Abstract

Emergence of Tubulin as a Vaccine against Parasitic Infections

Shreya Rajiv Bhargava

Tubulin, a conserved cytoskeletal protein, is a well-known drug target. It can also help in combating parasitic ailments. The sequence differences between parasitic and mammalian tubulin have led to the emergence of this protein as a vaccine against the causative agents of the widespread neglected tropical diseases (NTDs). Research on tubulin as a vaccine has resulted in many patented formulations in the past decade. The specific features of these patents (accessed from patent databases-WIPO, Espacenet, US PTO) encompass the source of tubulin, method of production, the vectors and host systems adopted, fusion partners chosen, the purification strategies, incorporation of adjuvants or carriers, route of administration and dosage. The chosen member of the tubulin superfamily for vaccine development is beta tubulin, owing to its variable C-terminus. Most of the patents outline isolation of the desired protein from the parasite; however recombinant and in vitro synthesis of the protein or fragment thereof have also been adopted as viable production systems. Tubulin vaccines reviewed here have been demonstrated as efficacious prophylactic agents against a variety of diseases in animals. These include trypanosomiasis, diseases caused by nematodes, including filariasis, onchocerciasis, and helminthic ailments such as fascioliasis, etc. Optimising additional features such as conformation of the peptide, route of administration, and ascertaining the mechanism of action of the protective antibody would lead to the successful adoption of tubulin vaccines as a promising strategy to ameliorate or eliminate parasitic ailments.