Abstract

A High-throughput Real-time PCR Approach to Pharmacogenomics Studies

Toinette Hartshorne, Ferrier Le, Jordan Lang, Harrison Leong, Kathleen Hayashibara, Dominique Dewolf, James Elliot and Elliot Shelton

Advances in personalized medicine have led to an increase in pharmacogenomics studies that involve testing individuals for drug metabolism enzyme and transporter gene polymorphisms implicated in drug response. As a consequence, there is a growing demand for affordable, easy to use technologies with fast sample-to-results workflows that can accommodate testing customizable sets of target gene variants and a changeable number of samples. Additionally, data analysis tools are needed to facilitate translation of an individual’s genetic information to their diploid content of gene-level star allele haplotypes, which can be correlated with drug metabolism enzyme phenotypes. Here we describe the development of a comprehensive pharmacogenomics experiments workflow solution to meet this need. High quality data was generated from purified buccal swab DNAs run with TaqMan® SNP genotyping and copy number assays in OpenArray® and 384-well plate formats, respectively, on the QuantStudio™ 12K Flex system. Data analysis was accomplished using TaqMan® Genotyper™ Software to examine SNP genotyping assay results and CopyCaller® Software to examine copy number assay results, followed by translation of this genetic data for individual samples to star allele genotypes using the recently developed AlleleTyper™ Software. The specific TaqMan® SNP Genotyping and Copy Number Assays to gene variants used can be tailored to suit the needs of a given pharmacogenomics study. This low cost, high throughput pharmacogenomics workflow can be completed in a single day, from sample preparation to data analysis.