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Abstract

Let (X,X ) be a measurable space, µ1, µ2 . . . ;µ be signed measures
on X and f1, f2 . . . ; f be X -measurable functions on X. Several sets of
sufficient conditions for

∫

fndµn →
∫

fdµ and
∫

fndµn−
∫

fdµn → 0 are
found. Two statements do not contain topological assumptions and are
generalizations of the dominated convergence theorem; others concern
topological spaces. Furthermore, a theorem about passage to the limit in
∫

dνn(s)
∫

fn(s, x)ψn(s,dx) is proved and applied to evolution equations
for measures.
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Introduction

Let (X,X ) be a measurable space, µ1, µ2 . . . ;µ be signed measures on X and
f1, f2 . . . ; f be X -measurable functions on X . The main goal of the article is
to find sufficient conditions for

∫

fndµn →
∫

fdµ or
∫

fndµn −
∫

fdµn → 0.
Two general results of this sort are proved in Section 2. They do not contain
topological assumptions and generalize the dominated convergence theorem.
Both contain the condition

∀ε > 0 lim
n→∞

|µn|{x : |fn(x)− f(x)| > ε} = 0

which is not easily verifiable unless all the µn’s coincide (in which case this
condition means that the sequence (fn) converges to f in measure |µ|). So in
the remaining part of the article we search coarser but more efficiently verifiable
conditions.

The Baire and the Borel σ-algebras in a topological space X will be denoted
B0(X) and B(X), respectively. It is well known that B0(X) ⊂ B(X) and the
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equality is attained if X is metrizable (or, more generally, completely normal).
Recall that a topological space X is called Polish if it is separable and there
exists a metric ρ in X inducing the original topology and such that the metric
space (X, ρ) is complete.

In our approach, some of the conditions justifying passage to the limit
under the sign of integral are of topological nature. In particular, beginning
from a certain place, X is a topological space and X = B0(X). This opens
the gate to the key condition of weak convergence of a sequence of signed
measures. This condition enters all final results in Sections 3 – 6. The other
conditions are of two sorts: measure-theoretical (they concern both (fn) and
(µn) and are cognate to uniform integrability); topological (concerning only
the functions). In Section 3, we consider functions on a Polish space and
proceed from the recently discovered by Bogachev generalization, for signed
measures, of Prokhorov’s theorem. In Section 4, we deal with functions on
a topological space which is not assumed metrizable (but may be subject to
some other assumptions, e.g. first-countability). In this setting, the Prokhorov
– Bogachev theorem is no more applicable, so one would not expect such nice
sets of conditions as in Polish spaces. Nonetheless, they are the same as in
the previous section, plus the extra demand that the pre-limit functions are
continuous, – but the theorems are proved quite differently. The rationale is
based on two fundamental facts discovered by Alexandroff [1] and suitably for
our purposes modified by Bogachev [2].

In Section 5, we prove that, under rather general assumptions, weak con-
vergence of sequences (µn) and (νn) implies weak convergence of (µn ⊗ νn).
These statements turn out simple consequences of the results of the previous
sections.

In Section 6, we derive, relying on the results of Sections 3 – 5, sufficient
conditions for passage to the limit in

∫

dνn(s)
∫

fn(s, x)ψn(s, dx) and give an
idea how such results can be used for studying evolution equations for mea-
sures.

1 Preliminaries

Let us recall some definitions. A sequence (µn) of signed measures on a σ-
algebra X ⊂ 2X is called uniformly bounded in variation if sup

n

|µn|(X) < ∞.

LetX be a topological space. They say that a sequence (µn) of signed measures
on a σ-algebra X ⊂ 2X containing B0(X) weakly converges to a signed measure
µ if the relation

∫

fdµn →

∫

fdµ (1)
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holds for every bounded continuous function f on X . A sequence (µn) of
signed measures on the Borel σ-algebra of a topological space X is called
uniformly tight if for any ε > 0 there exists a compact set K ∈ B(X) such that
sup
n

|µn|(X \ K) < ε (so it is clear what is a tight signed measure on B(X)).

A sequence in an arbitrary set endowed with convergence (topological, ordinal
or defined descriptively, as just above) is called relatively compact if each its
subsequence contains, in turn, a convergent subsequence.

Proposition 1.1. Every weakly convergent sequence of signed measures is
uniformly bounded in variation.

This is a particular case of Proposition 8.1.7 in [2] which is, in turn, an
easy consequence of the Banach – Steinhaus theorem.

We shall use the following generalization of Prokhorov’s theorem.

Theorem 1.2 ([2, Theorem 8.6.2]). In order that a sequence of signed mea-
sures on the Borel σ-algebra in a Polish space be relatively compact w.r.t. the
weak convergence it is necessary and sufficient that it be uniformly bounded in
variation and uniformly tight.

From now on we abridge the term “signed measure” to “measure”. If
(X,X ) is a measurable space (it will be implied tacitly that X = B0(X) in
case X is a topological space), then the collection of all measures on X will be
denoted M(X).

Recall that a set F ⊂ X is called functionally closed if there exist a real
number c and a continuous function f : X → R such that F = {x : f(x) ≥ c}
(a formally different but obviously equivalent definition is given in [2, Sec.
6.3]).

Proposition 1.3. Let X be a topological space and (µn) be a sequence in
M(X) such that for any h ∈ Cb(X) the sequence

(∫

hdµn

)

converges. Let,
further, (Zn) be a sequence of pairwise disjoint functionally closed subsets in
X such that for any J ⊂ N the set

⋃

n∈J

Zn is functionally closed. Then

lim
n→∞

sup
k

|µk|(Zn) = 0. (2)

This is Proposition 8.1.10 [2] minus the assumption, not used in the proof,
that the limit of

(∫

hdµn

)

has the form
∫

hdµ. That statement is, in turn,
a slight modification of Theorem 19.2 [1]. The latter concerns more general
than signed measures entities called in [1] charges and does not contain the
above-mentioned assumption (which in [1] need not be an assumption, because
it is the conclusion of Theorem 19.3).
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Proposition 1.4. Let X be a topological space and (µn) be a sequence in
M(X) such that equality (2) is valid for every sequence (Zn) satisfying the
assumptions of Proposition 1.3. Then

lim
n→∞

sup
k

|µk|(Fn) = 0 (3)

for every sequence (Fn) of functionally closed subsets in X such that Fn ց ∅.

This is Proposition 8.1.12 [2] and a slight modification of Theorem 19.1 [1].

Corollary 1.5. Let X be a topological space and (µn) be a sequence in
M(X) such that for any h ∈ Cb(X) the sequence

(∫

hdµn

)

converges. Then
equality (3) holds for every sequence (Fn) of functionally closed subsets in X
such that Fn ց ∅.

For arbitrary d ∈ N, b ∈ Cd and N > 0 we denote b[N ] = Nb
N∨|b|

. For a

function g : X → Cd we write g[N ](x) instead of g(x)[N ]. All the functions
under consideration are meant Cd-valued.

Lemma 1.6. Let X be a topological space, X be a σ-algebra such that
B0(X) ⊂ X ⊂ 2X and (µn) be a sequence of measures on X weakly converg-
ing to a measure µ. Let, further, (fn) and f be a sequence of X -measurable
functions on X and a continuous function on X such that

∫

|fn| d|µn| <∞, (4)

lim
N→∞

lim
n→∞

∣

∣

∣

∣

∫

(

fn − f [N ]
n

)

dµn

∣

∣

∣

∣

= 0, (5)

∫

|f | d|µ| <∞ (6)

and the equality

lim
n→∞

∣

∣

∣

∣

∫

(

f [N ]
n − f [N ]

)

dµn

∣

∣

∣

∣

= 0 (7)

holds for all N > 0. Then
∫

fn dµn →

∫

fdµ. (8)

Proof. From (6) we have by the dominated convergence theorem
∫

(|f | −N)+d|µ| → 0 as N → ∞, which together with the evident inequality
∣

∣b[N ] − b
∣

∣ ≤ (|b| −N)+ yields

lim
N→∞

∫

∣

∣f [N ] − f
∣

∣ d|µ| = 0. (9)
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Writing

∫

fndµn −

∫

fdµ =

∫

(

fn − f [N ]
n

)

dµn +

∫

(

f [N ]
n − f [N ]

)

dµn

+

∫

f [N ]dµn −

∫

f [N ]dµ+

∫

(

f [N ] − f
)

dµ,

we get from (7), continuity of f and weak convergence of (µn) to µ

lim
n→∞

∣

∣

∣

∣

∫

fndµn −

∫

fdµ

∣

∣

∣

∣

≤ lim
n→∞

∣

∣

∣

∣

∫

(

fn − f [N ]
n

)

dµn

∣

∣

∣

∣

+

∫

∣

∣f [N ] − f
∣

∣d|µ|,

hereupon (8) emerges from (5) and (9).

A pair (X, cnvr), where X is a nonvoid set and cnvr is a mapping of X
into 2X

N

will be called a convergence space if for each x ∈ X the set cnvr[x]
possesses the properties: (i) (x, x . . .) ∈ cnvr[x]; (ii) if cnvr[x] contains some
sequence, then it contains all its subsequences; (iii) if (yk) ∈ cnvr[x] and

xn = yk as nk−1 < n ≤ nk,

where n0 = 0 and (nk) is a strictly increasing sequence of natural numbers,
then (xn) ∈ cnvr[x]. The last relation will be otherwise written as xn → x
(which does not exclude that xn → y 6= x) and read as “(xn) converges to x”,
herein x will be called a (not certainly the) limit of the sequence (xn).

A set in a convergence space will be called sequentially compact (respec-
tively: sequentially precompact) if every sequence of its members has a subse-
quence converging to some point of this set (respectively: of this space).

A sequence (fn) of functions on a convergence spaceX will be called asymp-
totically sequentially equicontinuous (briefly: a.s.e.c.) at a point x (respec-
tively: on X, but “on X” will be suppressed) if the relation

fn(xn)− fn(x) → 0 (10)

holds for every converging to x sequence (xn) (respectively: for any x ∈ X and
(xn) ∈ cnvr[x]). We will say that a sequence (fn) of mappings of a convergence
space X into a convergence space Y converges to f uniformly at a point x
(respectively: firmly converges to f ) if the relation

fn(xn) → f(x) (11)

holds for every converging to x sequence (xn) (respectively: for any x ∈ X
and (xn) ∈ cnvr[x]). We will also say that a sequence (fn) of functions on a
convergence space X locally uniformly converges to a function f if

lim
n→∞

sup
x∈K

|fn(x)− f(x)| = 0
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for every sequentially precompact set K ⊂ X .
We shall regard any topological space as a convergence one, identifying

tacitly cnvr[x] with the set of sequences topologically converging to x.
The family of all neighborhoods of a point x in a topological space will be

denoted τ(x). It is a directed set w.r.t. the succession relation ⊃. The limit
of a net q : τ(x) → R will be denoted lim

U∈τ(x)
q(U).

The next three statements are obvious.

Lemma 1.7. Let X be a convergence space, x be a point in X, f be a
function on X and (fn) be an a.s.e.c. at x sequence of functions on X such
that

fn(x) → f(x). (12)

Then (fn) converges to f uniformly at this point.

Lemma 1.8. Let X be a convergence space and (fn) be an a.s.e.c. sequence
of functions on X pointwise converging to a sequentially continuous function
f . Then it converges to f firmly and locally uniformly.

Lemma 1.9. Let X be a topological space and (fn) be a sequence in (Cd)X

satisfying the condition

lim
U∈τ(x)

lim
n→∞

sup
x′∈U

|fn(x
′)− fn(x)| = 0 (13)

at a point x ∈ X. Then it is a.s.e.c. at x. If, furthermore, (fn) pointwise
converges to f in some neighborhood of x, then f is continuous at this point.

Writing

fn(xn)− f(xn) = fn(xn)− fn(x) + fn(x)− f(x) + f(x)− f(xn),

we deduce from the last three lemmas

Corollary 1.10. Let X be a topological space and (fn) be a sequence in
(Cd)X satisfying, for all x ∈ X, conditions (12) and (13). Then f is continu-
ous and (fn) converges to f firmly and locally uniformly.

2 Theorems without topological assumptions

Denote

Hε
n = {x ∈ X : |fn(x)− f(x)| > ε}. (14)

The indicator of a set {x : h(x) > N} will be written as I{h > N}.
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Theorem 2.1. Let (X,X ) be a measurable space, (µn) be a uniformly
bounded in variation sequence in M(X) and (fn) be a sequence of X -measurable
functions on X. Suppose that

lim
N→∞

lim
n→∞

∫

|fn|I{|fn| > N} d|µn| = 0, (15)

lim
N→∞

lim
n→∞

∫

|f |I{|f | > N} d|µn| = 0 (16)

and for all ε > 0
lim
n→∞

|µn|(H
ε
n) = 0, (17)

where Hε
n is defined by (14). Then

∫

fndµn −
∫

fdµn → 0.

Proof. Condition (15) implies, obviously, that inequality (4) holds for eventu-
ally all n. Evidently, for any b ∈ Cd and N > 0

∣

∣b− b[N ]
∣

∣ ≤ |b|I{|b| > N}.
So conditions (15) and (16) yield

lim
N→∞

lim
n→∞

∫

∣

∣fn − f [N ]
n

∣

∣ d|µn| = 0, (18)

lim
N→∞

lim
n→∞

∫

∣

∣f − f [N ]
∣

∣ d|µn| = 0. (19)

Obviously,

∫

X\Hε
n

∣

∣f [N ]
n − f [N ]

∣

∣ d|µn| ≤ ε|µn|(X),

∫

Hε
n

∣

∣f [N ]
n − f [N ]

∣

∣d|µn| ≤ 2N |µn|(H
ε
n).

So condition (17) implies that for any positive N and ε

lim
n→∞

∫

∣

∣f [N ]
n − f [N ]

∣

∣d|µn| ≤ ε sup
n

|µn|(X). (20)

Hence and from uniform boundedness of (µn) in variation we obtain equal-
ity (7) which together with (18), (19) and the identity

∫

fndµn −
∫

fdµn =
∫

(

fn − f
[N ]
n

)

dµn +
∫

(

f
[N ]
n − f [N ]

)

dµn +
∫ (

f [N ] − f
)

dµn proves the theo-

rem.

Corollary 2.2. Let (X,X ) be a measurable space, (µn) be a uniformly
bounded in variation sequence in M(X), µ be a measure on X , (fn) be a
uniformly bounded sequence of X -measurable functions on X and f be an X -
measurable function on X. Suppose that conditions (15), (16), (6), (31) and,
for any ε > 0, (17) (with Hε

n defined by (14)) are fulfilled. Then relation (8)
holds.
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In case µn = µ condition (17) becomes none other than the demand of
convergence of (fn) to f in measure |µ|, condition (16) becomes a consequence
of (15) and (17) and so does (6). Condition (15) in this case will be, obviously,
fulfilled if there exists a function F ∈ L1(X,X , |µ|) such that |fn| ≤ F for all
n. Thus both Theorem 2.1 and Corollary 2.2 generalize Lebesgue’s dominated
convergence theorem.

3 Theorems for functions on a Polish space

Theorem 3.1. Let X be a Polish space and (µn) be a sequence in M(X)
weakly converging to a measure µ. Let, further, (fn) and f be a sequence of
Borel functions on X and a continuous function on X such that: conditions
(4) – (6) are fulfilled; for any compactum K ⊂ X and positive number ε

lim
n→∞

|µn|(H
ε
n ∩K) = 0, (21)

where Hε
n is defined by (14). Then relation (8) holds.

Proof. Obviously,

∣

∣

∣

∣

∫

(

f [N ]
n − f [N ]

)

dµn

∣

∣

∣

∣

≤ ε|µn|(X \Hε
n) +

∫

Hε
n

∣

∣f [N ]
n − f [N ]

∣

∣ d|µn|.

The evident inclusion Hε
n ⊂ Hε

n ∩K ∪X \K and the definition of Hε
n yield

∫

Hε
n

∣

∣f [N ]
n − f [N ]

∣

∣ d|µn| ≤ 2N |µn|(H
ε
n ∩K) + 2N |µn|(X \K).

So condition (21) implies that for any N > 0, ε > 0 and compactum K

lim
n→∞

∣

∣

∣

∣

∫

(

f [N ]
n − f [N ]

)

dµn

∣

∣

∣

∣

≤ ε sup
n

|µn|(X) + 2N sup
n

|µn|(X \K).

Now, equality (7) follows from the properties of (µn) asserted by Theorem 1.2
in the necessity part. Thus all the conditions of Lemma 1.6 are fulfilled and
therefore its conclusion is valid.

Proposition 3.2. Let X be a Polish space, (µn) be a sequence in M(X)
weakly converging to a measure µ and (fn) be a uniformly bounded sequence of
Borel functions on X locally uniformly converging to a continuous function f .
Then relation (8) holds and

∫

|f | d|µ| ≤ lim
n→∞

∫

|fn| d|µn|. (22)
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Proof. Obviously, for any A ⊂ Hε
n

|µn|(A) ≤ ε−1

∫

A

|fn − f | d|µn|.

Herein
∫

Hε
n∩K

|fn − f | d|µn| ≤ sup
x∈K

|fn(x)− f(x)| · |µn|(X).

Hence we conclude with account of Proposition 1.1 that local uniform conver-
gence of (fn) to f implies (21) for all compacta K. Now, the first statement fol-

lows from Theorem 3.1, once one has noted that f
[N ]
n = fn as N > sup

n

‖fn‖∞.

Let us define the signed measures κn and κ by κn(A) =
∫

A
fndµn, κ(A) =

∫

A
fdµ. Then for any h ∈ Cb(X)

∫

hdκn =
∫

hfndµn (and the same without
n). So Theorem 3.1 asserts that the sequence (κn) weakly converges to κ. Con-
sequently, |κ|(X) ≤ lim

n→∞
|κn|(X). Herein by construction |κ|(X) =

∫

|f | d|µ|

(and the same with n).

Proposition 3.3. Let X be a Polish space, (µn) be a sequence in M(X)
weakly converging to a measure µ and (fn) be a sequence of Borel functions on
X locally uniformly converging to a continuous function f and satisfying the
condition

inf
N>0

lim
n→∞

∫

|fn|I{|fn| > N}d|µn| <∞. (23)

Then inequality (6) is valid.

Proof. We consider, without loss of generality, that all the functions are R+-
valued.

The evident inequality
∣

∣

∣
b
[L]
1 − b

[L]
2

∣

∣

∣
≤ |b1 − b2| and the first assumption

about (fn) show that, for an arbitrary L > 0, the sequence
(

f
[L]
n , n ∈ N

)

locally uniformly converges to f [L]. By construction it is uniformly bounded.
Thus Proposition 3.2 asserts that

∫

f [L]d|µ| ≤ lim
n→∞

∫

f [L]
n d|µn|.

Herein for any positive L and N f
[L]
n ≤ fn ≤ N + fnI{fn > N}, so that

lim
n→∞

∫

f [L]
n d|µn| ≤ N |µ|(X) + lim

n→∞

∫

fnI{fn > N}d|µn|.

Consequently,
∫

f [L]d|µ| ≤ N |µ|(X) + lim
n→∞

∫

fnI{fn > N}d|µn|.
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By condition (23) the r.h.s. is finite for some N . It remains to note that, by
the Beppo Levi theorem,

∫

fd|µ| = lim
N→∞

∫

f [N ]d|µ|.

Theorem 3.4. Let X be a Polish space, (µn) be a sequence in M(X) weakly
converging to a measure µ and (fn) be a sequence of Borel functions on X
locally uniformly converging to a continuous function f and satisfying condition
(15). Then relations (6) and (8) hold.

Proof. Noting that condition (15) is stronger than (23), we obtain (6) from
Proposition 3.3.

Condition (15) implies, as was already noted, that inequality (4) holds for

eventually all n. It entails (5), as well
(

since
∣

∣

∣
fn − f

[N ]
n

∣

∣

∣
≤ |fn|I{|fn| > N}

)

.

The first assumption about (fn) implies, as was shown in the proof of Propo-
sition 3.2, that relation (21) holds for all ε > 0 and compacta K ⊂ X . So
all the conditions of Theorem 3.1 are fulfilled and therefore its conclusion is
valid.

Juxtaposing Theorem 3.4 and Corollary 1.10, we obtain

Corollary 3.5. Let X be a Polish space, (µn) be a sequence in M(X) weakly
converging to a measure µ and (fn) be a sequence of Borel functions on X
pointwise converging to a function f and satisfying conditions (13) (for all
x ∈ X) and (15). Then relations (6) and (8) hold.

4 Theorems for functions on a general topo-

logical space

In this section, X is a topological space. The first result is similar to Theo-
rem 3.1, but without mentioning a set K.

Theorem 4.1. Let X be a topological space and (µn) be a sequence in M(X)
weakly converging to a measure µ. Let, further, (fn) and f be a sequence of
Baire functions on X and a continuous function on X such that conditions
(4) – (6) are fulfilled and for any ε > 0

lim
n→∞

|µn|(H
ε
n) = 0, (24)

where Hε
n is defined by (14). Then relation (8) holds.

Proof. Obviously,

∫

X\Hε
n

∣

∣f [N ]
n − f [N ]

∣

∣ d|µn| ≤ ε|µn|(X),

∫

Hε
n

∣

∣f [N ]
n − f [N ]

∣

∣d|µn| ≤ 2N |µn|(H
ε
n).
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So condition (24) implies that for any positive N and ε

lim
n→∞

∣

∣

∣

∣

∫

(

f [N ]
n − f [N ]

)

dµn

∣

∣

∣

∣

≤ ε sup
n

|µn|(X).

Hence and from uniform boundedness of (µn) in variation asserted by Proposi-
tion 1.1 equality (7) follows. Thus all the conditions of Lemma 1.6 are fulfilled
and therefore its conclusion is valid.

Theorem 4.2. Let X be a topological space and (µn) be a sequence in M(X)
such that for any h ∈ Cb(X) the sequence

(∫

hdµn

)

converges. Then the re-
lation

∫

|gn| d|µn| → 0 holds for every uniformly bounded pointwise converg-
ing to zero sequence (gn) of continuous functions such that all the functions
sup
k≥n

|gk|, n ∈ N, are continuous.

Proof. Proposition 1.1 asserts existence of a constant C such that

sup
n

|µn|(X) ≤ C. (25)

Let us fix ε > 0 and denote hn = sup
k≥n

|gk|, Fn = {x : hn(x) ≥ ε/C}.

By assumption each hn is a continuous function, so each Fn is a functionally
closed set. The sequence (Fn) decreases, since so does, by construction, (hn).
Obviously,

∞
⋂

n=1

Fn =
{

x : lim
n→∞

|gn(x)| ≥
ε

C

}

.

Pointwise convergence of (gn) to zero implies that the r.h.s. of this equality is
the empty set. Thus Fn ց ∅. Hence and from the assumption about (µn) we
have by Corollary 1.5

|µn|(Fn) → 0. (26)

Writing

∫

X\Fn∪Fn

|gn|d|µn| ≤

∫

X\Fn

hnd|µn|+ ‖gn‖∞ |µn|(Fn)

≤ εC−1|µn|(X) + ‖gn‖∞ |µn|(Fn)

and taking to account (25), (26) and uniform boundedness of (gn), we get
lim

∫

|gn|d|µn| ≤ ε.

We will say that a set is an additive lattice if it is both a commutative
group and a lattice with translation-invariant order.

Lemma 4.3. Let a1, a2, b1, b2 be arbitrary members of an additive lattice.
Then |a1 ∨ b1 − a2 ∨ b2| ≤ |a1 − a2| ∨ |b1 − b2|.
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Proof. It suffices to to prove that a1 ∨ b1 − a2 ∨ b2 ≤ |a1 − a2| ∨ |b1 − b2|.
To this end we write a1 ∨ b1 − a2 ∨ b2 = (a1 − (a2 ∨ b2)) ∨ (b1 − (a2 ∨ b2)),
a1 − (a2 ∨ b2) ≤ a1 − a2 ≤ |a1 − a2|, b1 − (a2 ∨ b2) ≤ b1 − b2 ≤ |b1 − b2|.

Lemma 4.4. Let x be a point in X and (ϕk) be a pointwise bounded sequence
in (Cd)X such that

lim
U∈τ(x)

sup
k

sup
x′∈U

|ϕk(x
′)− ϕk(x)| = 0. (27)

Then the function f ≡ sup
k

|ϕk| is continuous at x.

Proof. Denote fn = |ϕ1| ∨ . . .∨ |ϕn|. The sequence (fn) pointwise converges to
f . So, to deduce the desired conclusion from Lemma 1.9 it suffices to verify
condition (13).

Writing on the basis of Lemma 4.3

|fn(x
′)− fn(x)| ≤

n
∨

k=1

|ϕk(x
′)− ϕk(x)|,

we get

sup
x′∈U

|fn(x
′)− fn(x)| ≤

n
∨

k=1

sup
x′∈U

|ϕk(x
′)− ϕk(x)|,

whence
lim

U∈τ(x)
sup
n

sup
x′∈U

|fn(x
′)− fn(x)| = 0. (28)

Thus (27) entails (13).

Theorem 4.5. Let X be a topological space, (µn) be a sequence in M(X)
weakly converging to a measure µ, (fn) and f be a sequence of functions on X
and a function on X satisfying conditions (4) – (6). Suppose also that for any
x ∈ X and N > 0

lim
U∈τ(x)

sup
n

sup
x′∈U

∣

∣f [N ]
n (x′)− f [N ]

n (x)
∣

∣ = 0 (29)

and condition (12) is fulfilled. Then relation (8) holds.

Proof. Denote gNn = f
[N ]
n − f [N ]. Condition (12) implies that the sequence

(

f
[N ]
n , n ∈ N

)

pointwise converges to f [N ], which together with (29) entails

continuity of f [N ] and the relation

lim
U∈τ(x)

sup
k≥n

sup
x′∈U

∣

∣

∣

∣gNk (x′)
∣

∣−
∣

∣gNk (x)
∣

∣

∣

∣ = 0
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for all x ∈ X and n ∈ N. By construction the sequence (gNn , n ∈ N) is uni-
formly bounded. So Lemma 4.4 applied to ϕk =

∣

∣gNk+n−1

∣

∣ asserts that all the
functions sup

k≥n

∣

∣gNk
∣

∣ , n ∈ N, are continuous, hereupon Theorem 4.2 asserts that
∫

gNn dµn → 0, which together with weak convergence of (µn) to µ yields
∫

f [N ]
n dµn →

∫

f [N ]dµ as n→ ∞.

This relation together with condition (5) and relation (9) derived above from
condition (6) entails (8).

The next statement is obvious.

Lemma 4.6. Relation (28) at a point x ∈ X entails (29) (for any N > 0)
and is tantamount to (13) at x plus continuity of all the functions at this point.

The following three statements ensue from Theorem 4.5, with account of
Lemma 4.6, in the same way (with obvious technical changes) as Proposi-
tion 3.2, Proposition 3.3 and Theorem 3.4 were derived from Theorem 3.1.

Proposition 4.7. Let X be a topological space, (µn) be a sequence in M(X)
weakly converging to a signed measure µ and (fn) be a uniformly bounded
sequence of continuous functions on X pointwise converging to a function f
and satisfying condition (13). Then relations (8) and (22) hold.

Proposition 4.8. Let X be a topological space, (µn) be a sequence in M(X)
weakly converging to a measure µ and (fn) be a sequence of continuous func-
tions on X pointwise converging to a function f and satisfying conditions (13)
and (23). Then inequality (6) is valid.

Theorem 4.9. Let X be a topological space, (µn) be a sequence in M(X)
weakly converging to a measure µ and (fn) be a sequence of continuous func-
tions on X pointwise converging to a function f and satisfying conditions (13)
(for all x ∈ X) and (15). Then relations (6) and (8) hold.

Theorem 4.9 is the analog, for functions on a general topological space,
of Corollary 3.5 (with the additional condition of continuity of the pre-limit
functions). The next four statements will allow us to modify, for a class of
topological spaces, this theorem, making it more alike to Theorem 3.4.

Lemma 4.10. Let x and (fn) be a point in X and a sequence in (Cd)X such
that, firstly, relation (13) fails and, secondly,

⋂

U∈τ(x)

U =
∞
⋂

k=1

Uk (30)

for some decreasing sequence (Uk) in τ(x). Then there exists a sequence (xn) ∈
cnvr[x] such that (10) fails.
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Proof. Note first that the limit of every subnet of a decreasing net is not less
than the limit of the whole net. So the assumptions of the lemma imply
existence of a positive number c such that

lim
n→∞

sup
x′∈Uk

|fn(x
′)− fn(x)| > c

for all k ∈ N. Consequently, there exist a strictly increasing sequence (nk) of
natural numbers and a sequence (yk) ∈ XN such that yk ∈ Uk (and therefore
yk → x by condition (30)) and |fnk

(yk)− fnk
(x)| > c. It remains to note that

yk = xnk
, where xn = yk as nk−1 < n ≤ nk (n0 = 0), so that (xn) also

converges to x.

Corollary 4.11. Let X be a first-countable topological space and (fn) be a
sequence in (Cd)X such that relation (10) holds for every x ∈ X and (xn) ∈
cnvr[x]. Then relation (13) holds for all x ∈ X.

We will say that a topological space is locally sequentially compact if each its
point has a sequentially precompact neighborhood. The following statement
is obvious.

Lemma 4.12. Let X be a first-countable locally sequentially compact topo-
logical space and (fn) be a sequence in (Cd)X locally uniformly converging to a
function f . Then relation (10) holds for every x ∈ X and (xn) ∈ cnvr[x].

Juxtaposing Lemma 4.12 and Corollary 4.11, we get

Corollary 4.13. Let X be a first-countable locally sequentially compact
topological space and (fn) be a sequence in (Cd)X locally uniformly converg-
ing to a function f . Then for any x ∈ X condition (13) is fulfilled.

Theorem 4.9, Lemma 4.6 and Corollary 4.13 yield

Theorem 4.14. Let X be a first-countable locally sequentially compact topo-
logical space, (µn) be a sequence in M(X) weakly converging to a measure µ
and (fn) be a sequence of continuous functions on X locally uniformly con-
verging to a function f and satisfying condition (15). Then relations (6) and
(8) hold.

5 Sequential continuity of direct multiplica-

tion of signed measures

The following byproduct of Theorem 4.9 is interesting on its own right.
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Theorem 5.1. Let X and Y be topological spaces, (µn) and (νn) be se-
quences in M(X) and M(Y ), respectively, weakly converging to measures µ
and ν, respectively. Suppose also that for any positive ε there exists a compact
set K ∈ B0(Y ) such that νn(Y \K) < ε for all n. Then the sequence (µn⊗ νn)
weakly converges to µ⊗ ν.

Proof. Let us fix g ∈ Cb(X × Y ) and denote

fn(x) =

∫

g(x, y)νn(dy), f(x) =

∫

g(x, y)ν(dy).

By Fubini’s theorem
∫∫

gdµndνn =
∫

fndµn and the same without n, so all we
need is to establish relation (8).

By the choice of g and due to weak convergence of (νn) to ν the se-
quence (fn) pointwise converges to f . Herein by construction |fn| ≤ Mn ≡
‖g‖∞|νn|(Y ) and therefore

|fn|I{|fn| > N} ≤ N−1M2
n,

∫

|fn|I{|fn| > N}d|µn| ≤ N−1M2
n|µn|(X).

These inequalities together with asserted by Proposition 1.1 uniform bound-
edness in variation of (µn) and (νn) entail (15).

By construction for any B ∈ B0(Y )

|fn(x
′)− fn(x)| ≤ 2‖g‖∞|νn|(Y \B) + |νn|(Y ) sup

y∈B
|g(x′, y)− g(x, y)|.

So, to deduce (13) from the last assumption of the theorem and uniform bound-
edness in variation of (νn) it suffices to show that

lim
U∈τ(x)

sup
x′∈U

max
y∈K

|g(x′, y)− g(x, y)| = 0 (31)

for every x ∈ X and compact set K ⊂ Y .
Assume the contrary: there exist a point x ∈ X , a compact set K ⊂ Y ,

a positive number a and, for each U ∈ τ(x), points x(U) ∈ U and y(U) ∈ K
such that

|g(x(U), y(U))− g(x, y(U))| > a. (32)

By the construction of the net U 7→ x(U)

x(U) → x as U runs through τ(x). (33)

Compactness of K implies existence of a cofinal subset U ⊂ τ(x) and a point
y ∈ K such that

y(U) → y as U runs through U . (34)
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From (33) and cofinality of U we have x(U) → x as U runs through U , which
together with the previous relation and continuity of g yields g(x(U), y(U)) →
g(x, y) as U runs through U . Comparing this with (32), we get |g(x, y(U))−
g(x, y)| ≥ a for all U ∈ U , which in view of (34) contradicts to continuity of
g. Thus we have proved relation (31). Now Theorem 4.9 whose conditions we
have verified asserts (8).

Corollary 5.2 (from Theorems 5.1 and 1.2). Let X1, . . . , Xl be Polish spaces
and let, for each i ∈ {1, . . . , l}, (µi

n, n ∈ N) be a sequence of signed measures
on B(Xi) weakly converging to a signed measure µi. Then the sequence (µ1

n ⊗
. . .⊗ µl

n, n ∈ N) weakly converges to µ1 ⊗ . . .⊗ µl.

6 Passage to the limit in
∫

dνn(s)
∫

fn(s, x)ψn(s, dx)

Let (X,X ) be a measurable space (it will be implied tacitly that X = B0(X)
in case X is a topological space). For a mapping ψ : T ×X → C, where T is a
nonvoid set, and for a point s ∈ T , we denote Ψ(s) = ψ(s, ·), which will be not
explained repeatedly. If X is a topological space, then, equipping M(X) with
the weak convergence, we convert the latter into a convergence space. If herein
T is a convergence space, then we substitute, for M(X)-valued functions on T ,
the term “firm convergence” introduced in Section 1 by the more minute one
“firm weak convergence”.

The following statement is immediate from Corollary 5.2

Corollary 6.1. Let X1, . . . , Xl be Polish spaces and let, for each i ∈ {1, . . . , l},
(Ψi

n, n ∈ N) be a sequence of M(Xi)-valued functions on some set (the same
for all i) firmly weakly converging to some M(Xi)-valued function Ψi. Then
the sequence (Ψ1

n ⊗ . . .⊗Ψl
n, n ∈ N) weakly converges to Ψ1 ⊗ . . .⊗Ψl.

Lemma 6.2. Let X be a Polish space, T be a nonvoid set, s be a point in
T , (sn) be a sequence in T and Ψ,Ψ1,Ψ2 . . . be M(X)-valued functions on T
such that the sequence (Ψn(sn)) weakly converges to Ψ(s). Then the relation

∫

g(sn, x)ψn(sn, dx) →

∫

g(s, x)ψ(s, dx) (35)

holds for every bounded function g on T ×X such that: g(sn, xn) → g(s, x) for
any x ∈ X and (xn) ∈ cnvr[x]; g(s, ·) ∈ C(X).

Proof. The first assumption about g implies, obviously, that

lim
n→∞

sup
x∈K

|g(sn, x)− g(s, x)| = 0

for any sequentially precompact set K ⊂ X . Now, relation (35) follows from
the second assumption about g and the assumption about (Ψn) by Proposi-
tion 3.2.
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Referring in the proof of Lemma 6.2 to Theorem 4.14 instead of Proposi-
tion 3.2, we modify that lemma as follows.

Lemma 6.3. Let X be a first-countable locally sequentially compact topo-
logical space, T be a nonvoid set, s be a point in T , (sn) be a sequence in T and
Ψ,Ψ1,Ψ2 . . . be M(X)-valued functions on T such that the sequence (Ψn(sn))
weakly converges to Ψ(s). Then relation (35) holds for every bounded function
g on T ×X such that: g(sn, xn) → g(s, x) for any x ∈ X and (xn) ∈ cnvr[x];
g(sn, ·) ∈ C(X), n ∈ N.

Corollary 6.4. Let X be either a Polish space or a first-countable locally
sequentially compact topological space, T be a convergence space and (Ψn) be a
sequence in M(X)T firmly weakly converging to some Ψ ∈ M(X)T . Then the
relation

sup
s∈Q

∣

∣

∣

∣

∫

g(s, x)ψn(s, dx)−

∫

g(s, x)ψ(s, dx)

∣

∣

∣

∣

→ 0

holds for every sequentially precompact set Q ⊂ T and bounded sequentially
continuous function g on T ×X such that for any s ∈ T g(s, ·) ∈ C(X).

Proof. For any x ∈ X, s ∈ T and (sn) ∈ cnvr[s] we have g(sn, x) → g(s, x) due
to sequential continuity of g in the first argument. Hence and from bounded-
ness of g we get by the dominated convergence theorem

∫

g(sn, x)ψ(s, dx) →
∫

g(s, x)ψ(s, dx), which together with relation (35) asserted by Lemma 6.2 (if
X is a Polish space) or by Lemma 6.3 yields

∫

g(sn, x)ψn(sn, dx)−

∫

g(sn, x)ψ(s, dx) → 0.

And this is, since s ∈ T and (sn) ∈ cnvr[s] are arbitrary, tantamount to the
conclusion of the corollary.

Let (T, T ) and (X,X ) be measurable spaces (it will be implied tacitly that
T = B0(T ) in case T is a topological space). A mapping Ψ : T → M(X) such
that for each h ∈ L∞(X,X ) the function

∫

h(x)ψ(·, dx) is T -measurable will
be called a transition measure on T×X . Obviously, for any transition measure
Ψ on T ×X and function g ∈ L∞(T ×X, T ⊗X ) the function

∫

g(·, x)ψ(·, dx)
is T -measurable, too.

Lemma 6.5. Let X be either a Polish space or a first-countable locally
sequentially compact topological space, T be a Polish space, νn be a sequence in
M(T ) weakly converging to some ν ∈ M(T ), (Ψn) be a sequence of transition
measures on T ×B(X) firmly weakly converging to some transition measure Ψ
and g be a bounded continuous function on T ×X. Suppose also that

sup
n

sup
s∈T

∣

∣

∣

∣

∫

g(s, x)ψn(s, dx)

∣

∣

∣

∣

<∞ (36)
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and the function
∫

g(·, x)ψ(·, dx) is continuous. Then

∫

νn(ds)

∫

g(s, x)ψn(s, dx) →

∫

ν(ds)

∫

g(s, x)ψ(s, dx). (37)

Proof. Denote hn(s) =
∫

g(s, x)ψn(s, dx), h(s) =
∫

g(s, x)ψ(s, dx). Bound-
edness of g and condition (36) imply uniform boundedness of the sequence
(hn). Corollary 6.4 asserts local uniform convergence of (hn) to h. This func-
tion was assumed continuous. So (37) is, up to notation, the conclusion of
Proposition 3.2.

Lemma 6.6. Let X be either a Polish space or a first-countable locally
sequentially compact topological space, T be a sequentially compact convergence
space and (Ψn) be a sequence in M(X)T firmly weakly converging to some
Ψ ∈ M(X)T . Then inequality (36) is valid for every bounded sequentially
continuous function g on T ×X such that for any s ∈ T g(s, ·) ∈ C(X).

Proof. If (36) is wrong, then, due to sequential compactness of T , there exist
g ∈ Cb(T × X), an infinite set J ⊂ N and a convergent sequence (sn, n ∈ J)
in T such that

∣

∣

∫

g(sn, x)ψn(sn, dx)
∣

∣ → ∞ as n → ∞, n ∈ J. And this
contradicts to relation (35) asserted by Lemma 6.2 (if X is a Polish space) or
by Lemma 6.3.

Lemmas 6.5 and 6.6 yield together

Corollary 6.7. Let X be either a Polish space or a first-countable locally
sequentially compact topological space, T be a compact metrizable topological
space, νn be a sequence in M(T ) weakly converging to some ν ∈ M(T ) and (Ψn)
be a sequence of transition measures on T ×B0(X) firmly weakly converging to
a transition measure Ψ. Then relation (37) holds for every bounded continuous
function g on T ×X such that the function

∫

g(·, x)ψ(·, dx) is continuous.

Theorem 6.8. Assume the following: X is a Polish space, T is a compact
metrizable topological space; (νn) is a sequence of measures on B(T ) weakly
converging to a measure ν; (Ψn) is a sequence of transition measures on T ×
B(X) firmly weakly converging to a transition measure Ψ such that for any
g ∈ Cb(T ×X) the function

∫

g(·, x)ψ(·, dx) is continuous; (fn) is a sequence
of Borel functions on T ×X such that

lim
N→∞

lim
n→∞

∫

|νn|(ds)

∫

|fn(s, x)|I{|fn(s, x)| > N} |ψn|(s, dx) = 0; (38)

f is a continuous function on T ×X such that for any compactum K ⊂ X

lim
n→∞

sup
(s,x)∈T×K

|fn(s, x)− f(s, x)| = 0. (39)
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Then
∫

|ν|(ds)

∫

|f(s, x)| |ψ|(s, dx) <∞ (40)

and
∫

νn(ds)

∫

fn(s, x)ψn(s, dx) →

∫

ν(ds)

∫

f(s, x)ψ(s, dx). (41)

Proof. Let us define the measures µn and µ on B(T )⊗ B(X) by µn(S ×A) =
∫

S
νn(ds)ψn(s, A) (likewise without n), so that for every bounded Borel func-

tion g on T ×X
∫

g(y)µn(dy) =

∫

νn(ds)

∫

g(s, x)ψn(s, dx) (y = (s, x)).

Corollary 6.7 asserts weak convergence of (µn) to µ.
Relations (15), (6) and (8) for thus defined µn’s turn into (38), (40) and

(41), respectively. Condition (39) amounts to local uniform convergence of
(fn) to f . So (41) is asserted by Theorem 3.4, if one substitutes in it x by
(s, x) and X by T ×X .

Remark 6.9. Referring to Theorem 4.14 instead of Theorem 3.4, we obtain
the modification of Theorem 6.8, where X is a first-countable locally sequen-
tially compact topological space, K in (39) is a sequentially precompact set and
all the functions fn are assumed continuous.

Denote LBV the class of all real-valued right-continuous functions on R+

starting from zero and having finite variation in each interval. Every F ∈ LBV
uniquely determines the signed measure µ on B(R+) whose value on [0, s]
equals F (s). Let cont(F ) denote the set of continuity points of F . We will
say that a sequence (Fn) in LBV basically converges to F ∈ LBV if, firstly,
Fn(s) → F (s) at every point s ∈ cont(F ) and, secondly, sup

n

∫ t

0
|dFn(s)| < ∞

for all t ∈ R+. By Proposition 8.1.8 [2] these properties of (Fn) imply that for
any t ∈ cont(F ) the sequence of the corresponding signed measures on B([0, t])
(not on B(R+) !) weakly converges to µ.

The following statement is immediate from Theorem 6.8 and Corollary 6.1.

Theorem 6.10. Let X be a Polish space, E be a topological vector space,
ϕ : X → C, ϑ : X → E ′ and χ : X2 → E ′ be continuous (w.r.t. the vague
topology in E ′) mappings. Let, further, for each n ∈ N a transition measure
Ψn on R+ × B(X) satisfy the equation

∫

ϕ(x)ψn(t, dx) =

∫

ϕ(x)ψn(0, dx) +

∫ t

0

dFn(s)

∫

ϑ(x)an(s, x)ψn(s, dx)

+

∫ t

0

dGn(s)

∫∫

χ(x, y)bn(s, x, y)ψn(s, dx)ψn(s, dy), (42)
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where Fn ∈ LBV, Gn ∈ LBV, an : R+ ×X → E is a B(R+) ⊗ B(X)|B0(E)-
measurable mapping and bn : R+×X

2 → E is a B(R+)⊗B(X)⊗B(X)|B0(E)-
measurable mapping. Suppose that there exist a transition measure Ψ on
R+ × B(X), continuous functions F ∈ LBV, G ∈ LBV and continuous map-
pings a : R+ ×X → E, b : R+ ×X2 → E such that: the sequence (Ψn) firmly
weakly converges to Ψ; the sequences (Fn) and (Gn) basically converge to F
and G, respectively; for any t > 0 and compactum K ⊂ X

lim
n→∞

sup
s≤t, x∈K

|ϑ(x)an(s, x)− ϑ(x)a(s, x)| = 0, (43)

lim
n→∞

sup
s≤t

x, y∈K

|χ(x, y)bn(s, x, y)− χ(x, y)b(s, x, y)| = 0. (44)

Then Ψ satisfies the equation

∫

ϕ(x)ψ(t, dx) =

∫

ϕ(x)ψ(0, dx) +

∫ t

0

dF (s)

∫

ϑ(x)a(s, x)ψ(s, dx)

+

∫ t

0

dG(s)

∫∫

χ(x, y)b(s, x, y)ψ(s, dx)ψ(s, dy). (45)

Remark 6.11. If the topology in E is induced by some metric ρ, then,
obviously, equalities

lim
n→∞

sup
s≤t, x∈K

ρ(an(s, x), a(s, x)) = 0, lim
n→∞

sup
s≤t

x, y∈K

ρ(bn(s, x, y)− b(s, x, y)) = 0

imply (43) and (44).

To make use of Theorem 6.10 one has to prove relative compactness of (Ψn)
w.r.t. the firm weak convergence and to show that the class of triplets (ϕ, ϑ, χ)
such that equality (42) (and therefore (45)) holds for all t is wide enough to
ensure uniqueness of the solution of equation (45) (more exactly, of the family,
parametrized by ϕ, ϑ and χ, of these equations). Both tasks are quite feasible,
but they require another ample article, with its own concepts and techniques.
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