Abstract

Three-dimensional Structure Prediction of the Human LMTK3 Catalytic Domain in DYG-in Conformation

Loubna Allam, Wiame Lakhlili, Zineb Tarhda, Jihane Akachar, Fatima Ghrifi, Hamid El Amri and Azeddine Ibrahimi

Lemur Tyrosine Kinase 3 (LMTK3) plays a key role in the regulation of α Estrogen Receptor (ERα) activity. It has been defined as an essential actor involved in the endocrine resistance process in breast cancer patients accelerating the dispersion and invasion of tumor cells which are the first steps of the metastatic process. In the absence of a crystallized structure of LMTK3 and in order to study its inhibition, we generated its tridimensional structure. We constructed the LMTK3 kinase in its active state (DYG-in) using the homology modeling approach. The evaluation of the generated model by several tools indicated the reliability of the predicted 3D structure and the good quality of the stereochemical characteristics model were confirmed by the PROCHECK tool. In conclusion, the docking approach used to study LMTK3-ATP interaction allows us to determine key residues of the ATP binding site that may be useful in the design of potential competitive ATP inhibitors of human LMTK3.