1+ m)_(ST_aH)

1+ R =(1+m)f —a> ™ =(1+mf - Ala,T,ml). (32
( ) ( ) SZ:; s.’F(sT—a+1) ( ) ( ) 52)
Fora =1, (32) yields

R=m—A(,T,m]). (33)
The result in terms of H-function (see Appendix 3) is

. o-T—1 4712 m (01)(a=T,T+1)

A(C(, T, m,l) = ma(l + m) H2’3|:W |(O,1),(—1,1),(a—T,T) 5 (34)
where H-function is defined in Appendix 1.
For the proof of the following result, see Appendix 4:

A(LLm1)=1. (35)

The equation (35) implies that R = m-1.

3. Approximate expressions for interest rate
In this section, we obtain approximate solutions. The proofs of the results are given in Appendices.

Talking limit T—o0, Eq. (22) reduces to

(36)

The solution of Eq. (36) using Lagrange series (see, Appendix 5) is
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1 & (mTke™ )
R=m-—S 2t ) (37)

On the other hand, the solution of (36) involving W function (see, Appendix 6) is
R:m+%W0(—mTe_mT>, (38)

where Lambert’s W-function is given in Appendix 1.

4. Computation of approximate interest rates

Cantrell (2007) approximation with error less than 1%, is

q
R;b+mf”—ﬂ -1, (39)
where
1
q=mg4é+;j. (40)

Eq. (39) is rewritten as

1 1
(1+R)=(1+m)i—1. 41)
Comparing equations (32) and (41), we have

a:Uq:Ub&@+%} 42)

and

Z“’: m’ F(sT —a+ s)(l + m)f(XTf‘m)

- 8
e T(sT-a+1) (43)
From (42) and (43), one gets
= m' F(ST—OHrs)(ler)*(“'T’“”) ( 1)

el 44
SZ:‘:S! [(sT-a+1) g, I+ @

Several sets of values for B, a and A (a, T, m, B) are tried to reduce the error in approximate values
of R. Talking B=1.000018, a=log(1+1/T) and A (a, T, m, B)=1 in (30), we get

log,(1+1/T)
R =[(1.000018 + )/ ox:041T) ] ~1.000018, (45)
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resulting in a better result than what was indicated by Cantrell (2007).

The percentage error is calculated using the expression:

Error (%) = abs[(calculated rate - exact rate)/(exact rate)] x 100.

The numerical calculations using (45) along with Cantrell’s (2007) approximation are given in
Appendix 7, for comparison purposes.

Notations

The following symbols are used in this paper:

R = interest rate ($/$ per month);

M = monthly payment ($);

P = principal loan amount ($);

T = time period (months);
m = normalized monthly payment M/P;

5. Conclusions
The exact numerical results for R may be obtained from Eq. (30). However, the approximate
expression for R given in Eq. (45) result in better numerical values as compared to that obtained

earlier by Cantrell (2007). In addition, several new mathematical results involving interest rates are
derived.
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Appendix 1 - Known results

(A) Lagrange's inversion theorem
Let y be defined as the following function of constant a, function ¢, and a parameter 6

y=a+0¢().

Then any function f(y) is expressed as the following power series 6 (Whittaker and Watson
(1990))

n-1

0" 0 ,
FO) = f@+ ) e [f )" (D] emar
i=1

(B) H-function
The H-function is defined as

n [ I(al’Al)v ---'(an’An)'(an+1vAn+1)' ...,(ap,Ap) ]
(b1,B1), .(bm, Bm),(bm+1, Bm+1), - .(bq, Bg)
2mi ), r(1 b+Bs)H T (a; — 4;s)

] =m+1

z5ds.

j=n+1

where z # 0, an empty product is interpreted as unity, 0 <m < a, 0 <n < p (not both m and n
are zeros simultaneously). The parameters are such that no poles of [[{Z, I' (b; — B;s) coincides

with any pole of [[7-; I' (1 — a; + A;s) and contour L(a — i, a + i) separates these two types
of poles. For more details, see (Mathai et al. (2010)).

(C) The single valued-function W, (x) as the solution of
W(x)e"®™ =y,

for x > é and W (x) = 1, is used in this article.

Appendix 2 - Theorem 1, proof of result (30)
The equation (20) is
R=m-m(1+R)T.

Using Lagrange's inversion theorem [eqgs. (46) and (47)] for f(y) = (8 +m)%, B >0, a > 0, we
have

(—m )s )

(B + R)® = (B+m)“+az [(B+x)“ L1+ 20775 |,

—(B+m)“+a2( m)sz(l a)j(l B)/ aass T

o mS(1—a);(1—B)Y I (Ts+j+s—a) .
= (B a__ J 1 —(Ts+j+s—a)
(B +m) “ZZ y SIT(Ts +j + 1 —a) A +m)
S: ]:
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Another solution can be obtained by taking specific values of the parameters in (1) and (10) in an
article by Rathie and Ozelim (2012).

Appendix 3 - Result in H-function (Proof of result (34))

We have, from (32)

SHP((s+ DT —a + s + 1) (1 +m)~EtDI+D
+DII((s+ DT —a+1)

A(a, T,m, 1) —a(1+m)“zm

~ R — m ST(s+DIGST+D)+T+1—a)
= ma(l+m)* 1; ((1 + m)T+1) SITG+2)IGT+T +1—a)

Comparing with H-function series (Mathai et al. (2010)), we have:
h=1,b,=0,Bp=1,m=1,z=m(1+m)" "V s=3 p=2n=2,b,=-1,B, =1,
b3 =a_T,B3=T,a1=O,A1=1,a2 =(Z—T,A2 =T+ 1.

Hence

|(0 1),(a—T, T+1)

A(a,T,m,1) = ma(l+m)* T~ 1H2 3 (0.1)(~1.1).(@T, T)

1+ m)T+1

As T is a positive integer, the H-function may be written as a Meijer's G-function which is
computable by using the softwares Mathematica or Maple.

Appendix 4 - Proof of result (35)

We take B = 1 and & = log,(1 +7) = 1for T = 1in (31) to get

had s _ —(2s5-1)
A(L,1,m,1) = Z mI(2s ;!)ﬁ;)r m) .

Using the duplication formula,
1 1
r(2s—1)=2%"2g"2r (s - E) r(s)

we have

Sr(s — 4
Y e

1+m)| = 4m
- [(1 +m)?

1
| =28 d-red)
s! 2 2

1 =
47.[2 s=0

C@+mr-y) L, m oy

4n% [ 1Fo(—§:;m)—

1

-& J;m) [1 e i"rl)zr -
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o A+m)ym-1 1]_1
B 2 Im+1 B

Cantrell (2007) did not provide any explication as to why he took the approximation to interest rate
R as given in eq. (39). In our infinite series expression (30) for interest rate, @, B are arbitrary to
choose. As A(a, T,m,B) =1 fora=1,T =1 and B =1, we approximate A(a,T,m,B) by 1.
This type of approximation does not add to the error in calculation of R for large values of T. We

take @ = log, (1 + %) so that « = 1, for T = 1. Thus, the arbitrary parameter B may be choosen in
such a way that the approximate interest rate became as close as possible to the exact interest rate.

Appendix 5 - Proof of (37)
Equation (36) is
R = m — mexp(—RT).

Applying Lagrange's inversion theorem, we get

had (_m)k ak—l
R=m+ z el gRE1 [exp(—RTk)]|r=m
k=1

B 1 i [mTexp(—Tm)]*kk1
ST k! '
k=1

on simplification.
Appendix 6 - Proof of (38)
Equation (36) is rewritten as
R —m = —mexp(—RT).
Multiplying both sides by Texp(—mT), we have
T(R —m)exp(T(R —m)) = —mTexp(—mT).
Hence, using the definition of Lambert's W-function, we have
T(R —m) = Wy(—mTexp(—mT)).
Thus,

1
R=m+ TWO(—mTexp(—mT)).
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Appendix 7.

The following are the Tables with numerical values of the rate and respective percent errors in
relation to the exact value.

Table 1: Cantrell Equation (39).

Exact Rate
T 0.005 0.01 0.02 0.03 0.04 0.05 0.075 0.10
R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%)

0.005000 | 0.00534 | 0.009999 | 0.01062 | 0.019996 | 0.02106 | 0.029991 | 0.03132 | 0.039983 | 0.04141 | 0.049974 | 0.05132 | 0.074943 | 0.07537 | 0.099902 | 0.09841

0.005000 | 0.00945 | 0.009998 | 0.01879 | 0.019993 | 0.03714 | 0.029983 | 0.05504 | 0.039971 | 0.07251 | 0.049955 | 0.08955 | 0.074902 | 0.13033 | 0.099831 | 0.16862

0.004999 | 0.01673 | 0.009997 | 0.03314 | 0.019987 | 0.06503 | 0.029971 | 0.09568 | 0.039950 | 0.12514 | 0.049923 | 0.15342 | 0.074836 | 0.21917 | 0.099722 | 0.27821

2
3
4 0.004999 | 0.01318 | 0.009997 | 0.02616 | 0.019990 | 0.05151 | 0.029977 | 0.07607 | 0.039960 | 0.09985 | 0.049939 | 0.12287 | 0.074867 | 0.17720 | 0.099773 | 0.22712
5
6

0.004999 | 0.02017 | 0.009996 | 0.03990 | 0.019984 | 0.07800 | 0.029966 | 0.11435 | 0.039940 | 0.14900 | 0.049909 | 0.18199 | 0.074807 | 0.25749 | 0.099676 | 0.32359

12 0.004998 | 0.03992 | 0.009992 | 0.07810 | 0.019970 | 0.14938 | 0.029936 | 0.21408 | 0.039891 | 0.27249 | 0.049838 | 0.32488 | 0.074676 | 0.43149 | 0.099493 | 0.50706

18 0.004997 | 0.05891 | 0.009989 | 0.11400 | 0.019957 | 021311 | 0.029911 | 0.29812 | 0.039852 | 0.36989 | 0.049785 | 0.42936 | 0.074602 | 0.53057 | 0.099424 | 0.57622

24 0.004996 | 0.07740 | 0.009985 | 0.14813 | 0.019946 | 0.27039 | 0.029889 | 0.36863 | 0.039822 | 0.44493 | 0.049749 | 0.50149 | 0.074571 | 0.57162 | 0.099432 | 0.56753

36 0.004994 | 0.11308 | 0.009979 | 0.21149 | 0.019927 | 036708 | 0.029858 | 0.47319 | 0.039785 | 0.53710 | 0.049717 | 0.56646 | 0.074598 | 0.53648 | 0.099567 | 0.43326

48 0.004993 | 0.14712 | 0.009973 | 0.26863 | 0.019912 | 0.44172 | 0.029839 | 0.53516 | 0.039773 | 0.56675 | 0.049723 | 0.55407 | 0.074682 | 0.42452 | 0.099728 | 0.27188

60 0.004991 | 0.17956 | 0.009968 | 0.31981 | 0.019901 | 0.4935 | 0.029831 | 0.56193 | 0.039780 | 0.55118 | 0.049752 | 0.49543 | 0.074774 | 030109 | 0.099849 | 0.15088

75 0.004989 | 0.21790 | 0.009%62 | 037572 | 0.019892 | 053975 | 0.029833 | 0.55711 | 0.039803 | 0.49203 | 0.049803 | 0.39450 | 0.074868 | 0.17633 | 0.099935 | 0.06464

100 | 0.004986 | 0.27651 | 0.009955 | 0.45023 | 0.019888 | 0.56170 | 0.029853 | 0.48858 | 0.039858 | 0.35585 | 0.049884 | 0.23225 | 0.074954 | 0.06109 | 0.099987 | 0.01340

120 | 0.004984 | 0.31875 | 0.009951 | 0.49433 | 0.019891 | 0.54521 | 0.029878 | 0.40823 | 0.039899 | 0.25198 | 0.049931 | 0.13849 | 0.074982 | 0.02383 | 0.0999% | 0.00352

150 | 0.004981 | 0.37469 | 0.009946 | 0.53752 | 0.019903 | 0.48508 | 0.029914 | 0.28539 | 0.039946 | 0.13603 | 0.049971 | 0.05762 | 0.074996 | 0.00533 | 0.100000 | 0.00045

180 | 0.004979 | 042209 | 0.009944 | 0.55702 | 0.019919 | 0.40452 | 0.029945 | 0.18453 | 0.039973 | 0.06763 | 0.049989 | 0.02215 | 0.074999 | 0.00113 | 0.100000 | 0.00005

220 | 0.004976 | 047286 | 0.009945 | 0.55364 | 0.019941 | 0.29468 | 0.029972 | 0.09474 | 0.039990 | 0.02451 | 0.049997 | 0.00575 | 0.075000 | 0.00014 | 0.100000 | 0.00000

250 | 0.004975 | 0.50227 | 0.009947 | 0.53442 | 0.019955 | 0.22257 | 0.029984 | 0.05490 | 0.039996 | 0.01100 | 0.049999 | 0.00203 | 0.075000 | 0.00003 | 0.100000 | 0.00000

300 | 0.004973 | 0.53636 | 0.009952 | 0.48153 | 0.019974 | 0.13112 | 0.029994 | 0.02085 | 0.039999 | 0.00276 | 0.050000 | 0.00035 | 0.075000 | 0.00000 | 0.100000 | 0.00000

360 | 0.004972 | 0.55574 | 0.009960 | 0.40077 | 0.019987 | 0.06455 | 0.029998 | 0.00613 | 0.040000 | 0.00050 | 0.050000 | 0.00004 | 0.075000 | 0.00000 | 0.100000 | 0.00000

AVERAGE ERROR = 0.21790 - 0.28270 - 0.27200 - 0.24620 - 0.22863 - 0.21620 - 0.19616 - 0.18424

Table 2: Proposed Equation (45).

Exact Rate
T 0.005 0.01 0.02 0.03 0.04 0.05 0.075 0.10
R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%) R Error (%)

0.005006 | 0.11382 | 0.010005 | 0.04854 | 0.020002 | 0.00810 | 0.029996 | 0.01214 | 0.039989 | 0.02722 | 0.049980 | 0.04013 | 0.074949 | 0.06816 | 0.099907 | 0.09317

0.005008 | 0.16865 | 0.010007 | 0.06933 | 0.020001 | 0.00602 | 0.029992 | 0.02686 | 0.039979 | 0.05180 | 0.0499%3 | 0.07332 | 0.074910 | 0.12004 | 0.099839 | 0.16128

0.005011 | 0.21910 | 0.010008 | 0.08274 | 0.019998 | 0.00905 | 0.029982 | 0.05962 | 0.039960 | 0.09900 | 0.049933 | 0.13320 | 0.074845 | 0.20677 | 0.099730 | 0.26964

2
3
4 0.005010 | 0.19981 | 0.010008 | 0.07886 | 0.020000 | 0.00044 | 0.029987 | 0.04295 | 0.039970 | 0.07568 | 0.049948 | 0.10405 | 0.074876 | 0.16546 | 0.099781 | 0.21888
5
6

0.005012 | 0.23163 | 0.010008 | 0.08341 | 0.019996 | 0.01885 | 0.029977 | 0.07651 | 0.039951 | 0.12175 | 0.049919 | 0.16105 | 0.074816 | 0.24485 | 0.099685 | 0.31499

12 0.005013 | 0.25222 | 0.010006 | 0.06204 | 0.019983 | 0.08485 | 0.029948 | 0.17444 | 0.039902 | 0.24507 | 0.049848 | 0.30463 | 0.074685 | 0.42041 | 0.099500 | 0.50022

18 0.005012 | 0.24364 | 0.010003 | 0.02816 | 0.019970 | 0.15027 | 0.029922 | 0.26104 | 0.039862 | 0.34525 | 0.049794 | 0.41188 | 0.074609 | 052189 | 0.099429 | 0.57135

24 0.005011 | 0.22729 | 0.009999 | 0.00787 | 0.019958 | 0.21087 | 0.029900 | 0.33490 | 0.039831 | 0.42339 | 0.049757 | 0.48681 | 0.074576 | 0.56501 | 0.099436 | 0.56417

36 0.005009 | 0.18745 | 0.009992 | 0.07872 | 0.019937 | 031515 | 0.029866 | 0.44604 | 0.039792 | 0.52110 | 0.049722 | 0.55639 | 0.074600 | 0.53276 | 0.099568 | 0.43169

48 0.005007 | 0.14522 | 0.009986 | 0.14468 | 0.019921 | 039703 | 0.029846 | 0.51361 | 0.039778 | 0.55503 | 0.049726 | 0.54726 | 0.074683 | 0.42246 | 0.099729 | 0.27117

60 0.005005 | 0.10325 | 0.009980 | 0.20471 | 0.019908 | 0.45810 | 0.029837 | 0.54492 | 0.039783 | 0.54265 | 0.049755 | 0.49085 | 0.074775 | 0.29995 | 0.099849 | 0.15055

75 0.005003 | 0.05241 | 0.009973 | 0.27121 | 0.019898 | 0.50837 | 0.029837 | 0.54450 | 0.039805 | 0.48631 | 0.049804 | 0.39173 | 0.074868 | 0.17579 | 0.099935 | 0.06452

100 | 0.004999 | 0.02689 | 0.009964 | 0.36160 | 0.019892 | 0.53925 | 0.029856 | 0.48097 | 0.039859 | 0.35294 | 0.049884 | 0.23106 | 0.074954 | 0.06094 | 0.099987 | 0.01337

120 | 0.00499 | 0.08500 | 0.009958 | 0.41680 | 0.019894 | 0.52809 | 0.029879 | 0.40317 | 0.039900 | 0.25028 | 0.049931 | 0.13788 | 0.074982 | 0.02377 | 0.099996 | 0.00351

150 | 0.004992 | 0.16319 | 0.009953 | 0.47421 | 0.019905 | 0.47369 | 0.029915 | 0.28264 | 0.039946 | 0.13527 | 0.049971 | 0.05740 | 0.074996 | 0.00531 | 0.100000 | 0.00045

180 | 0.004988 | 0.23092 | 0.009949 | 0.50537 | 0.019921 | 0.39696 | 0.029945 | 0.18304 | 0.039973 | 0.06730 | 0.049989 | 0.02207 | 0.074999 | 0.00112 | 0.100000 | 0.00005

220 | 0.004985 | 0.30594 | 0.009949 | 0.51432 | 0.019942 | 0.29031 | 0.029972 | 0.09408 | 0.039990 | 0.02440 | 0.049997 | 0.00574 | 0.075000 | 0.00014 | 0.100000 | 0.00000

250 | 0.004982 | 0.35156 | 0.009950 | 0.50240 | 0.019956 | 0.21968 | 0.029984 | 0.05454 | 0.039996 | 0.01095 | 0.049999 | 0.00202 | 0.075000 | 0.00003 | 0.100000 | 0.00000

300 | 0.004980 | 040930 | 0.009954 | 045882 | 0.019974 | 0.12967 | 0.029994 | 0.02072 | 0.039999 | 0.00275 | 0.050000 | 0.00034 | 0.075000 | 0.00000 | 0.100000 | 0.00000

360 | 0.004977 | 045227 | 0.009961 | 0.38574 | 0.019987 | 0.06391 | 0.029998 | 0.00609 | 0.040000 | 0.00050 | 0.050000 | 0.00004 | 0.075000 | 0.00000 | 0.100000 | 0.00000

AVERAGE ERROR = 0.20848 - 0.23898 - 0.24043 - 0.22814 - 0.21693 - 0.20789 - 0.19174 - 0.18145




Annuity interest rates and applications

Table 3: Comparison of Errors.

Exact Rate Average Error (%)
Cantrell Equation Proposed Equation
0.005 0.21790 0.20848
0,010 0.28270 0.23898
0.020 0.27200 0.24043
0.030 0.24620 0.22814
0.040 0.22863 0.21693
0.050 0.21620 0.20789
0.075 0.19616 0.19174
0.100 0.18424 0.18145
Global Average Error (%) = 0.23050 0.21426

Received: March 29, 2018
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