Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • Scientific Indexing Services (SIS)
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Flyer image

Abstract

Engineered Narrow Size Distribution High Molecular Weight Proteinoids, Proteinoid-Poly(L-Lactic Acid) Copolymers and Nano/Micro-Hollow Particles for Biomedical Applications

Michal Kolitz-Domb and Shlomo Margel

Proteinoids are unusual polymers formed by thermal condensation of amino acids. Several types of proteinoids made of one to three different amino acids, in absence or presence, of low molecular weight poly(L-lactic acid) (PLLA), were synthesized. The polymerization kinetics, molecular weights and physical and mechanical properties of these proteinoids were elucidated. The ability to obtain several high-MW durable proteinoids, by using different amino acids as building blocks, along with incorporating PLLA in their structure, yields a new perspective of biodegradable polymers and polymer particles. Under suitable gentle conditions, the proteinoids can self-assemble to form nanoand micron-sized hollow particles of relatively narrow size distribution. This self-assembly process was used for encapsulation of different molecules within the produced proteinoid particles. One of the encapsulated materials used was indocyanine green (ICG), a known and FDA-approved near-IR dye used for medical cancer diagnosis. The ICG-encapsulated proteinoid particles were tested for biodistribution in mice. The proteinoid particles are nontoxic and stable; hence, they may be excellent candidates for various biomedical applications, e.g., cell labeling and separation, controlled release, drug targeting, etc.