Mathematica Aeterna, Vol. 2, 2012, no. 9, 827 - 831

An Introduction on Weakly TR-Contraction in Metric Spaces

Z. Bahmani

Islamic Azad University of Genaveh-Branch, Iran

e-mail: Bahmani.math@gmail.com

Abstract

In this paper, we introduce the concepts of weakly TR-contraction in metric spaces . Then we prove some results.

Keywords: Weakly TR-contraction, Coincide point, Sequentially contraction.

2010 MSC: 47H09, 47H10, 54E40, 54E50.

1 Introduction

Contractions are one of the important class of mappings .Many of authors have studied fixed, periodic and coincide points of them . Recently , A . Beiranvand , S . Moradi , M . omid and H . Pazandeh [1] introduced a new class of contractive mappings :T-contraction and T-contractive extending the Banach's contraction principle and the Edeistein's fixed point theorems (see [2]), respectively . Authors in [3] considered various extensions of classic contraction type of mappings [more specifically : Kannan , Zanfirescu , weak contraction and also the so-called D(a,b) class] . For these classes of contractions , conditions for existence and uniqueness of fixed points , as well for its asymptotic behavior is given [1,4,5] . The goal of this paper is to introduce the new class of contractions in metric spaces .

First, we have the following definitions and results.

Definition 1.1. Let (X,d) be a metric space. A map said to be contraction when there exists $0 \le \alpha < 1$ so that

 $d(Sx, Sy) \leq \alpha d(x, y)$

Theorem 1.2(Banach's contraction principle) [6]. Let (X, d) be a complete space and $T: X \rightarrow X$ a contraction. Then T has an unique fixed point.

Definition 1.3 [7]. Let (X,d) be a metric space and $S,T,R:X \to X$ three functions. A mapping S is said to be a TR-contraction if there is $\alpha \in [0,1)$ constant such that

 $d(TSx, RSy) \leq \alpha d(Tx, Ty)$

For all $x, y \in X$.

Example 1.4. Let X = R with usual metric. We consider the functions $S,T,R: X \to X$ defined by $Tx = \frac{x}{2}$, $Rx = \frac{x}{8}$ and $Sx = \frac{x}{4}$. If $\alpha \in \begin{bmatrix} 1\\ 4,1 \end{bmatrix}$, then S is a TR-contraction.

Notation 1.5. In this paper, the space of all linear bounded mapping on a normed space X is denoted by *BL(X)*. It is a normed space with the following norm :

 $||T|| = \{sup ||Tx|| : x \in X, ||x|| = 1\}$

2 Main Results

Throughout this section, X denotes a metric space.

Definition 2 .1. Let (X,d) be a metric space and $S,T,R:X \to X$ three functions. A mapping S is said to be a weakly TR-contraction if there are $\alpha, \beta \in [0,1)$ with $0 \le \alpha + \beta < 1$ such that

 $d(TSx, RSy) \le \alpha d(x, y) + \beta d(Tx, Ry)$

For all.

Remark 2.2 .Clearly, any TR-contraction is weakly TR-contraction but the converse need not be hold; for example, consider $X = [0, \infty)$ with usual metric and $S,T,R: X \to X$ by $Tx = x^2$, Rx = x and $Sx = \sqrt{x}$.

Set $x = \frac{1}{2}$ and y = 0, then we have

$$|x - \sqrt{y}| = d(TSx, RSy) = \Longrightarrow d\left(TS\left(\frac{1}{2}\right), RS(0)\right) = \frac{1}{2}$$

And

$$|x^2 - \sqrt{y}| = d(Tx, Ry) = \xrightarrow{x = \frac{1}{2}, y = 0} d\left(T\left(\frac{1}{2}\right), R(0)\right) = \frac{1}{4}$$

Which $\left(TS\left(\frac{1}{2}\right), RS(0)\right) > d\left(T\left(\frac{1}{2}\right), R(0)\right)$. Hence *S* isnt a TR-contraction. It is easy to show that *S* is a weakly TR-contraction.

Theorem 2 .3.Let $S: X \to X$ be a weakly TR-contraction. Also, suppose that X be complete. Further, Let be a contraction. Then T and R have a coincide point.

Proof.By Banach's contraction principle, has an unique fixed point, say x^* .

Now, set $x = y = x^*$ in [2.1.1]. Then we have

 $d(TSx^*, RSx^*) \leq \alpha d(x^*, x^*) + \beta d(Tx^*, Rx^*)$

Which implies . Since $0 \le \beta < 1$, so $d(Tx^*, Rx^*) = 0$ which means $x^* = Rx^*$. This completes the proof.

Definition 2.4. Let $S,T: X \to X$. We say that is T-contraction if there is a $\alpha \in [0,1)$ such that

 $d(TSx, TSy) \leq \alpha d(Tx, Ty)$

For all $x, y \in X$.

Remark 2.5 . Indeed, the previous definition is the concept of a TR-contraction in which R = T. **Definition 2.6.[8]** Let $S: X \to X$ be a mapping. We say that S is sequentially contraction, if there exist a sequence as $(T_n): X \to X$ such that S be a T_n – contraction for each n.

Example 2 .7. Consider $X = [1, \infty)$ with usual metric. Also, let $S, T_n : X \to X$ by $Sx = \sqrt{x}$ and $T_n x = \frac{x^2}{n}$ for all $n \in \mathbb{N}$. Then

 $d(T_n Sx, T_n Sy) = \frac{1}{n} |x - y|$

And

$$d(T_n x, T_n y) = \frac{1}{n} |x - y| |x + y|$$

So $,^{5}$ is sequentially contraction .

Finally we prove the following result.

Theorem 2.8. Let X be a normed space and $S: X \to X$ a mapping. Suppose that there exists $T \in BL(X)$ such that S be a T –contraction. Then S is sequentially contraction.

Proof. *BL(X)* is closed with sup-norm. Hence there exists a sequence, say (T_n) , such that $T_n \rightarrow T$ as $n \rightarrow \infty$. On the other hand, *S* is T-contraction, i.e,

 $d(TSx, TSy) \leq \alpha d(Tx, Ty)$

For some $0 \leq \alpha < 1$. We have

$$d\left(\lim_{n\to\infty}T_nSx,\lim_{n\to\infty}[T_nSy]\leq\alpha d\left(\lim_{n\to\infty}[T_nx,T_ny]\right)\right)$$

So

 $\lim_{n \to \infty} d(T_n Sx, T_n Sy) \le \alpha \lim_{n \to \infty} d(T_n x, T_n y)$

Therefore, We can choose $N \in \mathbb{N}$ so that

$$d(T_nSx, T_nSy) \leq \alpha d(T_nx, T_ny)$$

For all .Set $\tilde{T}_n = T_{n+n-1}$ for each . Obviously, is \tilde{T}_n -contraction for all n, as desired

References

 $[1]\ A$. Beiranvand , S . Moradi , M . Omid and H . Pazandeh , Two fixed point theorem for special mapping , arXiv :0903 . 1504V1 [math.FA] .

 $[2]\ K$. Goebel and W . A . Kirk , Topics in Metric fixed point theory , Cambringe University Press , NY , 1990 .

[3] J . R . Morales and E . Rojas , Fixed point theorems for a class of mappings depending of another function and defined on cone metric spaces , arXiv : 0906.2106V1 [math.FA].

 $[4]\ J$. R .Morales and E . Rojas , T-Zamfirescu and T-weak contraction mapping on cone metric spaces , arXiv :0909.1255V1 [math.FA] .

 $[5]\ J$. R . Morales and E . Rojas , Cone metric spaces and fixed point theorems of T-Kannan contractive mappings , Int . Journal of Math . Analysis , Vol 4.4 , (2010) , 175-184 .

[6] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, Canada, 1989.

 $[7]\ J$. R . Morales and E . Rojas , on the existence of fixed points of contraction mappings depending of two functions on cone metric spaces , arXiv : 0910.4921V1 [math.FA] .

[8] Z. Bahmani, Sequentially Contractions in Cone Metric Spaces, Math. Aeterna, Vol.2, N0.08, (2012), 715-722.

Received: November, 2012