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INTRODUCTION
Liver diseases are considered the most prevalent disorders 
worldwide and cover broad hepatic pathologies ranging from 
simple steatosis to chronic hepatitis, fibrosis, cirrhosis, hepato-
cellular carcinoma and acute liver failure [1-4]. This is worri-
some as hepatic disorders generally result in disruption of the 
structural integrity of liver, thereby impeding vital functions 
in the maintenance and regulation of body homeostasis. One 
of such disorders causing havoc on human health is drug in-
duced hepatotoxicity (DIH), this is defined as chemical-driven 
liver damage. This condition is well-documented to include 
some herbal medicines (administration of these agents in ther-
apeutic windows or overdoses might damage liver) and chem-
icals-derived from industries and laboratories and industries 
and natural chemicals such as remedies of plants and micro-
cystins might cause injury to liver. Currently, over 900 medi-
cations are culpably to be involved in inducing hepatic injury 
(termed as hepatoxins), which culminate in the major reason 
leading to drugs being unapproved or withdrawn [5-7].
Methotrexate (MTX) formerly termed as amethopterin, and a 
competitive dihydrofolate reductase inhibitor, has effectively 
been employed in the treatment of various rheumatological, 
oncological, dermatological, ectopically pregnancy, pancyto-
paenia and disorders of inflammation [8-11]. However, MTX 
is a well-known to induce hepatotoxicity in both humans [12] 
and animal models [13], albeit being the anchor drug for the 
treatment of rheumatoid arthritis and psoriasis [14] due to its 
cost effectiveness and potency. This in turn results in toxicity 
induced withdrawals in up to 30%-50% patients, thereby limit-
ing its use as well as replacement with more expensive and tox-
ic therapies [15,16] .Putatively, the life-threatening MTX in-
duced hepatotoxicity (MIH) is caused by several mechanisms; 

nonetheless oxidative stress [17] and inflammation [18] have 
been well established. In view of this, MTX is concurrently 
prescribed with folic acid, nevertheless supplementation of fo-
lic acid and its derivatives are speculated to diminish the thera-
peutic efficacy of MTX, while their benefits are also controver-
sial [19]. Due to these drawbacks, there has been an increasing 
search for novel strategies to reduce hepatotoxicity while opti-
mising the efficacy of MTX [20]. Recently, supplementation of 
natural anti-oxidative and anti-inflammatory phytobioactive 
compounds has been documented to ameliorate MIH [21-23].
To the best of our knowledge no review has been document-
ed on the potential of natural phytobioactive compounds for 
treatment and prevention of MIH. This mini review therefore 
summarizes proposed mechanisms of MIH, recent advances 
in the prevention and treatment prospects of natural phytobio-
active compounds on MIH, as well as suggests development of 
therapies involving concurrent use of natural phytoconstitu-
ents with MTX.

MECHANISMS OF MTX-INDUCED HEPATOTOX-
ICITY
Generally, DIH is manifested as a silent sub-clinical disorder 
or in association with several clinical conditions [1,24]. For 
effective alleviation of MIH, the exact mechanism should be 
clearly understood, however this is not the case [9], Nonethe-
less, recent investigations have hypothesised various mecha-
nisms as playing vital roles in MIH, namely anti-oxidant de-
fences coupled with increased oxidative stress, inhibition and 
activation of nuclear factor-erythroid-2 related factor 2-(Nrf2) 
anti-oxidant defence response (ARE)-nuclear factor kappa B 
(Nrf2-ARE-NF-κB) crosstalk, down-regulation of PPAR-γ as 
well as release of pro-inflammatory and apoptotic mediators 
[9,13,14,25,26]. Notwithstanding these results, understanding 
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the detailed mechanism underlying MIH could help in attenuating the 
adverse hepatotoxic side effects of amethopterin therapy. 

Oxidative stress, lipid peroxidation and MTX-in-
duced hepatotoxicity
Several lines of evidences have documented the association between in-
cidence of MIH and oxidative stress. These studies [14,27] suggest that 
MTX injured liver by negatively modulating mitochondrial machinery, 
wherein it resulted in uncontrolled production of reactive oxygen spe-
cies (ROS) [14,28]. Consequently, this process leads to disruption of 
cellular macromolecules coupled with initiation of lipid peroxidation 
cascade and its concomitant cell death [29]. Additionally, it was estab-
lished about two decades ago that MTX concentration is prolonged in 
intracellular via its conversion to polyglutamates in the liver. 
Accordingly, this contributes to hepatotoxicity through cellular NA-
DPH unavailability and glutathione reductase inhibition [30]. To date, 
this hypothesis has neither been corroborated nor refuted, thus further 
studies are needed for current understanding of this mechanism.
The MIH has been implicated in the depletion of mitochondrial en-
zymatic and non-enzymatic anti-oxidant defence systems through 
overproduction of ROS [31-33]. In recent times, emerging evidence 
demonstrates the involvement of Nrf2 Kelch-like erythroid cell-derived 
protein-1 (Keap-1) ARE-(Nrf2-Keap1-ARE) signalling pathway in reg-
ulating cellular resistance to oxidants [23,29]. As a class of basic-region 
leucine zipper (bZIP) protein, Nrf2 is well established to protect tissues 
against oxidative-induced injury via increased expression of cellular 
anti-oxidant defence proteins. Upon inducement of uncontrolled ROS 
production by MTX, the Nrf2 (generally suppressed in cytoplasm by 
Keap-1) [34] is activated. After transport of Nrf2 to nucleus, it binds 
to the ARE, which subsequently initiates transcription of anti-oxida-
tive genes such as haem oxygenase 1 (HO-1) and NADPH quinone 
oxido-reductase-1 (NQO-1) [35]. Mechanistically, Nrf2 is activated via 
induction in two fronts, which are suppression and activation of Nrf2 
under basal condition by inducers [36]. In this regard, there is an un-
met need to identify natural phytobioactive compounds that can boost 
Nrf2 activation. However, with the emerging concept of Nrf2 function-
ing in double-edge sword manner [37,38], further investigations are 
required to unearth the exact impact of Nrf2 activation as well as actual 
role of its suppression in MIH. 
Oxidative stress-induced lipid peroxidation is among the numerous 
mechanisms through which MTX causes liver injury. The uncontrolled 
ROS generated through MTX metabolism in liver attacks hepatocellu-
lar membranes resulting in lipid peroxidation, which potentially forms 
toxic lipid-derived aldehydes (LDAs), viz., acrolein, 4-hydroxy-2-non-
enal (HNE) and malondialdehyde (MDA) [38]. In accordance with this 
hypothesis, several authors have shown that MTX administration in 
rat models may induce evidential elevations of MDA and nitric oxide 
(NO) with concomitant decrease in the activities of catalase, glutathi-
one (GSH) and superoxide dismutase (SOD) [9,18,39].
Despite the highly reactive NO culpability in the pathological process 
of hepatotoxicity induced by MTX [40], other authors [41] have pos-
ited that NO possesses hepatoprotective effect. Thus, NO acts a dou-
ble-edged sword by reacting with superoxide radical, forming potent 
lipid peroxidation-inducing agent, peroxynitrite, while protecting the 
liver through inhibition of tumour necrosis factor-alpha (TNF-α) via 
NF-kB subunits modifications [41].

Role of inflammatory and apoptotic factors in 
MTX-induced hepatotoxicity
The involvement of inflammatory processes in hepatotoxicity induced 
by chemicals has been reported to occur through production of me-

Figure 1: A schematic representation of possible mechanism 
underlying hepatotoxicity induced by MTX through oxidative 
stress-related inflammation, lipid deterioration by ROS and apop-
tosis.

diators that can cause liver damage or impede repair [42]. The release 
of inflammatory mediators during hepatic injury have been docu-
mented to include interleukin-1β (IL-1 β), IL-6, IL-8, NO and TNF-α 
[40,43,44] in animal models. 
These cytokines and inflammatory mediators in concert with “master 
regulator of the inflammatory response (TNF-α) are capable of directly 
injuring liver [45]. Moreover, it has been established that inflamma-
tion is linked to apoptosis through TNF-α, which plays vital role in 
the homeostasis of liver [46]. Existing literature suggests that increased 
TNF-α expression result in the activation of apoptotic pathways (an-
ti-apoptosis-NF-κB and pro-apoptosis-caspases)  [47], which in turn 
cause MIH [43]. 
Further, it is speculated that proteins such as cyclooxygenases-2 and 
inducible NO synthase (iNOS, both regulated by NF-κB) generally in-
fluences the biological effect of TNF-α [48]. Also, it is possible MTX 
induced NF-κB signalling activation via 5-aminoimidazole-4-carbox-
amideribonucleoside (AICAR) [49] since its active and storage form, 
methotrexate polyglutamates (MTXGlu) can cause intracellular accu-
mulation of AICAR through the inhibition of AICAR transformylase 
[50], thereby resulting in inflammation. 
Moreover, TNF-α receptor-1 (TNFR-1) activation is assumed to be 
harbinger, wherein it is associated with cellular apoptosis initiation via 
activation of different types of caspases [51] (Figure 1). Among this 
family of protease enzymes is caspase-3, which often activates protease 
for cell death, thereby catalysing particular splitting of various import-
ant proteins in cells which consequently culminates in MTX-induced 
apoptosis [52]. Judging from preclinical studies, it seems plausible that 
inflammation and stress-related signalling pathways are the underlying 
mechanism of MIH. Thus, therapeutic strategies aimed at attenuating 
oxidative stress and its concomitant inflammation as well as enhancing 
cellular anti-oxidants can be explored to potentially prevent and treat 
MIH (Fig. 1).

PREVENTION AND TREATMENT PROSPECTS OF NAT-
URAL PHYTO BIOACTIVE COMPOUNDS
Long-term use of MTX as first line treatment for chronic diseases 
such as rheumatoid arthritis and cancer normally result in increase in 
aminotransferases (also known as transaminitis) [53], which has re-
cently received much recognition in clinical research [39]. Currently, 
prevention and treatment options for the aforementioned diseases are 
through concomitant use of folate supplementation (folic acid or fo-
linic acid) and MTX to specifically minimize adverse effects including 
hepatotoxicity. Although, some studies have hinted that folate co-ad-
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ministration may not compromise MTX efficacy [54] but results of a 
post hoc analysis of two randomised control investigations suggested 
otherwise [55]. It is possible MIH is unrelated to folate antagonism 
unlike the other adverse effects such as anaemia, neutropaenia, stoma-
titis and oral ulcers [56]. Therefore, there is urgent need to search for 
novel preventive and treatment strategies. Current evidences indicate 
that supplementation of natural phytobioactive compounds with an-
ti-oxidants properties might protect liver against MIH [25,27,33,52]. 
However, these preliminary findings should be confirmed in further 
studies through randomised clinical trials. 
Natural products and its derived active constituents normally known 
as phytobioactive compounds have recently been explored in the treat-
ment of several diseases [57-60]. In recent times, our exploits in phyto-
compounds research support the assertion that natural products have 
the potential to prevent and treat oxidative stress-related inflammation 
which underlie liver disorders [61,62]. Exemplary, Zhang and his col-
leagues established previously that natural bioactive phytocompounds 
from fruits and vegetables could ameliorate the incidence of several 
illnesses, while those possessing anti-oxidant properties could poten-
tially reduce severe adverse effects of anti-tumour drugs in Chinese 
women in particular and global population as a whole. Invariably, there 
is growing optimism that these natural phytocompounds when supple-
mented with MTX could ameliorate its associated hepatotoxicity. 
The prevention and treatment prospect of natural phytobioactive com-
pounds on MIH for the past five years is summarized in Table 1. The 
preclinical and clinical evidences that we reviewed suggest that natu-

Table 1:Prevention and treatment prospect of natural phytobioactive compounds on MTX induced hepatotoxicity (MIH).

Phytocompounds Sources Bioactivity Research type References

Chlorogenic acid Hibiscus sabdariffa
Solanum  melongena

Prunus persica
Prunus domestica 

Anti-oxidant,
anti-inflammatory,
anti-apoptotic and
anti-hepatotoxic

  Preclinical 13

Thymoquinone Nigella sativa Oil anti-oxidant and
anti-hepatotoxic

    Clinical 12

Lauric acid Virgin coconut oil  (Cocos nucifera) Anti-hepatotoxic and anti-lipid peroxidation Preclinical 25

18-β-glycyrrhetinic acid Licorice root extract (Glycyrrhiza glabra) Anti-oxidant, anti-inflammatory, anti-hepatotoxic 
and anti-apoptotic

Preclinical 14

Berberine Coptis chinensis Anti-oxidant, anti-inflammatory, anti-hepatotoxic, 
anti-apoptotic and anti-lipid peroxidation

Preclinical 8

Berberine Coptidis rhizome (Rhizoma coptidis) Anti-oxidant, anti-hepatotoxic and anti-lipid 
peroxidation

Preclinical 68

Ellagitannins (as puni-
calagins and free ellagic 

acid)

Pomegranate fruit extract (Punica 
gra-natum L.)

Anti-oxidant, anti-inflammatory, anti-hepatotoxic, 
anti-apoptotic and anti-lipid peroxidation

Preclinical 23

Resveratrol Grapes, blueberries, raspberries, mul-
berries

Anti-hepatotoxic and anti-lipid peroxidation Preclinical 21

Turmeric  Curcuma longa L., Zingiberaceae Anti-inflammatory and anti-hepatotoxic Preclinical 33

Gallic acid Green tea, gall nut, grapes, red wine , 
hops, oak bark etc

Anti-oxidant, anti-hepatotoxic and anti-lipid 
peroxidation

Preclinical 69

ral phytobioactive compounds were mainly comprised of polyphenols, 
saponins, isoquinoline alkaloids, flavonoid and phenols, which gen-
erally exhibited anti-oxidant, anti-inflammatory and anti-hepatotoxic 
properties against MIH (Table 1). Thus, the authors suggested that the 
understudied natural phytobioactive compounds exhibited promising 
hepatoprotective potential against hepatotoxicity of MTX. This in turn 
results in the maintenance of enzyme homeostasis in liver while pro-
viding increased anti-oxidant defence against oxidative-induced free 
radicals [63]. This is not surprising as several natural phytocompounds 
with anti-oxidant activities have been documented to protect liver 
against various hepatoxicans [6,22,64]. As postulated earlier by Brewer, 
the potency of wide range of anti-oxidant agents is proportional to the 
presence of hydroxyl (OH) groups on their aromatic rings [65]. This 
implies that phytocompounds with higher number of OH groups are 
likely to exert more effective anti-oxidant properties. 
Besides, natural phytocompounds demonstrate better anti-oxidative 
effect based on the diversity of their chemical structures and bioactivi-
ties compared to the currently available synthetic ones in the commer-
cial functional foods and nutraceuticals [66]. In this regard the search 
for novel natural phytonutrients with anti-oxidant effect still remains 
a burgeoning field. 
Due to growing body of evidences which suggest the overproduction of 
ROS and its associated oxidative stress-related inflammatory responses 
in playing crucial roles in the pathogenesis of various disorders [67-69], 
natural agents with both anti-inflammatory and anti-oxidant proper-
ties could be explored further to affirm their potency against MI (Table 1).
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CONCLUSION AND FUTURE DIRECTION
Up to now, there is no approved treatment strategy designed to cure 
MIH. Normally, folate is concurrently administered with MTX; how-
ever this approach has yielded inconclusive results. Current evidence 
hypothesises that MIH is initiated and progressed through oxidative 
stress-related inflammation, peroxidation and apoptosis. However, the 
process by which the metabolism of MTX induced overproduction of 
ROS is not clearly understood. Therefore, understanding the mecha-
nisms of underlying MTX hepatotoxic effect would unearth the type 
of treatment strategies capable of preventing and treating MIH in hu-
mans. In view of this, pharmacological interventions of choice should 
be aimed at alleviating all the underlying mechanisms of MIH.
Preliminary preclinical and clinical findings show that natural phyto-
bioactive compounds could prevent and treat MIH. This is promising, 
albeit several clinical trials needed to evaluate the actual effectiveness 
of this treatment option. In subsequent investigations, scientists should 
explore concurrent use of these natural phytonutrients with MTX and 
further assess their effects on MTX efficacy. Moreover, through nano-
technology techniques co-encapsulation of MTX and natural phyto-
compounds can be explored for the prevention and treatment of MIH. 
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