Analogues of an Inequality for the m-th derivative of the Digamma Function

Kwara Nantomah
Department of Mathematics, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana. mykwarasoft@yahoo.com, knantomah@uds.edu.gh

Edward Prempeh

Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
eprempeh.cos@knust.edu.gh

Abstract

In this paper, we present the p, q and k analogues of a certain inequality established by Sulaiman in his paper. We also present a generalization of this inequality.

Mathematics Subject Classification: 33B15, 26A48.
Keywords: digamma function, p-analogue, q-analogue, k-analogue, Inequality.

1 Introduction and Preliminaries

We begin by recalling some basic definitions involving the Gamma function.
The digamma function $\psi(t)$ is defined as

$$
\psi(t)=\frac{d}{d t} \ln (\Gamma(t))=\frac{\Gamma^{\prime}(t)}{\Gamma(t)}, \quad t>0
$$

where $\Gamma(t)$ is the well-known classical Euler's Gamma function defined by

$$
\Gamma(t)=\int_{0}^{\infty} e^{-x} x^{t-1} d x, \quad t>0
$$

The p-analogue of the digamma function, $\psi_{p}(t)$ is also defined as

$$
\psi_{p}(t)=\frac{d}{d t} \ln \left(\Gamma_{p}(t)\right)=\frac{\Gamma_{p}^{\prime}(t)}{\Gamma_{p}(t)}, \quad t>0 .
$$

where $\Gamma_{p}(t)$ is given by (see [2],[3])

$$
\Gamma_{p}(t)=\frac{p!p^{t}}{t(t+1) \ldots(t+p)}=\frac{p^{t}}{t\left(1+\frac{t}{1}\right) \ldots\left(1+\frac{t}{p}\right)}, \quad p \in N, \quad t>0
$$

Similarly, the q-analogue of the digamma function, $\psi_{q}(t)$ is defined as,

$$
\psi_{q}(t)=\frac{d}{d t} \ln \left(\Gamma_{q}(t)\right)=\frac{\Gamma_{q}^{\prime}(t)}{\Gamma_{q}(t)}, \quad t>0 .
$$

where $\Gamma_{q}(t)$ is given by (see [4])

$$
\Gamma_{q}(t)=(1-q)^{1-t} \prod_{n=1}^{\infty} \frac{1-q^{n}}{1-q^{t+n}}, \quad q \in(0,1), \quad t>0
$$

Also, the k-analogue of the digamma function, $\psi_{k}(t)$ is defined as

$$
\psi_{k}(t)=\frac{d}{d t} \ln \left(\Gamma_{k}(t)\right)=\frac{\Gamma_{k}^{\prime}(t)}{\Gamma_{k}(t)}, \quad t>0 .
$$

where $\Gamma_{k}(t)$ is given by (see [1],[5])

$$
\Gamma_{k}(t)=\int_{0}^{\infty} e^{-\frac{x^{k}}{k}} x^{t-1} d x, \quad k>0, \quad t>0 .
$$

The functions $\psi(t), \psi_{p}(t), \psi_{q}(t)$ and $\psi_{k}(t)$ as defined above have the following series representations.

$$
\begin{aligned}
& \psi(t)=-\gamma+(t-1) \sum_{n=0}^{\infty} \frac{1}{(1+n)(n+t)}, \quad t>0 \\
& \psi_{p}(t)=\ln p-\sum_{n=0}^{p} \frac{1}{n+t}, \quad p \in N, \quad t>0 \\
& \psi_{q}(t)=-\ln (1-q)+(\ln q) \sum_{n=1}^{\infty} \frac{q^{n t}}{1-q^{n}}, \quad q \in(0,1), \quad t>0 \\
& \psi_{k}(t)=\frac{\ln k-\gamma}{k}-\frac{1}{t}+\sum_{n=1}^{\infty} \frac{t}{n k(n k+t)}, \quad k>0, \quad t>0 .
\end{aligned}
$$

where γ is the Euler-Mascheroni's constant. For some properties of these functions, see [7], [3], [2] and [5] and the references therein.

By taking the m-th derivative of the above functions, it can be shown that the following statements are valid for $m \in N$.

$$
\begin{aligned}
& \psi^{(m)}(t)=(-1)^{m+1} m!\sum_{n=0}^{\infty} \frac{1}{(n+t)^{m+1}}, \quad t>0 \\
& \psi_{p}^{(m)}(t)=(-1)^{m-1} m!\sum_{n=0}^{p} \frac{1}{(n+t)^{m+1}}, \quad p \in N, \quad t>0 \\
& \psi_{q}^{(m)}(t)=(\ln q)^{m+1} \sum_{n=1}^{\infty} \frac{n^{m} q^{n t}}{1-q^{n}}, \quad q \in(0,1), \quad t>0 \\
& \psi_{k}^{(m)}(t)=(-1)^{m+1} m!\sum_{n=0}^{\infty} \frac{1}{(n k+t)^{m+1}}, \quad k>0, \quad t>0 .
\end{aligned}
$$

In 2011, Sulaiman [6] presented the following results for $s, t>0$ and for a positive odd integer m.

$$
\begin{equation*}
\psi^{(m)}(s) \psi^{(m)}(t) \geq\left[\psi^{(m)}(s+t)\right]^{2} \tag{1}
\end{equation*}
$$

The objective of this paper is to establish that the inequality (1) still holds true for the functions $\psi_{p}(t), \psi_{q}(t)$ and $\psi_{k}(t)$. A generalization of this inequality is also presented.

2 Main Results

We now present the results of this paper.
Theorem 2.1. Let $s, t>0$ and $p \in N$. Suppose m is a positive odd integer, then the following inequality holds true.

$$
\begin{equation*}
\psi_{p}^{(m)}(s) \psi_{p}^{(m)}(t) \geq\left[\psi_{p}^{(m)}(s+t)\right]^{2} \tag{2}
\end{equation*}
$$

Proof. We proceed as follows.

$$
\begin{aligned}
\psi_{p}^{(m)}(s)-\psi_{p}^{(m)}(s+t) & =(-1)^{m-1} m!\sum_{n=0}^{p}\left[\frac{1}{(n+s)^{m+1}}-\frac{1}{(n+s+t)^{m+1}}\right] \\
& =m!\sum_{n=0}^{p}\left[\frac{1}{(n+s)^{m+1}}-\frac{1}{(n+s+t)^{m+1}}\right](\text { since } m \text { is odd }) \\
& \geq 0
\end{aligned}
$$

Hence,

$$
\psi_{p}^{(m)}(s) \geq \psi_{p}^{(m)}(s+t) \geq 0
$$

Similarly we have it that,

$$
\psi_{p}^{(m)}(t) \geq \psi_{p}^{(m)}(s+t) \geq 0
$$

Multiplying the above inequalities yields,

$$
\psi_{p}^{(m)}(s) \psi_{p}^{(m)}(t) \geq\left[\psi_{p}^{(m)}(s+t)\right]^{2}
$$

Theorem 2.2. Let $s, t>0$ and $q \in(0,1)$. Suppose m is a positive odd integer, then the following inequality holds true.

$$
\begin{equation*}
\psi_{q}^{(m)}(s) \psi_{q}^{(m)}(t) \geq\left[\psi_{q}^{(m)}(s+t)\right]^{2} \tag{3}
\end{equation*}
$$

Proof. We proceed as follows.

$$
\begin{aligned}
\psi_{q}^{(m)}(s)-\psi_{q}^{(m)}(s+t) & =(\ln q)^{m+1} \sum_{n=1}^{\infty}\left[\frac{n^{m} q^{n s}}{1-q^{n}}-\frac{n^{m} q^{n(s+t)}}{1-q^{n}}\right] \\
& =(\ln q)^{m+1} \sum_{n=1}^{\infty}\left[\frac{n^{m} q^{n s}-n^{m} q^{n s} \cdot q^{n t}}{1-q^{n}}\right] \\
& =(\ln q)^{m+1} \sum_{n=1}^{\infty}\left[\frac{n^{m} q^{n s}\left(1-q^{n t}\right)}{1-q^{n}}\right] \geq 0 . \text { (since } m \text { is odd) }
\end{aligned}
$$

Hence,

$$
\psi_{q}^{(m)}(s) \geq \psi_{q}^{(m)}(s+t) \geq 0
$$

Similarly we have it that,

$$
\psi_{q}^{(m)}(t) \geq \psi_{q}^{(m)}(s+t) \geq 0
$$

Multiplying these inequalities yields,

$$
\psi_{q}^{(m)}(s) \psi_{q}^{(m)}(t) \geq\left[\psi_{q}^{(m)}(s+t)\right]^{2} .
$$

Theorem 2.3. Let $s, t>0$ and $k>0$. Suppose m is a positive odd integer, then the following inequality holds true.

$$
\begin{equation*}
\psi_{k}^{(m)}(s) \psi_{k}^{(m)}(t) \geq\left[\psi_{k}^{(m)}(s+t)\right]^{2} \tag{4}
\end{equation*}
$$

Proof. We proceed as follows.

$$
\begin{aligned}
\psi_{k}^{(m)}(s)-\psi_{k}^{(m)}(s+t) & =(-1)^{m+1} m!\sum_{n=0}^{\infty}\left[\frac{1}{(n k+s)^{m+1}}-\frac{1}{(n k+s+t)^{m+1}}\right] \\
& =m!\sum_{n=0}^{\infty}\left[\frac{1}{(n k+s)^{m+1}}-\frac{1}{(n k+s+t)^{m+1}}\right](\text { since } m \text { is odd }) \\
& \geq 0
\end{aligned}
$$

That is,

$$
\psi_{k}^{(m)}(s) \geq \psi_{k}^{(m)}(s+t) \geq 0 .
$$

By a similar approach we have,

$$
\psi_{k}^{(m)}(t) \geq \psi_{k}^{(m)}(s+t) \geq 0
$$

Multiplying these inequalities yields,

$$
\psi_{k}^{(m)}(s) \psi_{k}^{(m)}(t) \geq\left[\psi_{k}^{(m)}(s+t)\right]^{2} .
$$

Theorem 2.4. Let $\alpha \in Z^{+}$and $t_{i}>0$ for each i. If m is a positive odd integer, then the following inequality holds true.

$$
\begin{equation*}
\prod_{i=1}^{\alpha} \psi^{(m)}\left(t_{i}\right) \geq\left[\psi^{(m)}\left(\sum_{i=1}^{\alpha} t_{i}\right)\right]^{\alpha} \tag{5}
\end{equation*}
$$

Proof. Proceed as follows.

$$
\begin{aligned}
\psi^{(m)}\left(t_{1}\right)-\psi^{(m)}\left(\sum_{i=1}^{\alpha} t_{i}\right) & =(-1)^{m+1} m!\sum_{n=0}^{\infty}\left[\frac{1}{\left(n+t_{1}\right)^{m+1}}-\frac{1}{\left(n+\sum_{i=1}^{\alpha} t_{i}\right)^{m+1}}\right] \\
& =m!\sum_{n=0}^{\infty}\left[\frac{1}{\left(n+t_{1}\right)^{m+1}}-\frac{1}{\left(n+\sum_{i=1}^{\alpha} t_{i}\right)^{m+1}}\right] \geq 0
\end{aligned}
$$

Hence,

$$
\psi^{(m)}\left(t_{1}\right) \geq \psi^{(m)}\left(\sum_{i=1}^{\alpha} t_{i}\right) \geq 0 .
$$

Continuing in a similar fashion yields,

$$
\begin{gathered}
\psi^{(m)}\left(t_{2}\right) \geq \psi^{(m)}\left(\sum_{i=1}^{\alpha} t_{i}\right) \geq 0 \\
\psi^{(m)}\left(t_{3}\right) \geq \psi^{(m)}\left(\sum_{i=1}^{\alpha} t_{i}\right) \geq 0 \\
\vdots \\
\psi^{(m)}\left(t_{\alpha}\right) \geq \psi^{(m)}\left(\sum_{i=1}^{\alpha} t_{i}\right) \geq 0
\end{gathered}
$$

Multiplying these inequalities yields,

$$
\prod_{i=1}^{\alpha} \psi^{(m)}\left(t_{i}\right) \geq\left[\psi^{(m)}\left(\sum_{i=1}^{\alpha} t_{i}\right)\right]^{\alpha}
$$

Remark 2.5. If in (5) we set $t_{1}=s, t_{2}=t$ and $\alpha=2$, then (1) is restored. Hence by this result, inequality (1) has been generalized.

References

[1] R. Díaz and E. Pariguan, On hypergeometric functions and Pachhammer k-symbol, Divulgaciones Matemtícas 15(2)(2007), 179-192.
[2] V. Krasniqi, T. Mansour and A. Sh. Shabani, Some Monotonicity Properties and Inequalities for Γ and ζ Functions, Mathematical Communications 15(2)(2010), 365-376.
[3] V. Krasniqi and F. Merovci, Logarithmically completely monotonic functions involving the generalized gamma function, Le Matematiche LXV(2010), 15-23.
[4] T. Mansour, Some inequalities for the q-Gamma Function, J. Ineq. Pure Appl. Math. 9(1)(2008), Art. 18.
[5] F. Merovci, Power Product Inequalities for the Γ_{k} Function, Int. Journal of Math. Analysis 4(21)(2010), 1007-1012.
[6] W. T. Sulaiman, Turan inequalites for the digamma and polygamma functions, South Asian J. Math. 1(2)(2011), 49-55.
[7] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Camb. Univ. Press, 1969.
Received: March, 2014

