Evaluating the Vaccine Potential of a Tetravalent Fusion Protein against Coronavirus (COVID-19) | Abstract
Journal of Vaccines & Vaccination

Journal of Vaccines & Vaccination
Open Access

ISSN: 2157-7560



Evaluating the Vaccine Potential of a Tetravalent Fusion Protein against Coronavirus (COVID-19)

Mostafa Norizadeh Tazehkand* and Orkideh Hajipour

Coronaviruses are a type of viruses which cause illness ranging from the common cold to other diseases. SARS-CoV-2 is one coronaviruses family that cause respiratory syndrome. The virus first isolated from three people in Wuhan. This virus became known as COVID-19. Common signs of infection comprising of fever, respiratory symptoms, cough, shortness of breath and breathing difficulties. In more severe cases, infection can cause pneumonia, severe acute respiratory syndrome, kidney failure and even death. There is not any vaccine for COVID-19. This study was aimed to design and analysis of recombinant cavvine against COVID-19.

In this research the completely sequence of Envelope and Nucleocapsid protein was fused to multi epitopes (B and MHC I epitopes) obtained from Spike protein and RNA-dependent RNA polymerase and constructed a fusion vaccine.

The vaccine has 621 amino acids which 51 negatively charged residues and 118 positive charged amino acids with 71.906 kDa. The estimated half-life of peptide was found to be greater than 30 hours in mammalian reticulocytes, greater than 20 hours in yeast cells, and greater than 10 hours in E.coli. The instability index II is computed to be 34.81. So, this classifies the protein as stable. The aliphatic index of COVID-19 is found to be 66.86, so the vaccine is probable to be thermostable. The results obtained from protparam and pepcalc analysis revealed that the recombinant antigen is soluble in water. Ramachandran analysis of recombinant antigen showed that 84.3% of amino acids are in most favored regions; this result supported the high-quality structure of the refined model of recombinant vaccine. The result of docking analysis proved that the vaccine has most affinity to HLA B2705-KK10, HLAB3508, HLA-A0201, and HLA B5701. The result of this research revealed that the vaccine has antigenic property and stable structure. The vaccine could be produced by Recombinant DNA technology and expressed in host cells and need to experiment on laboratory animals.

Published Date: 2020-03-28; Received Date: 2020-03-05